Green Synthesis of Au Magnetic Nanocomposites Using Waste Chestnut Skins and Their Application as a Peroxidase Mimic Nanozyme Electrochemical Sensing Platform for Sodium Nitrite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Synthesis of Au@Fe3O4 Nanoparticles
2.3. Verification of Au@Fe3O4 Peroxidase-Like Activity
2.4. Electrochemical Detection of Sodium Nitrite
2.5. Real Sample Analysis
3. Results and Discussion
3.1. Characterization of Au@Fe3O4
3.2. Peroxidase-Like Activity of Au@Fe3O4 Nanoparticles
3.3. Mechanistic Validation of Electrochemical Detection System
3.4. Optimization of Electrochemical Detection Conditions for Peroxidase Mimic
3.5. Electrochemical Detection of Sodium Nitrite
3.6. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ndebele, N.; Nyokong, T. The use of carbon-based nanomaterials conjugated to cobalt phthalocyanine complex in the electrochemical detection of nitrite. Diam. Relat. Mater. 2023, 132, 109672. [Google Scholar] [CrossRef]
- Elfiky, M.; Salahuddin, N. Advanced sensing platform for nanomolar detection of food preservative nitrite in sugar byproducts based on 3D mesoporous nanorods of montmorillonite/TiO2-ZnO hybrids. Microchem. J. 2021, 170, 106582. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Z.; Liu, X.; Cao, X.; Wang, L.; Ding, Y.; Zhou, X. An Improved GC-MS Method for Malondialdehyde (MDA) Detection: Avoiding the Effects of Nitrite in Foods. Foods 2022, 11, 1176. [Google Scholar] [CrossRef] [PubMed]
- Difonzo, G.; Totaro, M.; Caponio, F.; Pasqualone, A.; Summo, C. Olive Leaf Extract (OLE) Addition as Tool to Reduce Nitrate and Nitrite in Ripened Sausages. Foods 2022, 11, 451. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Hui, P.; Feng, W. 3D urchin-like CoVO/MXene nanosheet composites for enhanced detection signal of nitrite. Sens. Actuators B 2023, 378, 133207. [Google Scholar] [CrossRef]
- Das, P.; Biswas, S.; Bhattacharya, S.; Nath, P. Carbon Nanodot-Neutral Red-Based Photometric and Fluorescence Sensing for Trace Detection of Nitrite in Water and Soil Using Smartphone. ACS Appl. Nano Mater. 2022, 5, 3265–3274. [Google Scholar] [CrossRef]
- Sookhakian, M.; Teridi, M.; Tong, G.; Woi, P.; Khalil, M.; Alias, Y. Reduced graphene oxide/copper nanoparticle composites as electrochemical sensor materials for nitrate detection. ACS Appl. Nano Mater. 2021, 4, 12737–12744. [Google Scholar] [CrossRef]
- Chen, Y.; Waterhouse, G.; Qiao, X.; Sun, Y.; Xu, Z. Sensitive analytical detection of nitrite using an electrochemical sensor with STAB-functionalized Nb2C@MWCNTs for signal amplification. Food Chem. 2022, 372, 131356. [Google Scholar] [CrossRef]
- Zhan, Y.; Zeng, Y.; Li, L.; Luo, F.; Qiu, B.; Lin, Z.; Guo, L. Ratiometric Fluorescent Hydrogel Test Kit for On-Spot Visual Detection of Nitrite. ACS Sens. 2019, 4, 1252–1260. [Google Scholar] [CrossRef]
- Singh, P.; Singh, M.; Beg, Y.; Nishad, G. A review on spectroscopic methods for determination of nitrite and nitrate in environmental samples. Talanta 2018, 191, 364–381. [Google Scholar] [CrossRef]
- Lin, S.; Hsu, J.; Fuh, M. Simultaneous determination of nitrate and nitrite in vegetables by poly(vinylimidazole-co-ethylene dimethacrylate) monolithic capillary liquid chromatography with UV detection. Talanta 2019, 205, 120082. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhou, X.; Yin, Y.; Xue, H.; Fang, W. Metal-organic framework derived rod-like co@carbon for electrochemical detection of nitrite. J. Alloys Compd. 2022, 911, 164915. [Google Scholar] [CrossRef]
- Halder, S.; Chakraborty, C. Fe(II)-based metallo-supramolecular polymer nanostructures: An efficient electrode material for highly sensitive electrochemical detection and abatement of hexavalent chromium. J. Environ. Chem. Eng. 2023, 11, 110183. [Google Scholar] [CrossRef]
- Xiao, J.; Fan, C.; Xu, T.; Su, L.; Zhang, X. An electrochemical wearable sensor for levodopa quantification in sweat based on a metal-organic framework/graphene oxide composite with integrated enzymes. Sens. Actuators B 2022, 359, 131586. [Google Scholar] [CrossRef]
- Wang, Q.; Hui, W.; Zhang, Z.; Wang, E.; Dong, S. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem. 2018, 105, 218–224. [Google Scholar] [CrossRef]
- Zhao, H.; Xing, Z.; Su, S.; Song, S.; Zhou, W. Recent advances in metal organic frame photocatalysts for environment and energy applications. Appl. Mater. Today 2020, 21, 100821. [Google Scholar] [CrossRef]
- Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210. [Google Scholar] [CrossRef]
- Ren, C.; Hu, X.; Zhou, Q. Graphene oxide quantum dots reduce oxidative stress and inhibit neurotoxicity in vitro and in vivo through catalase-like activity and metabolic regulation. Adv. Sci. 2018, 5, 1700595. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.; Han, T.; Wu, H.; Guo, S.; Zhang, J. Composite of graphene quantum dots and Fe3O4 nanoparticles: Peroxidase activity and application in phenolic compound removal. Rsc. Adv. 2013, 4, 3299–3305. [Google Scholar] [CrossRef]
- Yang, W.N.; Li, J.; Wang, M.Y.; Sun, X.F.; Liu, Y.; Yang, J.; Ng, D. A colorimetric strategy for ascorbic acid sensing based on the peroxidase-like activity of core-shell Fe3O4/CoFe-LDH hybrid. Colloids Surf. B 2020, 188, 110742. [Google Scholar] [CrossRef]
- Liu, G.; Liu, H.; Xu, H.; Zhu, L.; Li, L. Enhanced peroxidase-like activity of Fe3O4-sodium lignosulfonate loaded copper peroxide composites for colorimetric detection of H2O2 and glutathione. Spectrochim. Acta Part A 2020, 239, 118544. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, J.; Liu, Y.; Li, M.; Sun, Z. Facile fabrication of ZnO nanorods modified Fe3O4 nanoparticles with enhanced magnetic, photoelectrochemical and photocatalytic properties. Opt. Mater. 2020, 111, 110608. [Google Scholar] [CrossRef]
- Zheltova, V.; Vlasova, A.; Bobrysheva, N.; Abdullin, I.; Osmolovskaya, O. Fe3O4@HAp core–shell nanoparticles as MRI contrast agent: Synthesis, characterization and theoretical and experimental study of shell impact on magnetic properties. Appl. Surf. Sci. 2020, 531, 147352. [Google Scholar] [CrossRef]
- Li, Z.; Bai, J.; Zhang, X.; Lv, J.; Fan, C.; Zhao, Y.; Wu, Z.; Xu, H. Facile synthesis of Au nanoparticle-coated Fe3O4 magnetic composite nanospheres and their application in SERS detection of malachite green. Spectrochim. Acta Part A 2020, 241, 118532. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Kim, Y. Au-coated Fe3O4@SiO2 core-shell particles with photothermal activity. Colloids Surf. A 2020, 600, 124957. [Google Scholar] [CrossRef]
- Xie, H.; Gu, S.; Zhang, J.; Hu, Q.; Yu, X.; Kong, J. Novel PEI-AuNPs-MnIIIPPIX nanocomposite with enhanced peroxidase-like catalytic activity in aqueous media. C. R. Chim. 2018, 21, 104–111. [Google Scholar] [CrossRef]
- Vinita; Nirala, N.; Prakash, R. Facile and selective colorimetric assay of choline based on AuNPs-WS2QDs as a peroxidase mimic. Microchem. J. 2021, 167, 106312. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, T.; Cui, L.; Li, Y.; Yang, F.; Zhang, X. Label-free and dual-amplified electrochemical bioanalysis of muc1 based on an inorganic-organic polymer hybrid mimic peroxidase (AuNPs@Cu7S4@Cu/MN-AzoPPOP) and catalytic hairpin assembly. Sens. Actuators B 2021, 345, 130332. [Google Scholar] [CrossRef]
- Yang, J.; Lu, Y.; Ao, L.; Wang, F.; Jing, W.; Zhang, S.; Liu, Y. Colorimetric sensor array for proteins discrimination based on the tunable peroxidase-like activity of aunps-dna conjugates. Sens. Actuators B 2017, 245, 66–73. [Google Scholar] [CrossRef]
- Dheyab, M.; Aziz, A.; Jameel, M.; Khaniabadi, P.; Mehrdel, B. Mechanisms of effective gold shell on Fe3O4 core nanoparticles formation using sonochemistry method. Ultrason. Sonochem. 2019, 64, 104865. [Google Scholar] [CrossRef]
- Liang, R.P.; Wang, X.N.; Wang, L.; Qiu, J.D. Enantiomeric separation by microchip electrophoresis using bovine serum albumin conjugated magnetic core-shell Fe3O4@Au nanocomposites as stationary phase. Electrophor. Soc. 2014, 35, 2824–2832. [Google Scholar] [CrossRef] [PubMed]
- Sodipo, B.; Aziz, A.; Mustapa, M. Facile synthesis and characteristics of gold coated superparamagnetic iron oxide nanoparticles via sonication. Int. J. Nanoelectron. Mater. 2015, 8, 1–6. [Google Scholar]
- Ruíz-Baltazar, Á. Green synthesis assisted by sonochemical activation of Fe3O4-Ag nano-alloys: Structural characterization and studies of sorption of cationic dyes. Inorg. Chem. Commun. 2020, 120, 108148. [Google Scholar] [CrossRef]
- Vatandost, E.; Chekin, F.; Yasaghi, S.A.S. Green synthesis of silver nanoparticles by pepper extracts reduction and its electocatalytic and antibacterial activity. Russ. J. Electrochem. 2016, 52, 960–965. [Google Scholar] [CrossRef]
- Peng, F.; Yin, H.; Du, B.; Niu, K.; Ren, X. Anti-fatigue activity of purified flavonoids prepared from chestnut (Castanea mollissima) flower. J. Funct. Foods 2021, 79, 104365. [Google Scholar] [CrossRef]
- Tu, F.; Xie, C.; Li, H.; Lei, S.; Li, J.; Huang, X.; Yang, F. Effect of in vitro digestion on chestnut outer-skin and inner-skin bioaccessibility: The relationship between biotransformation and antioxidant activity of polyphenols by metabolomics. Food Chem. 2021, 363, 130277. [Google Scholar] [CrossRef]
- Hu, L.; Dong, T.; Zhao, K.; Deng, A.; Li, J. Ultrasensitive electrochemiluminescent brombuterol immunoassay by applying a multiple signal amplification strategy based on a PAMAM-gold nanoparticle conjugate as the bioprobe and Ag@Au core shell nanoparticles as a substrate. Microchim. Acta 2017, 184, 3415–3423. [Google Scholar] [CrossRef]
- Ruíz-Baltazar, Á. Sonochemical activation-assisted biosynthesis of Au/Fe3O4 nanoparticles and sonocatalytic degradation of methyl orange. Ultrason. Sonochem. 2021, 73, 105521. [Google Scholar] [CrossRef]
- Guan, H.N.; Zhang, Y.; Liu, S.P. A novel enhanced electrochemical sensor based on the peroxidase-like activity of Fe3O4@Au/MOF for the detection of p-aminophenol. J. Appl. Electrochem. 2022, 52, 989–1002. [Google Scholar] [CrossRef]
- Feng, L.; Zou, M.M.; Lv, X.R.; Min, X.Q.; Lin, X.Y.; Ni, Y.N. Facile synthesis of ZIF-67C@RGO/NiNPs nanocomposite for electrochemical non-enzymatic sensing platform of nitrite. Microchem. J. 2022, 179, 107508. [Google Scholar] [CrossRef]
- Bai, W.S.; Li, Y.; Liang, P.; Zhang, Z.T.; Xu, Y.Y.; Yang, Z.C.; Yang, K.; Lv, J.N.; Xie, H.J.; Cao, W.; et al. Density functional theory–guided electrochemical determination of nitrite in foods based on 2D metal-organic frameworks. J. Food Compos. Anal. 2023, 121, 105385. [Google Scholar] [CrossRef]
- Bilal, M.; Khaliq, N.; Ashraf, M.; Hussain, N.; Baqar, Z.; Zdarta, J.; Jesionowski, T.; Iqbal, H. Enzyme mimic nanomaterials as nanozymes with catalytic attributes. Colloids Surf. B 2023, 221, 112950. [Google Scholar] [CrossRef] [PubMed]
- Baye, A.; Nguyen, H.; Kim, H. Fe0/Fe3C-assisted Fe3O4 redox sites as robust peroxidase mimics for colorimetric detection of H2O2. Sens. Actuators B 2023, 377, 133097. [Google Scholar] [CrossRef]
- Jv, Y.; Li, B.; Cao, R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. 2010, 46, 8017–8019. [Google Scholar] [CrossRef]
- Nasraoui, S.; Al-Hamry, A.; Teixeira, P.; Ameur, S.; Kanoun, O. Electrochemical sensor for nitrite detection in water samples using flexible laser-induced graphene electrodes functionalized by CNT decorated by Au nanoparticles. J. Electroanal. Chem. 2020, 880, 114893. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.B. Two-step hydrothermal and ultrasound-assisted synthesis of CB/NiCo2S4@CeO2 composites for high-sensitivity electrochemical detection of nitrite. Microchem. J. 2022, 181, 107717. [Google Scholar] [CrossRef]
- Yang, Y.; Lei, Q.; Li, J.; Hong, C.; Zhao, Z.T.; Xu, H.Y.; Hu, J. Synthesis and enhanced electrochemical properties of AuNPs@MoS2/rGO hybrid structures for highly sensitive nitrite detection. Microchem. J. 2022, 172, 106904. [Google Scholar] [CrossRef]
- Sha, R.; Gopalakrishnan, A.; Sreenivasulu, K.; Srikanth, V.; Badhulika, S. Template-cum-catalysis free synthesis of α-MnO2 nanorods-hierarchical MoS2 microspheres composite for ultra-sensitive and selective determination of nitrite. J. Alloys Compd. 2019, 794, 26–34. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zheng, J. One-pot aqueous method for facile synthesis of platinum-copper bimetallic catalyst based on graphene oxide and its highly enhanced sensing of nitrite. J. Mater. Sci. Mater. Electron. 2020, 31, 13301–13309. [Google Scholar] [CrossRef]
- Manjari, G.; Saran, S.; Radhakrishanan, S. Facile green synthesis of Ag–Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions. J. Environ. Manage. 2020, 262, 110282. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Yang, S.; Shan, J. A novel electrochemical sensor based on TiO2-Ti3C2TX/CTAB/chitosan composite for the detection of nitrite. Electrochim. Acta 2020, 359, 136938. [Google Scholar] [CrossRef]
- Shi, H.; Fu, L.; Chen, F.; Zhao, S.; Lai, G. Preparation of highly sensitive electrochemical sensor for detection of nitrite in drinking water samples. Environ. Res. 2022, 209, 112747. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhang, Y.; Dong, H.; Liu, L.; Wang, X.; Zhang, Y.; Xu, M.; Zhou, Y. Self-Calibrating Electrochemical Sensors Based on Uniformly Dispersed Ag Nanoclusters in Nitrogen-Doped Carbon Sheets for Determination of Nitrite. ACS Appl. Nano Mater. 2022, 5, 9737–9746. [Google Scholar] [CrossRef]
- Huang, H.; Lv, L.; Xu, F.; Liao, J.; Liu, S.; Wen, H. PrFeO3-MoS2 nanosheets for use in enhanced electro-oxidative sensing of nitrite. Microchim. Acta 2017, 184, 4141–4149. [Google Scholar] [CrossRef]
- Qiu, Y.; Qu, K. Binary organic-inorganic nanocomposite of polyaniline-MnO2 for non-enzymatic electrochemical detection of environmental pollutant nitrite. Environ. Res. 2022, 214, 114066. [Google Scholar] [CrossRef] [PubMed]
- Rashed, M.A.; Faisal, M.; Alsaiari, M.; Alsareii, S.; Harraz, F. MWCNT-Doped Polypyrrole-Carbon Black Modified Glassy Carbon Electrode for Efficient Electrochemical Sensing of Nitrite Ions. Electrocatalysis 2021, 12, 650–666. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Kung, C.W.; Chou, L.Y.; Vittal, R.; Ho, K. Poly(3,4-ethylenedioxythiophene) (PEDOT) hollow microflowers and their application for nitrite sensing. Sens. Actuators B 2014, 192, 762–768. [Google Scholar] [CrossRef]
- Qu, J.; Dong, Y.; Wang, Y.; Lou, T.; Du, X.; Qu, J. A Novel nanofilm sensor based on poly-(alizarin red)/fe3o4 magnetic nanoparticles-multiwalled carbon nanotubes composite material for determination of nitrite. J. Nanosci. Nanotechnol. 2016, 16, 2731–2736. [Google Scholar] [CrossRef]
- Li, S.; Qu, J.; Yong, W.; Qu, J.; Wang, H. A novel electrochemical sensor based on carbon nanoparticle composite films for the determination of nitrite and hydrogen peroxide. Anal. Methods 2016, 8, 4204–4210. [Google Scholar] [CrossRef]
Au@Fe3O4 | |
---|---|
pore volume (cm3/g) | 0.19649 |
specific surface area (m2/g) | 60.7859 |
average pore size (nm) | 11.4508 |
Electrochemical Sensors | Method | Linear Range (μmol/L) | LOD (μmol/L) | Reference |
---|---|---|---|---|
ɑ-MnO2-MoS2 | CA | 100–800 | 16 | [48] |
Pt-Cu/GO | i-t | 3–9000 | 3 | [49] |
Ag-Cu@ZnO | LSV | 0–1500 | 17 | [50] |
TiO2-Ti3C2TX/CTAB/CS/GCE | DPV | 3–1250 | 0.85 | [51] |
AuNPs/GCE | DPV | 1–3800 | 2.4 | [52] |
AgNC@NCS | DPV | 1.12–1400 | 0.38 | [53] |
PrFeO3-MoS2 | CV | 5–300 | 1.67 | [54] |
MnO2/PANI/GCE | CV | 100–10,000 | 4.38 | [55] |
MWCNTs/PPy-C/GCE | i-t | 100–800 | 5–9500 | [56] |
PEDOT-HMF | LSV | 50–7500 | 0.59 | [57] |
PAR/Fe3O4/GCE | CV | 9.64–1300 | 1.19 | [58] |
CS/MWCNTs/CNs/GCE | LSV | 5–1000 | 0.89 | [59] |
Au@Fe3O4 | CV | 0.01–100 | 0.867 | This work |
Sample | Added (mmol/L) | Found (mmol/L) | Recovery (%) | R.S.D (%) |
---|---|---|---|---|
Milk | 0 | 0.000 | 0 | - |
2.5 | 2.49 ± 0.0276 | 99.68 ± 0.0143 | 2.89 | |
25 | 24.44 ± 0.0128 | 97.79 ± 0.0085 | 3.37 | |
50 | 50.27 ± 0.0223 | 100.54 ± 0.0097 | 2.22 | |
Tap water | 0 | 0.004 | 0 | - |
2.5 | 2.466 ± 0.0151 | 98.64 ± 0.0054 | 3.41 | |
25 | 26.063 ± 0.0278 | 104.25 ± 0.0112 | 1.96 | |
50 | 50.665 ± 0.0366 | 101.33 ± 0.0256 | 1.24 | |
Kimchi | 0 | 0.003 | 0 | - |
2.5 | 2.51 ± 0.0132 | 100.38 ± 0.0079 | 2.93 | |
25 | 25.618 ± 0.0087 | 102.47 ± 0.0035 | 2.29 | |
50 | 49.655 ± 0.0229 | 99.31 ± 0.0067 | 1.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, H.; Xing, K.; Liu, S. Green Synthesis of Au Magnetic Nanocomposites Using Waste Chestnut Skins and Their Application as a Peroxidase Mimic Nanozyme Electrochemical Sensing Platform for Sodium Nitrite. Foods 2023, 12, 3665. https://doi.org/10.3390/foods12193665
Guan H, Xing K, Liu S. Green Synthesis of Au Magnetic Nanocomposites Using Waste Chestnut Skins and Their Application as a Peroxidase Mimic Nanozyme Electrochemical Sensing Platform for Sodium Nitrite. Foods. 2023; 12(19):3665. https://doi.org/10.3390/foods12193665
Chicago/Turabian StyleGuan, Huanan, Ke Xing, and Shuping Liu. 2023. "Green Synthesis of Au Magnetic Nanocomposites Using Waste Chestnut Skins and Their Application as a Peroxidase Mimic Nanozyme Electrochemical Sensing Platform for Sodium Nitrite" Foods 12, no. 19: 3665. https://doi.org/10.3390/foods12193665
APA StyleGuan, H., Xing, K., & Liu, S. (2023). Green Synthesis of Au Magnetic Nanocomposites Using Waste Chestnut Skins and Their Application as a Peroxidase Mimic Nanozyme Electrochemical Sensing Platform for Sodium Nitrite. Foods, 12(19), 3665. https://doi.org/10.3390/foods12193665