Effects of Continuous and Cycled Annealing on the Physicochemical Properties and Digestibility of Water Caltrop Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Starch Isolation
2.3. Continuous and Cycled Annealing Treatment
2.4. Scanning Electron Microscopy
2.5. Starch Crystalline Structure and Relative Crystallinity
2.6. Starch Thermal Properties
2.7. Starch Pasting Properties
2.8. Steady Shear Rheological Properties
2.9. Dynamic Rheological Properties
2.10. In-Vitro Digestibility
2.11. Statistical Analysis
3. Results and Discussion
3.1. Starch Morphology
3.2. Crystalline Properties
3.3. Thermal Properties
3.4. Pasting Properties
3.5. Steady Shear Rheological Properties
3.6. Dynamic Rheological Properties
3.7. In-Vitro Digestibility
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corovic, R.C.; Bradic, J.; Tomovic, M.; Dabanovic, V.; Jakovljevic, V.; Zarkovic, G.; Rogac, Z. Chemical Composition and Biological Activity of Trapa natans L. Exp. Appl. Biomed. Res. 2021. [Google Scholar] [CrossRef]
- Yu, H.; Shen, S. Phenolic composition, antioxidant, antimicrobial and antiproliferative activities of water caltrop pericarps extract. LWT-Food Sci. Technol. 2015, 61, 238–243. [Google Scholar] [CrossRef]
- Zhu, F. Chemical composition, health effects, and uses of water caltrop. Trends Food Sci. Technol. 2016, 49, 136–145. [Google Scholar] [CrossRef]
- Faridah, D.N.; Damaiyanti, S.; Indrasti, D.; Jayanegara, A.; Afandi, F.A. Effect of heat moisture treatment on resistant starch content among carbohydrate sources: A meta-analysis. Int. J. Food Sci. Technol. 2022, 57, 1965–1974. [Google Scholar] [CrossRef]
- Han, H.; Hou, J.; Yang, N.; Zhang, Y.; Chen, H.; Zhang, Z.; Shen, Y.; Huang, S.; Guo, S. Insight on the changes of cassava and potato starch granules during gelatinization. Int. J. Biol. Macromol. 2019, 126, 37–43. [Google Scholar] [CrossRef]
- Allan, M.C.; Chamberlain, M.; Mauer, L.J. Effects of sugars and sugar alcohols on the gelatinization temperatures of wheat, potato, and corn starches. Foods 2020, 9, 757. [Google Scholar] [CrossRef]
- Nwaogazie, F.O.; Akinwande, B.A.; Oyeyinka, S.A. Physicochemical properties of Bambara groundnut (Vigna subterranea) starch annealed at different temperatures. J. Food Process. Preserv. 2022, 46, e17183. [Google Scholar] [CrossRef]
- Altemimi, A.B. Extraction and optimization of potato starch and its application as a stabilizer in yogurt manufacturing. Foods 2018, 7, 14. [Google Scholar] [CrossRef]
- Werlang, S.; Bonfante, C.; Oro, T.; Biduski, B.; Bertolin, T.E.; Gutkoski, L.C. Native and annealed oat starches as a fat replacer in mayonnaise. J. Food Process. Preserv. 2021, 45, e15211. [Google Scholar] [CrossRef]
- Punia, S. Barley starch modifications: Physical, chemical and enzymatic-A review. Int. J. Biol. Macromol. 2020, 144, 578–585. [Google Scholar] [CrossRef]
- Adewale, P.; Yancheshmeh, M.S.; Lam, E. Starch modification for non-food, industrial applications: Market intelligence and critical review. Carbohydr. Polym. 2022, 291, 119590. [Google Scholar] [CrossRef] [PubMed]
- Sui, Z.; Kong, X. Physical Modifications of Starch; Springer: Singapore, 2018. [Google Scholar]
- BeMiller, J.N. Physical modification of starch. In Starch in Food; Elsevier: Amsterdam, The Netherlands, 2018; pp. 223–253. [Google Scholar]
- Zheng, Y.; Chai, Z.; Kong, X.; Chen, S.; Ye, X.; Tian, J. Effect of annealing treatment on the physicochemical properties and enzymatic hydrolysis of different types of starch. Food Chem. 2023, 403, 134153. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.M.; El Halal, S.L.M.; Dias, A.R.G.; da Rosa Zavareze, E. Physical modification of starch by heat-moisture treatment and annealing and their applications: A review. Carbohydr. Polym. 2021, 274, 118665. [Google Scholar] [CrossRef] [PubMed]
- Tester, R.F.; Debon, S.J. Annealing of starch—A review. Int. J. Biol. Macromol. 2000, 27, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Saleh, A.S.; Zhang, B.; Zhao, K.; Ge, X.; Zhang, Q.; Li, W. Changes in structural, physicochemical, and digestive properties of normal and waxy wheat starch during repeated and continuous annealing. Carbohydr. Polym. 2020, 247, 116675. [Google Scholar] [CrossRef]
- Xu, M.; Saleh, A.S.; Gong, B.; Li, B.; Jing, L.; Gou, M.; Jiang, H.; Li, W. The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Food Res. Int. 2018, 111, 324–333. [Google Scholar] [CrossRef]
- Xu, M.; Saleh, A.S.; Liu, Y.; Jing, L.; Zhao, K.; Wu, H.; Zhang, G.; Yang, S.O.; Li, W. The changes in structural, physicochemical, and digestive properties of red adzuki bean starch after repeated and continuous annealing treatments. Starch-Stärke 2018, 70, 1700322. [Google Scholar] [CrossRef]
- Liu, J.-L.; Tsai, P.-C.; Lai, L.-S. Impacts of Hydrothermal Treatments on the Morphology, Structural Characteristics, and In Vitro Digestibility of Water Caltrop Starch. Molecules 2021, 26, 4974. [Google Scholar] [CrossRef]
- Chung, H.-J.; Liu, Q.; Hoover, R. Effect of single and dual hydrothermal treatments on the crystalline structure, thermal properties, and nutritional fractions of pea, lentil, and navy bean starches. Food Res. Int. 2010, 43, 501–508. [Google Scholar] [CrossRef]
- Samarakoon, E.R.J.; Waduge, R.; Liu, Q.; Shahidi, F.; Banoub, J.H. Impact of annealing on the hierarchical structure and physicochemical properties of waxy starches of different botanical origins. Food Chem. 2020, 303, 125344. [Google Scholar] [CrossRef]
- Tsai, P.-C.; Lai, L.-S. In vitro starch digestibility, rheological, and physicochemical properties of water caltrop starch modified with cycled heat-moisture treatment. Foods 2021, 10, 1687. [Google Scholar] [CrossRef] [PubMed]
- Marboh, V.; Mahanta, C.L. Physicochemical and rheological properties and in vitro digestibility of heat moisture treated and annealed starch of sohphlang (Flemingia vestita) tuber. Int. J. Biol. Macromol. 2021, 168, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Kingman, S.; Cummings, J. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar] [PubMed]
- Wang, S.; Wang, J.; Wang, S.; Wang, S. Annealing improves paste viscosity and stability of starch. Food Hydrocoll. 2017, 62, 203–211. [Google Scholar] [CrossRef]
- Zou, J.; Xu, M.; Wang, R.; Li, W. Structural and physicochemical properties of mung bean starch as affected by repeated and continuous annealing and their in vitro digestibility. Int. J. Food Prop. 2019, 22, 898–910. [Google Scholar] [CrossRef]
- Marboh, V.; Gayary, M.A.; Gautam, G.; Mahanta, C.L. Comparative study of heat-moisture treatment and annealing on morphology, crystallinity, pasting, and thermal properties of sohphlang (Flemingia vestita) starch. Starch-Stärke 2022, 74, 2100294. [Google Scholar] [CrossRef]
- Wang, S.; Jin, F.; Yu, J. Pea starch annealing: New insights. Food Bioprocess Technol. 2013, 6, 3564–3575. [Google Scholar] [CrossRef]
- Pinto, V.Z.; Vanier, N.L.; Deon, V.G.; Moomand, K.; El Halal, S.L.M.; da Rosa Zavareze, E.; Lim, L.-T.; Dias, A.R.G. Effects of single and dual physical modifications on pinhão starch. Food Chem. 2015, 187, 98–105. [Google Scholar] [CrossRef]
- Ji, N.; Ge, S.; Li, M.; Wang, Y.; Xiong, L.; Qiu, L.; Bian, X.; Sun, C.; Sun, Q. Effect of annealing on the structural and physicochemical properties of waxy rice starch nanoparticles: Effect of annealing on the properties of starch nanoparticles. Food Chem. 2019, 286, 17–21. [Google Scholar] [CrossRef]
- Chen, L.; McClements, D.J.; Yang, T.; Ma, Y.; Ren, F.; Tian, Y.; Jin, Z. Effect of annealing and heat-moisture pretreatments on the oil absorption of normal maize starch during frying. Food Chem. 2021, 353, 129468. [Google Scholar] [CrossRef]
- Xiang, G.; Li, J.; Han, W.; Yang, Y.; Lin, Q.; Yang, Y.; Liu, Q.; Guo, X.; Pan, Q.; Huang, Z. The influence of temperature changes on the rice starch structure and digestive characteristics: One and two-step annealing. Foods 2022, 11, 3641. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Ding, Y.; Wan, J.; Liu, C.; Prakash, S.; Xia, X. Effect of annealing on structural, physicochemical, and in vitro digestive properties of starch from castanopsis sclerophylla. Starch-Stärke 2021, 73, 2100005. [Google Scholar] [CrossRef]
- Shi, Y.-C. Two-and multi-step annealing of cereal starches in relation to gelatinization. J. Agric. Food Chem. 2008, 56, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Wang, X.; Li, L.; Xu, T.; Zheng, J. Effects of annealing time on structure and properties of sweet potato starch. Cereal Chem. 2020, 97, 573–580. [Google Scholar] [CrossRef]
- Shah, A.; Wu, Z.; Qiang, D.; Zhang, W.; Cao, S.; Wang, Y. Impact of ultrasound-assisted treatment on the physicochemical and structural properties of parboiled rice resistant starch with different amylose content. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, H.; Gou, M.; Xu, M.; Liu, Y.; Jing, L.; Zhao, K.; Jiang, H.; Li, W. The comparison of structural, physicochemical, and digestibility properties of repeatedly and continuously annealed sweet potato starch. J. Food Sci. 2019, 84, 2050–2058. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Z.; Ji, N.; Li, M.; Wang, Y.; Xiong, L.; Sun, Q. The effect of ethanol solution annealing on the physicochemical properties of pea and potato starches. Food Hydrocoll. 2022, 125, 107428. [Google Scholar] [CrossRef]
- Vamadevan, V.; Bertoft, E.; Soldatov, D.V.; Seetharaman, K. Impact on molecular organization of amylopectin in starch granules upon annealing. Carbohydr. Polym. 2013, 98, 1045–1055. [Google Scholar] [CrossRef]
- Gomes, A.M.; da Silva, C.E.M.; Ricardo, N.M.; Sasaki, J.M.; Germani, R. Impact of annealing on the physicochemical properties of unfermented cassava starch (“Polvilho Doce”). Starch-Stärke 2004, 56, 419–423. [Google Scholar] [CrossRef]
- Shen, H.; Xu, M.; Su, C.; Zhang, B.; Ge, X.; Zhang, G.; Li, W. Insights into the relations between the molecular structures and physicochemical properties of normal and waxy wheat B-starch after repeated and continuous annealing. Int. J. Food Sci. Technol. 2021, 56, 6405–6419. [Google Scholar] [CrossRef]
- Jayakody, L.; Hoover, R.; Liu, Q.; Donner, E. Studies on tuber starches III. Impact of annealing on the molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka. Carbohydr. Polym. 2009, 76, 145–153. [Google Scholar] [CrossRef]
- Ong, J.J.-X.; Steele, C.M.; Duizer, L.M. Challenges to assumptions regarding oral shear rate during oral processing and swallowing based on sensory testing with thickened liquids. Food Hydrocoll. 2018, 84, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Cichero, J.A.; Steele, C.; Duivestein, J.; Clavé, P.; Chen, J.; Kayashita, J.; Dantas, R.; Lecko, C.; Speyer, R.; Lam, P. The need for international terminology and definitions for texture-modified foods and thickened liquids used in dysphagia management: Foundations of a global initiative. Curr. Phys. Med. Rehabil. Rep. 2013, 1, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Osundahunsi, O.F.; Mueller, R. Dynamic rheological and physicochemical properties of annealed starches from two cultivars of cassava. Carbohydr. Polym. 2011, 83, 1916–1921. [Google Scholar] [CrossRef]
- Santamaria, M.; Montes, L.; Garzon, R.; Moreira, R.; Rosell, C.M. Unraveling the impact of viscosity and starch type on the in vitro starch digestibility of different gels. Food Funct. 2022, 13, 7582–7590. [Google Scholar] [CrossRef]
- Magallanes-Cruz, P.A.; Flores-Silva, P.C.; Bello-Perez, L.A. Starch structure influences its digestibility: A review. J. Food Sci. 2017, 82, 2016–2023. [Google Scholar] [CrossRef]
- Yeh, Y.; Lai, L.-S. Effect of single and dual hydrothermal treatments on the resistant starch content and physicochemical properties of lotus rhizome starches. Molecules 2021, 26, 4339. [Google Scholar] [CrossRef]
Sample | To (°C) | Tp (°C) | Tc (°C) | Tc–To (°C) | ΔH (J/g) |
---|---|---|---|---|---|
Native | 79.76 ± 0.25 d | 82.36 ± 0.35 d | 86.49 ± 0.25 d | 6.74 ± 0.02 a | 14.89 ± 0.21 d |
ANN 12 | 84.08 ± 0.53 c | 85.90 ± 0.53 c | 88.73 ± 0.59 c | 4.66 ± 0.06 b | 16.45 ± 0.04 bc |
ANN 24 | 84.52 ± 0.03 bc | 86.18 ± 0.02 c | 88.76 ± 0.13 c | 4.24 ± 0.10 c | 16.75 ± 0.32 b |
ANN 48 | 85.25 ± 0.01 b | 86.94 ± 0.12 b | 89.40 ± 0.01 c | 4.15 ± 0.01 c | 17.23 ± 0.06 a |
ANN 96 | 86.63 ± 0.70 a | 88.26 ± 0.70 a | 91.64 ± 0.93 a | 4.10 ± 0.45 c | 16.19 ± 0.20 c |
ANN 48 × 2 | 86.78 ± 0.40 a | 88.42 ± 0.35 a | 91.04 ± 0.38 ab | 4.26 ± 0.05 c | 15.33 ± 0.44 d |
ANN 24 × 4 | 86.41 ± 0.22 a | 88.07 ± 0.21 a | 90.63 ± 0.35 b | 4.21 ± 0.13 c | 16.42 ± 0.04 bc |
ANN 12 × 8 | 86.52 ± 0.28 a | 88.16 ± 0.27 a | 90.60 ± 0.24 b | 4.08 ± 0.08 c | 16.03 ± 0.07 c |
Sample | Peak Time (min) | Pasting Temperature (°C) | Peak Viscosity (cp) | Breakdown (cp) | Holding Strength (cp) | Setback (cp) | Final Viscosity (cp) |
---|---|---|---|---|---|---|---|
Native | 4.82 ± 0.05 b | 85.23 ± 0.30 d | 1057.33 ± 31.34 a | 81.67 ± 27.43 a | 975.67 ± 20.21 a | 461.00 ± 20.00 a | 1436.67 ± 33.29 a |
ANN 12 | 5.17 ± 0.00 a | 88.72 ± 0.46 c | 383.67 ± 12.50 b | −169.00 ± 5.57 b | 552.67 ± 7.23 b | 221.67 ± 3.06 b | 777.67 ± 10.97 b |
ANN 24 | 5.17 ± 0.00 a | 88.83 ± 0.03 c | 279.00 ± 6.00 c | −166.00 ± 4.58 b | 445.00 ± 6.24 c | 194.00 ± 3.00 c | 639.00 ± 7.55 c |
ANN 48 | 5.16 ± 0.06 a | 89.65 ± 0.54 b | 216.67 ± 8.14 d | −159.00 ± 6.08 b | 375.67 ± 2.08 d | 175.67 ± 5.51 d | 551.33 ± 7.51 d |
ANN 96 | 5.19 ± 0.02 a | 90.12 ± 0.03 ab | 193.33 ± 7.64 de | −155.67 ± 5.03 b | 349.00 ± 2.65 e | 163.33 ± 1.53 d | 512.33 ± 3.51 e |
ANN 48 × 2 | 5.16 ± 0.05 a | 90.27 ± 0.20 a | 175.33 ± 6.03 e | −149.67 ± 3.21 b | 325.33 ± 5.86 fg | 164.33 ± 2.31 d | 489.67 ± 5.51 ef |
ANN 24 × 4 | 5.13 ± 0.05 a | 90.43 ± 0.35 a | 176.67 ± 8.96 e | −163.67 ± 3.79 b | 340.33 ± 7.51 ef | 164.33 ± 3.21 d | 504.67 ± 10.26 ef |
ANN 12 × 8 | 5.17 ± 0.00 a | 90.57 ± 0.10 a | 168.00 ± 13.00 e | −149.00 ± 3.46 b | 317.00 ± 16.09 g | 161.67 ± 2.31 d | 478.67 ± 18.23 f |
Sample | Herschel-Bulkley | ||||
---|---|---|---|---|---|
σ0 (Pa) | η50 (Pa∙s) | n | K (Pa∙sn) | R2 | |
Native | 14.255 a | 1.846 a | 0.372 a | 22.408 a | 0.986 |
ANN 12 | 4.022 b | 0.969 b | 0.406 a | 9.723 b | 0.998 |
ANN 24 | 3.772 b | 0.838 b | 0.405 a | 8.244 bc | 0.999 |
ANN 48 | 2.217 b | 0.667 c | 0.408 a | 6.665 cd | 0.999 |
ANN 96 | 1.337 b | 0.546 c | 0.430 a | 5.081 d | 0.999 |
ANN 48 × 2 | 2.316 b | 0.566 c | 0.406 a | 5.675 d | 0.999 |
ANN 24 × 4 | 1.797 b | 0.547 c | 0.436 a | 4.899 d | 0.999 |
ANN 12 × 8 | 2.128 b | 0.540 c | 0.415 a | 5.262 d | 0.999 |
G′ (Pa) | G″ (Pa) | tan δ | |
---|---|---|---|
Native | 974.420 a | 46.655 a | 0.048 a |
ANN 12 | 928.775 b | 43.882 a | 0.047 ab |
ANN 24 | 838.545 c | 36.739 b | 0.044 abc |
ANN 48 | 706.480 d | 30.774 c | 0.044 abc |
ANN 96 | 692.415 d | 29.002 c | 0.042 c |
ANN 48 × 2 | 674.335 de | 28.414 c | 0.043 bc |
ANN 24 × 4 | 654.155 e | 27.592 c | 0.042 c |
ANN 12 × 8 | 694.600 d | 29.548 c | 0.043 bc |
RDS (<20 min) (g/100 g Sample) | SDS (20–120 min) (g/100 g Sample) | Very-SDS (120 min–16 h) (g/100 g Sample) | Resistant Starch (>16 h) (g/100 g Sample) | Total Starch (g/100 g Sample) | |
---|---|---|---|---|---|
Native | 3.81 ± 0.03 cd | 10.75 ± 0.19 a | 38.63 ± 0.17 d | 37.52 ± 0.30 e | 90.72 ± 0.62 b |
ANN 12 | 4.83 ± 0.01 ab | 7.84 ± 0.01 c | 41.41 ± 0.01 a | 37.88 ± 0.74 de | 91.96 ± 0.94 ab |
ANN 24 | 3.39 ± 0.22 d | 9.50 ± 0.56 b | 40.34 ± 0.33 bc | 38.63 ± 0.65 cd | 91.87 ± 0.47 ab |
ANN 48 | 5.06 ± 0.62 ab | 8.11 ± 0.65 c | 39.43 ± 1.01 cd | 39.44 ± 0.21 c | 92.42 ± 1.33 a |
ANN 96 | 4.28 ± 0.26 bc | 7.08 ± 0.04 cd | 41.39 ± 0.01 a | 39.30 ± 0.31 c | 91.89 ± 0.21 ab |
ANN 48 × 2 | 5.42 ± 0.37 a | 5.78 ± 0.19 e | 35.53 ± 0.17 e | 46.92 ± 0.63 a | 93.38 ± 0.22 a |
ANN 24 × 4 | 5.16 ± 0.42 a | 6.26 ± 1.13 de | 34.73 ± 0.71 f | 42.62 ± 0.59 b | 88.04 ± 0.89 c |
ANN 12 × 8 | 5.24 ± 0.32 a | 5.28 ± 0.41 e | 40.70 ± 0.12 ab | 42.14 ± 0.08 b | 93.36 ± 0.48 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, J.-C.; Lai, L.-S. Effects of Continuous and Cycled Annealing on the Physicochemical Properties and Digestibility of Water Caltrop Starch. Foods 2023, 12, 3551. https://doi.org/10.3390/foods12193551
Chung J-C, Lai L-S. Effects of Continuous and Cycled Annealing on the Physicochemical Properties and Digestibility of Water Caltrop Starch. Foods. 2023; 12(19):3551. https://doi.org/10.3390/foods12193551
Chicago/Turabian StyleChung, Jia-Chen, and Lih-Shiuh Lai. 2023. "Effects of Continuous and Cycled Annealing on the Physicochemical Properties and Digestibility of Water Caltrop Starch" Foods 12, no. 19: 3551. https://doi.org/10.3390/foods12193551
APA StyleChung, J.-C., & Lai, L.-S. (2023). Effects of Continuous and Cycled Annealing on the Physicochemical Properties and Digestibility of Water Caltrop Starch. Foods, 12(19), 3551. https://doi.org/10.3390/foods12193551