Novel Lipids to Regulate Obesity and Brain Function: Comparing Available Evidence and Insights from QSAR In Silico Models
Abstract
:1. Introduction
2. Prevalence and Current Impact of Obesity and Dyslipidemia
2.1. Ergosterol
2.2. Policosanol
2.3. Dietary Sphingomyelin
3. Prevalence and Current Impact of Mental and Neurological Disorders
3.1. α-Tocopherol
3.2. Cholesterol and Phospholipids from Krill Oil
3.3. Butyrate and Sodium Butyrate
4. Empirical Rules for Bioactivity Determination and In Silico QSAR
4.1. Ergosterol
4.2. Policosanol
4.3. Dietary Sphingomyelin
4.4. α-Tocopherol
4.5. Glycerophosphatidylcholines from Krill Oil
4.6. Butyrate and Sodium Butyrate
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- European Medicines Agency Committee for Medicinal Products for Human Use (CHMP). Guideline on Clinical Evaluation of Medicinal Products Used in Weight Management; European Medicines Agency: London, UK, 2016. [Google Scholar]
- WHO Regional office for Europe. WHO European Regional Obesity Report 2022; WHO Regional Office for Europe: Copenhagen, Denmark, 2022; ISBN 9789289057738. [Google Scholar]
- European Medicines Agency. Reflection Paper on Regulatory Requirements for the Development of Medicinal Products for Chronic Non-Infectious Liver Diseases (PBC, PSC, NASH); European Medicines Agency: London, UK, 2019. [Google Scholar]
- Sharma, R.; Matsuzaka, T.; Kaushik, M.K.; Sugasawa, T.; Ohno, H.; Wang, Y.; Motomura, K.; Shimura, T.; Okajima, Y.; Mizunoe, Y.; et al. Octacosanol and Policosanol Prevent High-Fat Diet-Induced Obesity and Metabolic Disorders by Activating Brown Adipose Tissue and Improving Liver Metabolism. Sci. Rep. 2019, 9, 5169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazzola, R.; Rondanelli, M.; Russo-Volpe, S.; Ferrari, E.; Cestaro, B. Decreased Membrane Fluidity and Altered Susceptibility to Peroxidation and Lipid Composition in Overweight and Obese Female Erythrocytes. J. Lipid Res. 2004, 45, 1846–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimentel, L.L.; Fontes, A.L.; Salsinha, A.S.; Cardoso, B.B.; Gomes, A.M.; Rodríguez-Alcalá, L.M. Microbiological In Vivo Production of CLNA as a Tool in the Regulation of Host Microbiota in Obesity Control. Stud. Nat. Prod. Chem. 2018, 61, 369–394. [Google Scholar]
- Vezza, T.; Canet, F.; de Marañón, A.M.; Bañuls, C.; Rocha, M.; Víctor, V.M. Phytosterols: Nutritional Health Players in the Management of Obesity and Its Related Disorders. Antioxidants 2020, 9, 1266. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Geetha, V.; Zarei, M.; Harohally, N.V.; Kumar, G.S. Modulation of Obesity Associated Metabolic Dysfunction by Novel Lipophilic Fraction Obtained from Agaricus bisporus. Life Sci. 2022, 305, 120779. [Google Scholar] [CrossRef]
- Kang, J.G.; Park, C.Y. Anti-Obesity Drugs: A Review about Their Effects and Safety. Diabete Metab. J. 2012, 36, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Pirro, M.; Vetrani, C.; Bianchi, C.; Mannarino, M.R.; Bernini, F.; Rivellese, A.A. Joint Position Statement on “Nutraceuticals for the Treatment of Hypercholesterolemia” of the Italian Society of Diabetology (SID) and of the Italian Society for the Study of Arteriosclerosis (SISA). Nutr. Metab. Cardiovasc. Dis. 2017, 27, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Dai, Z.; Liu, A.B.; Huang, J.; Narsipur, N.; Guo, G.; Kong, B.; Reuhl, K.; Lu, W.; Luo, Z.; et al. Intake of Stigmasterol and β-Sitosterol Alters Lipid Metabolism and Alleviates NAFLD in Mice Fed a High-Fat Western-Style Diet. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1274–1284. [Google Scholar] [CrossRef]
- Norris, G.H.; Porter, C.M.; Jiang, C.; Millar, C.L.; Blesso, C.N. Dietary Sphingomyelin Attenuates Hepatic Steatosis and Adipose Tissue Inflammation in High-Fat-Diet-Induced Obese Mice. J. Nutr. Biochem. 2017, 40, 36–43. [Google Scholar] [CrossRef]
- Chung, R.W.S.; Kamili, A.; Tandy, S.; Weir, J.M.; Gaire, R.; Wong, G.; Meikle, P.J.; Cohn, J.S.; Rye, K.-A. Dietary Sphingomyelin Lowers Hepatic Lipid Levels and Inhibits Intestinal Cholesterol Absorption in High-Fat-Fed Mice. PLoS ONE 2013, 8, e55949. [Google Scholar] [CrossRef] [Green Version]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and Their Derivatives: Structural Diversity, Distribution, Metabolism, Analysis, and Health-Promoting Uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef] [PubMed]
- Dupont, S.; Fleurat-Lessard, P.; Cruz, R.G.; Lafarge, C.; Grangeteau, C.; Yahou, F.; Gerbeau-Pissot, P.; Abrahão Júnior, O.; Gervais, P.; Simon-Plas, F.; et al. Antioxidant Properties of Ergosterol and Its Role in Yeast Resistance to Oxidation. Antioxidants 2021, 10, 1024. [Google Scholar] [CrossRef] [PubMed]
- Piva, G.G.; Casalta, E.; Legras, J.-L.; Tesnière, C.; Sablayrolles, J.-M.; Ferreira, D.; Ortiz-Julien, A.; Galeote, V.; Mouret, J.-R. Characterization and Role of Sterols in Saccharomyces cerevisiae during White Wine Alcoholic Fermentation. Fermentation 2022, 8, 90. [Google Scholar] [CrossRef]
- Das, M.; Kumar, G.S. Potential Role of Mycosterols in Hyperlipidemia—A Review. Steroids 2021, 166, 108775. [Google Scholar] [CrossRef]
- Rosenheim, O.; Webster, T. The Specificity of Ergosterol as Parent Substance of Vitamin D. Nature 1928, 121, 570. [Google Scholar] [CrossRef]
- Foss, Y.J. Vitamin D Deficiency Is the Cause of Common Obesity. Med. Hypotheses 2009, 72, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Baur, A.C.; Kühn, J.; Brandsch, C.; Hirche, F.; Stangl, G.I. Intake of Ergosterol Increases the Vitamin D Concentrations in Serum and Liver of Mice. J. Steroid Biochem. Mol. Biol. 2019, 194, 105435. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.M.; Ruggio, D.M.; Horst, R.L.; Minor, B.; Simon, R.R.; Feeney, M.J.; Byrdwell, W.C.; Haytowitz, D.B. Vitamin D and Sterol Composition of 10 Types of Mushrooms from Retail Suppliers in the United States. J. Agric. Food Chem. 2011, 59, 7841–7853. [Google Scholar] [CrossRef]
- Rousta, N.; Aslan, M.; Yesilcimen Akbas, M.; Ozcan, F.; Sar, T.; Taherzadeh, M.J. Effects of Fungal Based Bioactive Compounds on Human Health: Review Paper. Crit. Rev. Food Sci. Nutr. 2023, 1–24. [Google Scholar] [CrossRef]
- Heleno, S.A.; Rudke, A.R.; Calhelha, R.C.; Carocho, M.; Barros, L.; Gonçalves, O.H.; Barreiro, M.F.; Ferreira, I.C.F.R. Development of Dairy Beverages Functionalized with Pure Ergosterol and Mycosterol Extracts: An Alternative to Phytosterol-Based Beverages. Food Funct. 2017, 8, 103–110. [Google Scholar] [CrossRef]
- Lee, N.K.; Aan, B.Y. Optimization of Ergosterol to Vitamin D2 Synthesis in Agaricus bisporus Powder Using Ultraviolet-B Radiation. Food Sci. Biotechnol. 2016, 25, 1627–1631. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.; Víctor, R.; Roberto, C.; Hernandez, M.; Marín, F.R.; Largo, C.; Rodríguez, A.; Tabernero, M.; Ruiz, A.; Guillermo, R. Modulation of Cholesterol—Related Gene Expression by Ergosterol and Ergosterol—Enriched Extracts Obtained from Agaricus bisporus. Eur. J. Nutr. 2016, 55, 1041–1057. [Google Scholar] [CrossRef]
- Mahdavi, A.; Bagherniya, M.; Fakheran, O.; Reiner, Ž.; Xu, S.; Sahebkar, A. Medicinal Plants and Bioactive Natural Compounds as Inhibitors of HMG-CoA Reductase: A Literature Review. BioFactors 2020, 46, 906–926. [Google Scholar] [CrossRef] [PubMed]
- Burg, J.S.; Espenshade, P.J. Progress in Lipid Research Regulation of HMG-CoA Reductase in Mammals and Yeast. Prog. Lipid Res. 2011, 50, 403–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, M.; Gurusiddaiah, S.K. Ergosterol Fraction from Agaricus bisporus Modulates Adipogenesis and Skeletal Glucose Uptake in High Fat Diet Induced Obese C57BL/6 Mice. Life Sci. 2023, 315, 121337. [Google Scholar] [CrossRef]
- Ra, J.; Woo, S.; Lee, K.; Ja, M.; Young, H.; Mi, H.; Chung, I.; Hyun, D.; Hwan, J.; Duck, W. Policosanol Profiles and Adenosine 5′-Monophosphate-Activated Protein Kinase (AMPK) Activation Potential of Korean Wheat Seedling Extracts According to Cultivar and Growth Time. Food Chem. 2020, 317, 126388. [Google Scholar] [CrossRef]
- Gouni-Berthold, I.; Berthold, H.K. Policosanol: Clinical Pharmacology and Therapeutic Significance of a New Lipid-Lowering Agent. Am. Heart J. 2002, 143, 356–365. [Google Scholar] [CrossRef]
- Kabir, Y.; Kimura, S. Biodistribution and Metabolism of Orally Administered Octacosanol in Rats. Ann. Nutr. Metab. 1993, 37, 33–38. [Google Scholar] [CrossRef]
- Keller, S.; Gimmler, F.; Jahreis, G. Octacosanol Administration to Humans Decreases Neutral Sterol and Bile Acid Concentration in Feces. Lipids 2008, 43, 109–115. [Google Scholar] [CrossRef]
- Zhai, Z.; Liu, J.; Niu, K.M.; Lin, C.; Tu, Y.; Liu, Y.; Cai, L.; Liu, H.; Ouyang, K. Integrated Metagenomics and Metabolomics to Reveal the Effects of Policosanol on Modulating the Gut Microbiota and Lipid Metabolism in Hyperlipidemic C57BL/6 Mice. Front. Endocrinol. 2021, 12, 722055. [Google Scholar] [CrossRef]
- Lee, S.-H.; Scott, S.D.; Pekas, E.J.; Lee, J.; Park, S. Improvement of Lipids and Reduction of Oxidative Stress With Octacosanol After Taekwondo Training. Int. J. Sport. Physiol. Perform. 2019, 14, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, M.K.; Pandey, S.; Tomar, R.; Sahoo, J.; Kumar, D.; Jangra, A. Therapeutic Potential of Policosanol in the Concurrent Management of Dyslipidemia and Non-Alcoholic Fatty Liver Disease. Future J. Pharm. Sci. 2022, 8, 11. [Google Scholar] [CrossRef]
- Viola, F.; Oliaro, S.; Binello, A.; Cravotto, G. Policosanol: Updating and Perspectives. Med. J. Nutr. Metab. 2008, 1, 77–83. [Google Scholar] [CrossRef]
- Oliaro-Bosso, S.; Calcio Gaudino, E.; Mantegna, S.; Giraudo, E.; Meda, C.; Viola, F.; Cravotto, G. Regulation of HMGCoA Reductase Activity by Policosanol and Octacosadienol, a New Synthetic Analogue of Octacosanol. Lipids 2009, 44, 907–916. [Google Scholar] [CrossRef] [Green Version]
- Menéndez, R.; Amor, A.M.; Rodeiro, I.; González, R.M.; González, P.C.; Alfonso, J.L.; Más, R. Policosanol Modulates HMG-CoA Reductase Activity in Cultured Fibroblasts. Arch. Med. Res. 2001, 32, 8–12. [Google Scholar] [CrossRef]
- Iqbal, J.; Walsh, M.T.; Hammad, S.M.; Hussain, M.M. Sphingolipids and Lipoproteins in Health and Metabolic Disorders. Trends Endocrinol. Metab. 2017, 28, 506–518. [Google Scholar] [CrossRef]
- Norris, G.H.; Jiang, C.; Ryan, J.; Porter, C.M.; Blesso, C.N. Milk Sphingomyelin Improves Lipid Metabolism and Alters Gut Microbiota in High Fat Diet-Fed Mice. J. Nutr. Biochem. 2016, 30, 93–101. [Google Scholar] [CrossRef]
- Lo Sasso, G.; Schlage, W.K.; Boué, S.; Veljkovic, E.; Peitsch, M.C.; Hoeng, J. The Apoe−/− Mouse Model: A Suitable Model to Study Cardiovascular and Respiratory Diseases in the Context of Cigarette Smoke Exposure and Harm Reduction. J. Transl. Med. 2016, 14, 146. [Google Scholar] [CrossRef] [Green Version]
- Millar, C.L.; Norris, G.H.; Vitols, A.; Garcia, C.; Seibel, S.; Anto, L.; Blesso, C.N. Dietary Egg Sphingomyelin Prevents Aortic Root Plaque Accumulation in Apolipoprotein-E Knockout Mice. Nutrients 2019, 11, 1124. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.D.; Tan, X.; Tawfik, O.; Milne, G.; Stechschulte, D.J.; Dileepan, K.N. Increased Aortic Atherosclerotic Plaque Development in Female Apolipoprotein E-Null Mice Is Associated with Elevated Thromboxane A2 and Decreased Prostacyclin Production. J. Physiol. Pharmacol. 2010, 61, 309. [Google Scholar]
- Chung, R.W.S.; Wang, Z.; Bursill, C.A.; Wu, B.J.; Barter, P.J.; Rye, K.A. Effect of Long-Term Dietary Sphingomyelin Supplementation on Atherosclerosis in Mice. PLoS ONE 2017, 12, e0189523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, C.; Cheong, L.Z.; Zhang, X.; Ali, A.H.; Jin, Q.; Wei, W.; Wang, X. Dietary Sphingomyelin Metabolism and Roles in Gut Health and Cognitive Development. In Advances in Nutrition; Oxford University Press: New York, NY, USA, 2022; Volume 13, pp. 474–491. [Google Scholar]
- Byrdwell, W.C.; Perry, R.H. Liquid Chromatography with Dual Parallel Mass Spectrometry and 31P Nuclear Magnetic Resonance Spectroscopy for Analysis of Sphingomyelin and Dihydrosphingomyelin: I. Bovine Brain and Chicken Egg Yolk. J. Chromatogr. A 2006, 1133, 149–171. [Google Scholar] [CrossRef] [PubMed]
- Byrdwell, W.C.; Perry, R.H. Liquid Chromatography with Dual Parallel Mass Spectrometry and 31P Nuclear Magnetic Resonance Spectroscopy for Analysis of Sphingomyelin and Dihydrosphingomyelin: II. Bovine Milk Sphingolipids. J. Chromatogr. A 2007, 1146, 164–185. [Google Scholar] [CrossRef]
- Ridgway, N.D. Interactions between Metabolism and Intracellular Distribution of Cholesterol and Sphingomyelin. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2000, 1484, 129–141. [Google Scholar] [CrossRef]
- Yamauchi, I.; Uemura, M.; Hosokawa, M.; Iwashima-Suzuki, A.; Shiota, M.; Miyashita, K. The Dietary Effect of Milk Sphingomyelin on the Lipid Metabolism of Obese/Diabetic KK-Ay Mice and Wild-Type C57BL/6J Mice. Food Funct. 2016, 7, 3854–3867. [Google Scholar] [CrossRef]
- Yang, F.; Chen, G.; Ma, M.; Qiu, N.; Zhu, L.; Li, J. Egg-Yolk Sphingomyelin and Phosphatidylcholine Attenuate Cholesterol Absorption in Caco-2 Cells. Lipids 2018, 53, 217–233. [Google Scholar] [CrossRef]
- Paton, C.M.; Ntambi, J.M. Biochemical and Physiological Function of Stearoyl-CoA Desaturase. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E28. [Google Scholar] [CrossRef] [Green Version]
- Ohlsson, L.; Burling, H.; Nilsson, Å. Long Term Effects on Human Plasma Lipoproteins of a Formulation Enriched in Butter Milk Polar Lipid. Lipids Health Dis. 2009, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Cochran, B.J.; Ong, K.L.; Manandhar, B.; Rye, K.A. APOA1: A Protein with Multiple Therapeutic Functions. Curr. Atheroscler. Rep. 2021, 23, 11. [Google Scholar] [CrossRef]
- Ohlsson, L.; Burling, H.; Duan, R.D.; Nilsson, A. Effects of a Sphingolipid-Enriched Dairy Formulation on Postprandial Lipid Concentrations. Eur. J. Clin. Nutr. 2010, 64, 1344–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramprasath, V.R.; Jones, P.J.H.; Buckley, D.D.; Woollett, L.A.; Heubi, J.E. Effect of Dietary Sphingomyelin on Absorption and Fractional Synthetic Rate of Cholesterol and Serum Lipid Profile in Humans. Lipids Health Dis. 2013, 12, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, R.D.; Hertervig, E.; Nyberg, L.; Hauge, T.; Sternby, B.; Lillienau, J.; Farooqi, A.; Nilsson, A. Distribution of Alkaline Sphingomyelinase Activity in Human Beings and Animals. Tissue and Species Differences. Dig. Dis. Sci. 1996, 41, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Beghi, E.; Fazekas, F.; Varga, T.; Christoforidi, K.A.; Sipido, E.; Bassetti, C.L.; Vos, T.; Feigin, V.L. The Burden of Neurological Diseases in Europe: An Analysis for the Global Burden of Disease Study 2017. Lancet Public Health 2020, 5, e551–e567. [Google Scholar] [CrossRef]
- Ding, C.; Wu, Y.; Chen, X.; Chen, Y.; Wu, Z.; Lin, Z.; Kang, D.; Fang, W.; Chen, F. Global, Regional, and National Burden and Attributable Risk Factors of Neurological Disorders: The Global Burden of Disease Study 1990–2019. Front. Public Health 2022, 10, 952161. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Neurology Collaborators. Global, Regional, and National Burden of Neurological Disorders, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2019, 18, 459–480. [Google Scholar] [CrossRef] [Green Version]
- Deuschl, G.; Beghi, E.; Varga, T. FACT SHEET: The Burden of Neurological Diseases in Europe. Available online: https://www.ean.org/fileadmin/user_upload/ean/ean/research/Fact_sheet_about_neurological_diseases_Europe_06112019.pdf (accessed on 17 January 2023).
- Charlson, F.J.; Baxter, A.J.; Dua, T.; Degenhardt, L.; Whiteford, H.A.; Vos, T. Excess Mortality from Mental, Neurological and Substance Use Disorders in the Global Burden of Disease Study 2010. Epidemiol. Psychiatr. Sci. 2015, 24, 121–140. [Google Scholar] [CrossRef] [Green Version]
- Plana-Ripoll, O.; Pedersen, C.B.; Agerbo, E.; Holtz, Y.; Erlangsen, A.; Canudas-Romo, V.; Andersen, P.K.; Charlson, F.J.; Christensen, M.K.; Erskine, H.E.; et al. A Comprehensive Analysis of Mortality-Related Health Metrics Associated with Mental Disorders: A Nationwide, Register-Based Cohort Study. Lancet 2019, 394, 1827–1835. [Google Scholar] [CrossRef]
- Zang, X.; Chen, S.; Zhu, J.; Ma, J.; Zhai, Y. The Emerging Role of Central and Peripheral Immune Systems in Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 872134. [Google Scholar] [CrossRef]
- Tucker, J.M.; Townsend, D.M. Alpha-Tocopherol: Roles in Prevention and Therapy of Human Disease. Biomed. Pharmacother. 2005, 59, 380–387. [Google Scholar] [CrossRef]
- Torres, L.C.R.; Sartori, A.G.d.O.; Silva, A.P.d.S.; Alencar, S.M.d. Bioaccessibility and Uptake/Epithelial Transport of Vitamin E: Discoveries and Challenges of in Vitro and Ex Vivo Assays. Food Res. Int. 2022, 162, 112143. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G. Vitamin E Regulatory Mechanisms. Annu. Rev. Nutr. 2007, 27, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Galli, F.; Bonomini, M.; Bartolini, D.; Zatini, L.; Reboldi, G.; Marcantonini, G.; Gentile, G.; Sirolli, V.; Di Pietro, N. Vitamin E (Alpha-Tocopherol) Metabolism and Nutrition in Chronic Kidney Disease. Antioxidants 2022, 11, 989. [Google Scholar] [CrossRef] [PubMed]
- Arai, H.; Kono, N. α-Tocopherol Transfer Protein (α-TTP). Free Radic. Biol. Med. 2021, 176, 162–175. [Google Scholar] [CrossRef]
- Zaaboul, F.; Liu, Y.F. Vitamin E in Foodstuff: Nutritional, Analytical, and Food Technology Aspects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 964–998. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on Dietary Reference Values for Vitamin E as A-tocopherol. EFSA J. 2015, 13, 4149. [Google Scholar] [CrossRef]
- Novotny, J.A.; Fadel, J.G.; Holstege, D.M.; Furr, H.C.; Clifford, A.J. This Kinetic, Bioavailability, and Metabolism Study of RRR-α-Tocopherol in Healthy Adults Suggests Lower Intake Requirements than Previous Estimates. J. Nutr. 2012, 142, 2105–2111. [Google Scholar] [CrossRef] [Green Version]
- Traber, M.G.; Head, B. Vitamin E: How Much Is Enough, Too Much and Why! Free Radic. Biol. Med. 2021, 177, 212–225. [Google Scholar] [CrossRef]
- Gohil, K.; Oommen, S.; Quach, H.T.; Vasu, V.T.; Aung, H.H.; Schock, B.; Cross, C.E.; Vatassery, G.T. Mice Lacking α-Tocopherol Transfer Protein Gene Have Severe α-Tocopherol Deficiency in Multiple Regions of the Central Nervous System. Brain Res. 2008, 1201, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Ulatowski, L.; Ghelfi, M.; West, R.; Atkinson, J.; Finno, C.J.; Manor, D. The Tocopherol Transfer Protein Mediates Vitamin E Trafficking between Cerebellar Astrocytes and Neurons. J. Biol. Chem. 2022, 298, 101712. [Google Scholar] [CrossRef]
- Lee, P.; Ulatowski, L.M. Vitamin E: Mechanism of Transport and Regulation in the CNS. IUBMB Life 2019, 71, 424–429. [Google Scholar] [CrossRef]
- Thapa, S.; Shah, S.; Chand, S.; Sah, S.K.; Gyawali, P.; Paudel, S.; Khanal, P. Ataxia Due to Vitamin E Deficiency: A Case Report and Updated Review. Clin. Case Rep. 2022, 10, e6303. [Google Scholar] [CrossRef] [PubMed]
- German, L.; Kahana, C.; Rosenfeld, V.; Zabrowsky, I.; Wiezer, Z.; Fraser, D.; Shahar, D.R. Depressive Symptoms Are Associated with Food Insufficiency and Nutritional Deficiencies in Poor Community-Dwelling Elderly People. J. Nutr. Health Aging 2011, 15, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wu, H.; Jiang, R.; Sun, G.; Shen, J.; Ma, M.; Ma, C.; Zhang, S.; Huang, Z.; Wu, Q.; et al. The Antidepressant Effects of α-Tocopherol Are Related to Activation of Autophagy via the AMPK/MTOR Pathway. Eur. J. Pharmacol. 2018, 833, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Manosso, L.M.; Neis, V.B.; Moretti, M.; Daufenbach, J.F.; Freitas, A.E.; Colla, A.R.; Rodrigues, A.L.S. Antidepressant-like Effect of α-Tocopherol in a Mouse Model of Depressive-like Behavior Induced by TNF-α. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 46, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Lobato, K.R.; Cardoso, C.C.; Binfaré, R.W.; Budni, J.; Wagner, C.L.R.; Brocardo, P.S.; de Souza, L.F.; Brocardo, C.; Flesch, S.; Freitas, A.E.; et al. α-Tocopherol Administration Produces an Antidepressant-like Effect in Predictive Animal Models of Depression. Behav. Brain Res. 2010, 209, 249–259. [Google Scholar] [CrossRef]
- Banikazemi, Z.; Mokhber, N.; Safarian, M.; Mazidi, M.; Mirzaei, H.; Esmaily, H.; Azarpazhooh, M.R.; Ghafouri-Taleghani, F.; Ghayour-Mobarhan, M.; Ferns, G.A. Dietary Vitamin E and Fat Intake Are Related to Beck’s Depression Score. Clin. Nutr. ESPEN 2015, 10, e61–e65. [Google Scholar] [CrossRef]
- Shibata, H.; Kumagai, S.; Watanabe, S.; Suzuki, T. Relationship of Serum Cholesterols and Vitamin E to Depressive Status in the Elderly. J. Epidemiol. 1999, 9, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Kennis, M.; Gerritsen, L.; van Dalen, M.; Williams, A.; Cuijpers, P.; Bockting, C. Prospective Biomarkers of Major Depressive Disorder: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2020, 25, 321–338. [Google Scholar] [CrossRef] [Green Version]
- Maes, M.; De Vos, N.; Pioli, R.; Demedts, P.; Wauters, A.; Neels, H.; Christophe, A. Lower Serum Vitamin E Concentrations in Major Depression. J. Affect. Disord. 2000, 58, 241–246. [Google Scholar] [CrossRef]
- Das, A.; Cumming, R.G.; Naganathan, V.; Ribeiro, R.v.; le Couteur, D.G.; Handelsman, D.J.; Waite, L.M.; Hirani, V. The Association between Antioxidant Intake, Dietary Pattern and Depressive Symptoms in Older Australian Men: The Concord Health and Ageing in Men Project. Eur. J. Nutr. 2021, 60, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Lohr, J.B.; Cadet, J.L.; Lohr, M.A.; Larson, L.; Wasll, E.; Wade, L.; Hylton, R.; Vldonl, C.; Jeste, D.v.; Wyatt, R.J. Vitamin E in the Treatment of Tardive Dyskinesia: The Possible Involvement of Free Radical Mechanisms 291. Schizophr. Bull. 1988, 14, 291–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamilian, M.; Shojaei, A.; Samimi, M.; Afshar Ebrahimi, F.; Aghadavod, E.; Karamali, M.; Taghizadeh, M.; Jamilian, H.; Alaeinasab, S.; Jafarnejad, S.; et al. The Effects of Omega-3 and Vitamin E Co-Supplementation on Parameters of Mental Health and Gene Expression Related to Insulin and Inflammation in Subjects with Polycystic Ovary Syndrome. J. Affect. Disord. 2018, 229, 41–47. [Google Scholar] [CrossRef]
- Manosso, L.M.; Camargo, A.; Dafre, A.L.; Rodrigues, A.L.S. Vitamin E for the Management of Major Depressive Disorder: Possible Role of the Anti-Inflammatory and Antioxidant Systems. Nutr. Neurosci. 2022, 25, 1310–1324. [Google Scholar] [CrossRef]
- Petra, M.J.C. Kuijpers History in Medicine: The Story of Cholesterol, Lipids and Cardiology. e-J. Cardiol. Pract. 2021, 19, 1–5. [Google Scholar]
- Orkaby, A.R. The Highs and Lows of Cholesterol: A Paradox of Healthy Aging? J. Am. Geriatr. Soc. 2020, 68, 236–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahley, R.W. Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1305–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantuti-Castelvetri, L.; Fitzner, D.; Bosch-Queralt, M.; Weil, M.T.; Su, M.; Sen, P.; Ruhwedel, T.; Mitkovski, M.; Trendelenburg, G.; Lütjohann, D.; et al. Defective Cholesterol Clearance Limits Remyelination in the Aged Central Nervous System. Science 2018, 359, 684–688. [Google Scholar] [CrossRef] [Green Version]
- Hammel, G.; Zivkovic, S.; Ayazi, M.; Ren, Y. Consequences and Mechanisms of Myelin Debris Uptake and Processing by Cells in the Central Nervous System. Cell. Immunol. 2022, 380, 104591. [Google Scholar] [CrossRef]
- Petrov, A.M.; Kasimov, M.R.; Zefirov, A.L. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction. Acta Nat. 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Liu, H.; Hu, Q.; Wang, L.; Liu, J.; Zheng, Z.; Zhang, W.; Ren, J.; Zhu, F.; Liu, G.H. Epigenetic Regulation of Aging: Implications for Interventions of Aging and Diseases. Signal Transduct. Target. Ther. 2022, 7, 374. [Google Scholar] [CrossRef]
- Safaiyan, S.; Kannaiyan, N.; Snaidero, N.; Brioschi, S.; Biber, K.; Yona, S.; Edinger, A.L.; Jung, S.; Rossner, M.J.; Simons, M. Age-Related Myelin Degradation Burdens the Clearance Function of Microglia during Aging. Nat. Neurosci. 2016, 19, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.A.; Laurent, B.; Plourde, M. APOE and Alzheimer’s Disease: From Lipid Transport to Physiopathology and Therapeutics. Front. Neurosci. 2021, 15, 630502. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, J.W.; Akay, L.A.; Davila-Velderrain, J.; von Maydell, D.; Mathys, H.; Davidson, S.M.; Effenberger, A.; Chen, C.Y.; Maner-Smith, K.; Hajjar, I.; et al. APOE4 Impairs Myelination via Cholesterol Dysregulation in Oligodendrocytes. Nature 2022, 611, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calle, R.; Konings, S.C.; Frontiñán-Rubio, J.; García-Revilla, J.; Camprubí-Ferrer, L.; Svensson, M.; Martinson, I.; Boza-Serrano, A.; Venero, J.L.; Nielsen, H.M.; et al. APOE in the Bullseye of Neurodegenerative Diseases: Impact of the APOE Genotype in Alzheimer’s Disease Pathology and Brain Diseases. Mol. Neurodegener. 2022, 17, 62. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.-C.; Bu, G. Apolipoprotein E and Alzheimer Disease: Pathobiology and Targeting Strategies. Nat. Rev. Neurol. 2019, 15, 501–518. [Google Scholar] [CrossRef]
- Lindner, K.; Beckenbauer, K.; van Ek, L.C.; Titeca, K.; de Leeuw, S.M.; Awwad, K.; Hanke, F.; Korepanova, A.v.; Rybin, V.; van der Kam, E.L.; et al. Isoform- and Cell-State-Specific Lipidation of ApoE in Astrocytes. Cell Rep. 2022, 38, 110435. [Google Scholar] [CrossRef]
- Feringa, F.M.; van der Kant, R. Cholesterol and Alzheimer’s Disease; From Risk Genes to Pathological Effects. Front. Aging Neurosci. 2021, 13, 690372. [Google Scholar] [CrossRef]
- Lindner, K.; van Ek, L.C.; Awwad, K.; Hanke, F.; Korepanova, A.v.; Rybin, V.; Beckenbauer, K.; Gavin, A.-C. In Vitro and in Cellulo ApoE Particle Formation, Isolation, and Characterization. STAR Protoc. 2022, 3, 101894. [Google Scholar] [CrossRef]
- Fitz, N.F.; Nam, K.N.; Wolfe, C.M.; Letronne, F.; Playso, B.E.; Iordanova, B.E.; Kozai, T.D.Y.; Biedrzycki, R.J.; Kagan, V.E.; Tyurina, Y.Y.; et al. Phospholipids of APOE Lipoproteins Activate Microglia in an Isoform-Specific Manner in Preclinical Models of Alzheimer’s Disease. Nat. Commun. 2021, 12, 3416. [Google Scholar] [CrossRef]
- Li, R.-Y.; Qin, Q.; Yang, H.-C.; Wang, Y.-Y.; Mi, Y.-X.; Yin, Y.-S.; Wang, M.; Yu, C.-J.; Tang, Y. TREM2 in the Pathogenesis of AD: A Lipid Metabolism Regulator and Potential Metabolic Therapeutic Target. Mol. Neurodegener. 2022, 17, 40. [Google Scholar] [CrossRef] [PubMed]
- Freund Levi, Y.; Vedin, I.; Cederholm, T.; Basun, H.; Faxén Irving, G.; Eriksdotter, M.; Hjorth, E.; Schultzberg, M.; Vessby, B.; Wahlund, L.-O.; et al. Transfer of Omega-3 Fatty Acids across the Blood-Brain Barrier after Dietary Supplementation with a Docosahexaenoic Acid-Rich Omega-3 Fatty Acid Preparation in Patients with Alzheimer’s Disease: The OmegAD Study. J. Intern. Med. 2014, 275, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Freund-Levi, Y.; Eriksdotter-Jönhagen, M.; Cederholm, T.; Basun, H.; Faxén-Irving, G.; Garlind, A.; Vedin, I.; Vessby, B.; Wahlund, L.-O.; Palmblad, J. ω-3 Fatty Acid Treatment in 174 Patients with Mild to Moderate Alzheimer Disease: OmegAD Study. Arch. Neurol. 2006, 63, 1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, C.-W.; Qu, J.; Black, D.D.; Tso, P. Regulation of Intestinal Lipid Metabolism: Current Concepts and Relevance to Disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Salsinha, A.S.; Rodríguez-Alcalá, L.M.; Relvas, J.B.; Pintado, M.E. Fatty Acids Role on Obesity Induced Hypothalamus Inflammation: From Problem to Solution—A Review. Trends Food Sci. Technol. 2021, 112, 592–607. [Google Scholar] [CrossRef]
- Patrick, R.P. Role of Phosphatidylcholine-DHA in Preventing APOE4-associated Alzheimer’s Disease. FASEB J. 2019, 33, 1554–1564. [Google Scholar] [CrossRef] [Green Version]
- Castro-Gómez, M.P.; Holgado, F.; Rodríguez-Alcalá, L.M.; Montero, O.; Fontecha, J. Comprehensive Study of the Lipid Classes of Krill Oil by Fractionation and Identification of Triacylglycerols, Diacylglycerols, and Phospholipid Molecular Species by Using UPLC/QToF-MS. Food Anal. Methods 2015, 8, 2568–2580. [Google Scholar] [CrossRef]
- Kim, J.H.; Meng, H.W.; He, M.T.; Choi, J.M.; Lee, D.; Cho, E.J. Krill Oil Attenuates Cognitive Impairment by the Regulation of Oxidative Stress and Neuronal Apoptosis in an Amyloid β-Induced Alzheimer’s Disease Mouse Model. Molecules 2020, 25, 3942. [Google Scholar] [CrossRef]
- Scheinman, S.B.; Sugasini, D.; Zayed, M.; Yalagala, P.C.R.; Marottoli, F.M.; Subbaiah, P.v.; Tai, L.M. LPC-DHA/EPA-Enriched Diets Increase Brain DHA and Modulate Behavior in Mice That Express Human APOE4. Front. Neurosci. 2021, 15, 690410. [Google Scholar] [CrossRef]
- Konagai, C.; Yanagimoto, K.; Hayamizu, K.; Han, L.; Tsuji, T.; Koga, Y. Effects of Krill Oil Containing N-3 Polyunsaturated Fatty Acids in Phospholipid Form on Human Brain Function: A Randomized Controlled Trial in Healthy Elderly Volunteers. Clin. Interv. Aging 2013, 8, 1247. [Google Scholar] [CrossRef] [Green Version]
- Matt, S.M.; Allen, J.M.; Lawson, M.A.; Mailing, L.J.; Woods, J.A.; Johnson, R.W. Butyrate and Dietary Soluble Fiber Improve Neuroinflammation Associated With Aging in Mice. Front Immunol. 2018, 9, 1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgkinson, K.; El Abbar, F.; Dobranowski, P.; Manoogian, J.; Butcher, J.; Figeys, D.; Mack, D.; Stintzi, A. Butyrate’s Role in Human Health and the Current Progress towards Its Clinical Application to Treat Gastrointestinal Disease. Clin. Nutr. 2023, 42, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Queirós, O.; Preto, A.; Pacheco, A.; Pinheiro, C.; Azevedo-Silva, J.; Moreira, R.; Pedro, M.; Ko, Y.H.; Pedersen, P.L.; Baltazar, F.; et al. Butyrate Activates the Monocarboxylate Transporter MCT4 Expression in Breast Cancer Cells and Enhances the Antitumor Activity of 3-Bromopyruvate. J. Bioenerg. Biomembr. 2012, 44, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.T.; Cresci, G.A.M. The Immunomodulatory Functions of Butyrate. J. Inflamm. Res. 2021, 14, 6025–6041. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, J.; Wang, F.; Ding, G.; Chen, W.; Fang, R.; Yao, Y.; Pang, M.; Lu, Z.Q.; Liu, J. Sodium Butyrate Exerts Neuroprotective Effects by Restoring the Blood-Brain Barrier in Traumatic Brain Injury Mice. Brain Res. 2016, 1642, 70–78. [Google Scholar] [CrossRef]
- Sun, J.; Wang, F.; Li, H.; Zhang, H.; Jin, J.; Chen, W.; Pang, M.; Yu, J.; He, Y.; Liu, J.; et al. Neuroprotective Effect of Sodium Butyrate against Cerebral Ischemia/Reperfusion Injury in Mice. Biomed. Res. Int. 2015, 2015, 395895. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.C.; Miao, W.T.; Xu, J.Y.; Xu, W.X.; Liu, M.R.; Ding, S.T.; Jian, Y.X.; Lei, Y.H.; Yan, N.; Liu, H.D. Neuroprotective Effects of Sodium Butyrate and Monomethyl Fumarate Treatment through GPR109A Modulation and Intestinal Barrier Restoration on PD Mice. Nutrients 2022, 14, 4163. [Google Scholar] [CrossRef]
- Gao, L.; Davies, D.L.; Asatryan, L. Sodium Butyrate Supplementation Modulates Neuroinflammatory Response Aggravated by Antibiotic Treatment in a Mouse Model of Binge-like Ethanol Drinking. Int. J. Mol. Sci. 2022, 23, 5688. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, K.; Li, X.; Xu, L.; Yang, Z. Sodium Butyrate Ameliorates the Impairment of Synaptic Plasticity by Inhibiting the Neuroinflammation in 5XFAD Mice. Chem. Biol. Interact. 2021, 341, 109452. [Google Scholar] [CrossRef]
- Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, Oxidative Stress and Cell Death. Apoptosis 2007, 12, 913–922. [Google Scholar] [CrossRef] [Green Version]
- Shandilya, S.; Kumar, S.; Kumar Jha, N.; Kumar Kesari, K.; Ruokolainen, J. Interplay of Gut Microbiota and Oxidative Stress: Perspective on Neurodegeneration and Neuroprotection. J. Adv. Res. 2022, 38, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Bennuri, S.C.; Davis, J.E.; Wynne, R.; Slattery, J.C.; Tippett, M.; Delhey, L.; Melnyk, S.; Kahler, S.G.; MacFabe, D.F.; et al. Butyrate Enhances Mitochondrial Function during Oxidative Stress in Cell Lines from Boys with Autism. Transl. Psychiatry 2018, 8, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, X.; Jiang, Z.; Tang, X.; Wang, P.; Li, Y.; Sun, Y.; Le, G.; Zou, S. Sodium Butyrate Protects against Oxidative Stress in HepG2 Cells through Modulating Nrf2 Pathway and Mitochondrial Function. J. Physiol. Biochem. 2016, 73, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, F.; Liu, S.; Du, J.; Hu, X.; Xiong, J.; Fang, R.; Chen, W.; Sun, J. Sodium Butyrate Exerts Protective Effect against Parkinson’s Disease in Mice via Stimulation of Glucagon like Peptide-1. J. Neurol. Sci. 2017, 381, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zheng, D.; Weng, F.; Jin, Y.; He, L. Sodium Butyrate Ameliorates the Cognitive Impairment of Alzheimer’s Disease by Regulating the Metabolism of Astrocytes. Psychopharmacology 2022, 239, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Kratsman, N.; Getselter, D.; Elliott, E. Sodium Butyrate Attenuates Social Behavior Deficits and Modifies the Transcription of Inhibitory/Excitatory Genes in the Frontal Cortex of an Autism Model. Neuropharmacology 2016, 102, 136–145. [Google Scholar] [CrossRef]
- Xie, A.; Ensink, E.; Li, P.; Gordevičius, J.; Marshall, L.L.; George, S.; Pospisilik, J.A.; Aho, V.T.E.; Houser, M.C.; Pereira, P.A.B.; et al. Bacterial Butyrate in Parkinson’s Disease Is Linked to Epigenetic Changes and Depressive Symptoms. Mov. Disord. 2022, 37, 1644–1653. [Google Scholar] [CrossRef]
- Alpino, G.D.C.Á.; Pereira-Sol, G.A.; Dias, M.D.M.E.; Aguiar, A.S.D.; Peluzio, M.D.C.G. Beneficial Effects of Butyrate on Brain Functions: A View of Epigenetic. Crit. Rev. Food Sci. Nutr. 2022, 1–10. [Google Scholar] [CrossRef]
- Van der Hee, B.; Wells, J.M. Microbial Regulation of Host Physiology by Short-Chain Fatty Acids. Trends Microbiol. 2021, 29, 700–712. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, N.; Matei, N.; McBride, D.W.; Ding, Y.; Liang, H.; Tang, J.; Zhang, J.H. Sodium Butyrate Attenuated Neuronal Apoptosis via GPR41/Gβγ/PI3K/Akt Pathway after MCAO in Rats. J. Cereb. Blood Flow Metab. 2021, 41, 267–281. [Google Scholar] [CrossRef]
- Braat, S.; Kooy, R.F. The GABAA Receptor as a Therapeutic Target for Neurodevelopmental Disorders. Neuron 2015, 86, 1119–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PubChem National Library of Medicine. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 18 January 2023).
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef] [PubMed]
- Chemspider Royal Society of Chemistry. Available online: https://www.chemspider.com/ (accessed on 18 January 2023).
- OCHEM Online Chemical Database. Available online: https://ochem.eu/home/show.do (accessed on 18 January 2023).
- Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; et al. Online Chemical Modeling Environment (OCHEM): Web Platform for Data Storage, Model Development and Publishing of Chemical Information. J. Comput. Aided Mol. Des. 2011, 25, 533–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NPASS—Natural Product Activity & Species Source Database. Available online: https://bidd.group/NPASS/index.php (accessed on 18 January 2023).
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Bos, J.D.; Meinardi, M.M.H.M. The 500 Dalton Rule for the Skin Penetration of Chemical Compounds and Drugs. Exp. Dermatol. 2000, 9, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Tarcsay, Á.; Nyíri, K.; Keserű, G.M. Impact of Lipophilic Efficiency on Compound Quality. J. Med. Chem. 2012, 55, 1252–1260. [Google Scholar] [CrossRef]
- Kokate, A.; Li, X.; Jasti, B. Effect of Drug Lipophilicity and Ionization on Permeability Across the Buccal Mucosa: A Technical Note. AAPS PharmSciTech 2008, 9, 501–504. [Google Scholar] [CrossRef] [Green Version]
- PkCSM—Pharmacokinetics. Available online: http://biosig.unimelb.edu.au/pkcsm/ (accessed on 18 January 2023).
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- SwissADME Swiss Institute of Bioinformatics. Available online: http://www.swissadme.ch/ (accessed on 18 January 2023).
- Thai, N.Q.; Theodorakis, P.E.; Li, M.S. Fast Estimation of the Blood–Brain Barrier Permeability by Pulling a Ligand through a Lipid Membrane. J. Chem. Inf. Model. 2020, 60, 3057–3067. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Iyer, M.; Tseng, Y.J.; Senese, C.L.; Liu, J.; Hopfinger, A.J. Prediction and Mechanistic Interpretation of Human Oral Drug Absorption Using MI-QSAR Analysis. Mol. Pharm. 2007, 4, 218–231. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The Role of Ligand Efficiency Metrics in Drug Discovery. Nat. Rev. Drug Discov. 2014, 13, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.C. Pred-Skin, LabMol-Laboratório de Planejamento de Fármacos e Modelagem Molecular. Available online: http://predskin.labmol.com.br/ (accessed on 18 January 2023).
- Skin Doctor CP. Available online: https://nerdd.univie.ac.at/skinDoctorII/ (accessed on 18 January 2023).
- SwissTargetPrediction Swiss Institute of Bioinformatics. Available online: http://www.swisstargetprediction.ch (accessed on 18 January 2023).
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SEA Similarity Ensemble Approach. Available online: https://sea.bkslab.org/ (accessed on 18 January 2023).
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating Protein Pharmacology by Ligand Chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SwissDOCK. Available online: http://www.swissdock.ch (accessed on 27 March 2023).
- Molinspiration Cheminformatics. Available online: https://www.molinspiration.com (accessed on 18 January 2023).
- Kunwittaya, S.; Nantasenamat, C.; Treeratanapiboon, L.; Srisarin, A.; Isarankura-Na-Ayudhya, C.; Prachayasittikul, V. Influence of LogBB Cut-off on the Prediction of Blood-Brain Barrier Permeability. Biomed. Appl. Technol. J. 2013, 1, 16–34. [Google Scholar]
- Ayrton, A.; Morgan, P. Role of Transport Proteins in Drug Absorption, Distribution and Excretion. Xenobiotica 2008, 31, 469–497. [Google Scholar] [CrossRef] [PubMed]
- Koumanov, K.S.; Quinn, P.J.; Béréziat, G.; Wolf, C. Cholesterol Relieves the Inhibitory Effect of Sphingomyelin on Type II Secretory Phospholipase A2. Biochem. J. 1998, 336, 625. [Google Scholar] [CrossRef] [Green Version]
- Koumanov, K.; Wolf, C.; Béreziat, G. Modulation of Human Type II Secretory Phospholipase A2 by Sphingomyelin and Annexin VI. Biochem. J. 1997, 326, 227. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Hui, D.Y. Group 1B Phospholipase A2 in Metabolic and Inflammatory Disease Modulation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 784–788. [Google Scholar] [CrossRef]
- Nakano, T.; Inoue, I.; Katayama, S.; Seo, M.; Takahashi, S.; Hokari, S.; Shinozaki, R.; Hatayama, K.; Komoda, T. Lysophosphatidylcholine for Efficient Intestinal Lipid Absorption and Lipoprotein Secretion in Caco-2 Cells. J. Clin. Biochem. Nutr. 2009, 45, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.Q.; Zhong, C.Y.; Sun, W.W.; Xiao, H.; Zhu, P.; Lin, Y.Z.; Zhang, C.L.; Gao, H.; Song, Z.Y. Elevated Type II Secretory Phospholipase A2 Increases the Risk of Early Atherosclerosis in Patients with Newly Diagnosed Metabolic Syndrome. Sci. Rep. 2016, 6, 34929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitling, L.P.; Koenig, W.; Fischer, M.; Mallat, Z.; Hengstenberg, C.; Rothenbacher, D.; Brenner, H. Type II Secretory Phospholipase A2 and Prognosis in Patients with Stable Coronary Heart Disease: Mendelian Randomization Study. PLoS ONE 2011, 6, e22318. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
Drugability Methodologies | MW (g/mol) | logP | #N or O (H-Bond Acceptors) | #NH or OH (H-Bond Donors) | TPSA (Å2) | # Atoms | # Carbons | # Heteroatoms | # Rotatable Bonds | # Rings | MR (m3.mol−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
Lipinski | ≤500 | MlogP ≤ 4.15 | ≤10 | ≤5 | n.d | n.d | n.d | n.d | n.d | n.d | n.d |
Ghose | 160 to 480 | WlogP: −0.4 to 5.6 | n.d | n.d | n.d | 20 to 70 | n.d | n.d | n.d | n.d | 40 to 130 |
Veber | n.d | n.d | n.d | n.d | ≤140 | n.d | n.d | n.d | ≤10 | n.d | n.d |
Egan | n.d | WlogP: ≤5.88 | n.d | n.d | ≤131.6 | n.d | n.d | n.d | n.d | n.d | n.d |
Muegge | 200 to 600 | XlogP: −2 to 5 | ≤10 | ≤5 | ≤150 | n.d | >4 | >1 | ≤15 | ≤7 | n.d |
Leadlikeness | 250 to 350 | XlogP ≤3.5 | n.d | n.d | n.d | n.d | n.d | n.d | ≤7 | n.d | n.d |
Physico-Chemical Properties | Ergosterol | Octacosanol | N-Palmitoylsphingomyelin |
---|---|---|---|
MW (g/mol) | 396.51 | 410.66 | 702.90 |
TPSA (Å2) | 20.19 | 20.19 | 108 abcd/118 ef |
XlogP | 7.40 | 13.68 | 10 deh/12 af |
WlogP | 7.33 | 10.14 | 10.90 |
MlogP | 6.33 f/7.18 b | 7.07 f/9.83 b | 5.54 |
# H-Bond Donors | 1 | 1 | 2 abcdfh/3 e |
# H-Bond Acceptors | 1 | 1 | 6 adfh/8 bce |
# Rotatable Bonds | 4 | 26 | 36 abdeh/37 cf |
# Rings | 4 | 0 | 0 |
# Atoms | 73 | 87 | 48 |
# Heteroatoms | 1 | 1 | 9 |
# Carbons | 28 | 28 | 39 |
Molar Refractivity (MR) (m3.mol−1) | 124.2 e/127.5 f | 133.3 e/137.9 f | 206.11 |
Melting Point (°C) | 150 g/157 e/170 a | 83 a/98 g | 190 |
Volume (cm3) | 394.1 e/427.4 b/459.5 ci | 488.2 e/501.6 ci | 750.98 b/772.39 c |
Density (g/cm3) | 1.00 | 0.80 | 0.91 |
logD (pH 7.4) | 5.67 ci/7.99 e | 4.56 | 3.05 c/8.27 e |
logS (water) | −6.55 | −9.3 f/−7.5 c/−6.9 h | −2.9 c/−4.0 h/−7.2 g/−9.5 f |
Water Solubility (mg/mL) | 4.3 × 10−5 a/7.6 × 10−5 f/2.8 × 10−4 e | 1.40 × 10−7 ae/2.34 × 10−7 f | 2.01 × 10−7 |
pKa | 13.90 | 13.90 | 1.7 OH/12.0 NH |
ADMET Properties | Ergosterol | Octacosanol | N-Palmitoylsphingomyelin |
---|---|---|---|
Absorption | |||
Caco2 permeability (log Papp in 10−6 cm/s) | 1.22 | 1.08 | 0.49 |
P-glycoprotein I inhibitor (Yes/No) | Yes | No | No |
P-glycoprotein II inhibitor (Yes/No) | Yes | Yes | Yes |
P-glycoprotein (Pgp) substrate (Yes/No) | No | Yes a/No b | Yes |
Human intestinal absorption (HIA) (% Absorbed) | Low a/95.4 b | Low a/85.7 b | Low a/79.2 b |
log Kp (cm/s) | −3.44 a/−2.81 b | 0.86 a/−2.74 b | −1.81 a/−2.74 b |
Distribution | |||
Blood–Brain Barrier (BBB) Penetration (log BB) | No a/0.76 b | No a/1.03 b | No a/−1.74 b |
Volume Distribution (log L/Kg) | 0.27 | 0.02 | −0.70 |
Fraction unbound in plasms (Fu) | 0 | 0.07 | 0.21 |
Metabolism | |||
Cytochrome P450 1A2 inhibitor (CYP1A2) (Yes/No) | No | Yes c/No ab | No |
Cytochrome P450 2C19 inhibitor (CYP2C19) (Yes/No) | No | No | No |
Cytochrome P450 2C9 inhibitor (CYP2C9) (Yes/No) | Yesa/No bc | No | No |
Cytochrome P450 2D6 inhibitor (CYP2D6) (Yes/No) | No | Yesc/No ab | No |
Cytochrome P450 2D6 substrate (CYP2D6) (Yes/No) | No | No | No |
Cytochrome P450 3A4 inhibitor (CYP3A4) (Yes/No) | No | No | Yes a/No bc |
Cytochrome P450 3A4 substrate (CYP3A4) (Yes/No) | Yes | Yes | Yes |
Excretion | |||
Total Clearance (log mL/min/Kg) | 0.56 | 2.15 | 1.35 |
Renal OCT2 substrate (Yes/No) | No | No | No |
Toxicity | |||
hERG I inhibitor (Yes/No) | No | No | No |
hERG II inhibitor (Yes/No) | Yes | Yes | No |
Human Hepatotoxicity (Yes/No) | No | No | Yes |
AMES Toxicity (Yes/No) | No | No | No |
Rat Oral Acute Toxicity (LD50) (mol/Kg) | 2.26 | 1.87 | 2.71 |
Maximum Tolerated Daily Dose (human) (log mg/Kg/day) | −0.69 | −0.40 | −0.13 |
Skin Sensitization | No | Yes b/No de | Yes d/No be |
Physico-Chemical Properties | α-Tocopherol (Vitamin E) | Phosphatidylcholine (16:0/20:5) | Phosphatidylcholine (16:0/22:6) | Butyrate | Sodium Butyrate |
---|---|---|---|---|---|
MW (g/mol) | 430.59 | 779.93 | 805.95 | 88.09 | 110.08 |
TPSA (Å2) | 29.40 | 111 abcd/121 ef | 111 abcd/121 ef | 37.20 | 40.13 |
XlogP | 9 gh/10 i/11 f/12 ae | 11.90 | 12.50 | 0.79 | 0.79 |
WlogP | 8.84 | 12.12 | 12.68 | 0.87 | −0.46 |
MlogP | 6.14 f/9.04 b | --- | --- | 0.49 f/1 b | −1.72 b/0.49 f |
# H-Bond Donors | 1 | 0 abcdfh/1 e | 0 abcdfh/1 e | 1 | 0 |
# H-Bond Acceptors | 2 | 8 adfh/9 bce | 8 adfh/9 bce | 2 | 2 |
# Rotatable Bonds | 12 | 37 dh/39 abcef | 38 dh/40 abcef | 2 | 2 |
# Rings | 2 | 0 | 0 | 0 | 0 |
# Atoms | 31 | 132 | 136 | 6 | 6 |
# Heteroatoms | 2 | 10 | 10 | 2 | 3 |
# Carbons | 29 | 44 | 46 | 4 | 4 |
Molar Refractivity (MR) (m3.mol−1) | 135.1 e/139.3 f | 226.66 | 235.80 | 22.61 | 21.17 |
Melting Point (°C) | 2 e/3 a | 149.70 | 160.00 | −5.35 | 250–253 |
Volume (cm3) | 462.8 e/474.5 b/502.7 ci | 809.94 b/852.27 c | 884.23 | 89.2 e/89.8 b/92.7 ci | 87.1 b/91.4 c |
Density (g/cm3) | 0.90 | 0.92 | 0.91 | 0.96 | 0.95 |
logD (pH 7.4) | 6.9 ci/10.3 e | 2.37 c/8.32 e | 2.26 c/8.94 e | −1.75 e/1.10 ci | −1.23 |
logS (water) | −7.0 cih/−7.8 g/−8.6 f | −3.42 h/−2.39 c | −3.29 h/−2.04 c | −0.75 f/−0.19 ah/0.11 ci | −0.89 f/0.25 h/0.69 c |
Water Solubility (mg/mL) | --- | 4.10 × 10−5 | 3.90 × 10−5 | 0.16 | 14.20 |
pKa | 10.80 | --- | --- | 4.76 | --- |
ADMET Properties | α-Tocopherol (Vitamin E) | Phosphatidylcholine (16:0/20:5) | Phosphatidylcholine (16:0/22:6) | Butyrate | Sodium Butyrate |
---|---|---|---|---|---|
Absorption | |||||
Caco2 permeability (log Papp in 10−6 cm/s) | 1.35 | 0.65 | 0.65 | 1.56 | 1.45 |
P-glycoprotein I inhibitor (Yes/No) | No | No | No | No | No |
P-glycoprotein II inhibitor (Yes/No) | Yes | Yes | Yes | No | No |
P-glycoprotein (Pgp) substrate (Yes/No) | Yes a/No b | Yes a/No b | Yes a/No b | No | Yes |
Human intestinal absorption (HIA) (% Absorbed) | Low a/89.8 b | Low a/99.7 b | Low a/100 b | High a/92.2 b | High a/100 b |
log Kp (cm/s) | −1.33 a/−2.68 b | −2.52 a/−2.74 b | −2.26 a/−2.73 b | −6.28 a/−2.75 b | −6.41 a/−2.76 b |
Distribution | |||||
Blood-Brain Barrier (BBB) Penetration (log BB) | NA a/0.88 b | NA a/−2.09 b | NA a/−2.10 b | Yes a/−0.26 b | No a/−0.25 b |
Volume Distribution (log L/Kg) | 0.71 | −1.18 | −1.27 | −0.83 | −0.88 |
Fraction unbound in plasms (Fu) | 0 | 0.21 | 0.23 | 0.69 | 0.83 |
Metabolism | |||||
Cytochrome P450 1A2 inhibitor (CYP1A2) (Yes/No) | No | No | No | No | No |
Cytochrome P450 2C19 inhibitor (CYP2C19) (Yes/No) | Yes b/No ac | No | No | No | No |
Cytochrome P450 2C9 inhibitor (CYP2C9) (Yes/No) | No | Yes a/No bc | Yes a/No bc | No | No |
Cytochrome P450 2D6 inhibitor (CYP2D6) (Yes/No) | No | No | No | No | No |
Cytochrome P450 2D6 substrate (CYP2D6) (Yes/No) | No | No | No | No | No |
Cytochrome P450 3A4 inhibitor (CYP3A4) (Yes/No) | No | No | No | No | No |
Cytochrome P450 3A4 substrate (CYP3A4) (Yes/No) | Yes | Yes | Yes | No | No |
Excretion | |||||
Total Clearance (log mL/min/Kg) | 0.79 | 1.03 | 0.96 | 0.42 | 1.10 |
Renal OCT2 substrate (Yes/No) | No | No | No | No | No |
Toxicity | |||||
hERG I inhibitor (Yes/No) | No | No | No | No | No |
hERG II inhibitor (Yes/No) | Yes | No | No | No | No |
Human Hepatotoxicity (Yes/No) | No | No | No | No | No |
AMES Toxicity (Yes/No) | No | No | No | No | No |
Rat Oral Acute Toxicity (LD50) (mol/Kg) | 2.07 | 2.53 | 2.56 | 1.72 | 1.26 |
Maximum Tolerated Daily Dose (human) (log mg/Kg/day) | 0.78 | 0.36 | 0.36 | 0.91 | 0.71 |
Skin Sensitization | Yes de/No b | Yes d/No be | Yes d/No be | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, F.S.; Costa, P.T.; Soares, A.M.S.; Fontes, A.L.; Pintado, M.E.; Vidigal, S.S.M.P.; Pimentel, L.L.; Rodríguez-Alcalá, L.M. Novel Lipids to Regulate Obesity and Brain Function: Comparing Available Evidence and Insights from QSAR In Silico Models. Foods 2023, 12, 2576. https://doi.org/10.3390/foods12132576
Teixeira FS, Costa PT, Soares AMS, Fontes AL, Pintado ME, Vidigal SSMP, Pimentel LL, Rodríguez-Alcalá LM. Novel Lipids to Regulate Obesity and Brain Function: Comparing Available Evidence and Insights from QSAR In Silico Models. Foods. 2023; 12(13):2576. https://doi.org/10.3390/foods12132576
Chicago/Turabian StyleTeixeira, Francisca S., Paula T. Costa, Ana M. S. Soares, Ana Luiza Fontes, Manuela E. Pintado, Susana S. M. P. Vidigal, Lígia L. Pimentel, and Luís M. Rodríguez-Alcalá. 2023. "Novel Lipids to Regulate Obesity and Brain Function: Comparing Available Evidence and Insights from QSAR In Silico Models" Foods 12, no. 13: 2576. https://doi.org/10.3390/foods12132576