Volatile Composition of Fortification Grape Spirit and Port Wine: Where Do We Stand?
Abstract
:1. Introduction
2. Douro Demarcated Region Characteristics
3. Port Wine’s Production: The Relevance of the Fortification Step
4. Methodologies for the Characterization of Grape Spirits and Port Wines’ Volatile Components
Sample | Extraction Step | Chromatographic Analysis | Chemical Families/ Compounds Detected | Refs | ||
---|---|---|---|---|---|---|
Sample Preparation | Extraction Methodology | Internal Standard | ||||
Grape spirits | 12.5 mL of grape spirit, diluted 1:4 with water | LLE
| 4-Decanol (826 mg/L) | GC-ion trap MS Supelcowax 10 (60 m × 0.25 mm i.d., film thickness = 0.25 µm) | Alcohols, aldehydes, esters, phenols, terpenic compounds | [3] |
Grape spirits | Without sample extraction, as grape spirit was directly injected | Methyl acetate (90 mg/L) | GC-FID CP Wax 52CB WCOT (60 m × 0.25 mm i.d., film thickness = 0.50 μm) | Acetaldehyde | [29] | |
Grape spirits | 20 mL of grape spirit, diluted 1:1 with water | Derivatization + LLE
| Dodecanal (200 mg/L) | GC-ion trap MS Supelcowax 10 (60 m × 0.25 mm i.d., film thickness = 0.25 μm) | Aldehydes | [29] |
Grape spirits | Without sample extraction, as grape spirit was directly injected | Methyl acetate (90 mg/L) | GC-FID CP Wax 52CB WCOT (60 m × 0.25 mm i.d., film thickness = 0.50 μm) | Acetaldehyde | [45] | |
Grape spirits | 250 µL of grape spirit | Derivatization + HS-SPME
| Methyl acetate (90 mg/L) | GC-ion trap MS Fused silica capillary column * (30 m × 0.25 mm i.d., film thickness = 0.25 μm) | Aldehydes | [45] |
Grape spirits | Derivatization + reduction methodology
| trans-Stilbene (200 mg/L) | RP-HPLC-DAD Kinetex C18 column (100 mm × 4.6 mm, 2.6 μm diameter particles) | Acetaldehyde | [46] | |
Tawny, Ruby | 700 mL of wine Nitrogen (50 mL/min) bubble through wine for 4 h | Porous Polymers Adsorption
| - | GC-qMS Carbowax 20M (80 m × 0.76 mm glass) SF 96 (70 m × 0.76 mm glass) Carbowax 20M (25 m × 0.25 mm quartz) | Acids, alcohols, aldehydes, dioxanes, dioxolanes, esters, furans, lactones, ketones, norisoprenoids, phenols, sulphur compounds, terpenic compounds, other compounds | [8] |
GC-FID Glass Carbowax 20M coated SCOT (100 m × 0.76 mm) Quartz Carbowax 20M coated capillary (25 m × 0.25 mm) | ||||||
Tawny, Ruby | 500 mL of wine | LLE
| - | GC-qMS Carbowax 20M (80 m × 0.76 mm glass) SF 96 (70 m × 0.76 mm glass) Carbowax 20M (25 m × 0.25 mm quartz) | Acids, alcohols, aldehydes, dioxanes, dioxolanes, esters, furans, lactones, ketones, norisoprenoids, phenols, sulphur compounds, terpenic compounds, other compounds | [8] |
GC-FID Glass Carbowax 20M coated SCOT (100 m × 0.76 mm) Quartz Carbowax 20M coated capillary (25 m × 0.25 mm) | ||||||
Port wines # | 50 mL of wine | LLE
| Isophorone (200 µg/L) | GC-ion trap MS Supelcowax 10 (60 m × 0.25 mm i.d., film thickness = 1 µm) | Acids, alcohols, aldehydes, esters, norisoprenoids, phenols, terpenic compounds, other compounds | [9] |
Tawny, Ruby | 50 mL of wine | LLE
| Isophorone (130 mg/L) | GC-ion trap MS Supelcowax 10 (60 m × 0.25 mm i.d., film thickness = 0.25 µm) | Acids, alcohols, esters, ketones, norisoprenoids, terpenic compounds | [12] |
Port wine # | 50 mL table wine + 12.5 mL of grape spirits | LLE
| 4-Decanol (826 mg/L) | GC-ion trap MS Supelcowax 10 (60 m × 0.25 mm i.d., film thickness = 0.25 µm) | Alcohols, aldehydes, esters, phenols, terpenic compounds | [3] |
Port wine # | 50 mL of wine | LLE
| 4-Decanol (826 mg/L) | GC-ion trap MS Supelcowax 10 (60 m × 0.25 mm i.d., film thickness = 0.25 µm) | 1,3-Dimethoxybenzene | [11] |
Port wine # | 50 mL of wine | LLE
| Octan-3-ol (432.9 mg/L) | GC-qMS BP21 (50 m × 0.25 mm i.d., film thickness = 0.25 µm) | Dioxanes, dioxolanes, sulphur compounds | [13] |
Tawny, Ruby | 50 mL of wine | LLE
| Ethyl (methylthio)acetate (0.050 mg/L) | GC-ion trap MS Stabilwax DA (60 m × 0.25 mm i.d., film thickness = 0.25 µm) | Sulphur compounds | [47] |
Tawny, Ruby | 50 mL of wine | LLE
| Ethyl (methylthio)acetate (0.050 mg/L) | GC-FPD CP-Wax 58 (FFAP)-CB (50 m × 0.32 mm i.d., film thickness = 0.2 µm) | Sulphur compounds | [47] |
Tawny | 50 mL of wine | LLE
| 3-Octanol (432.9 mg/L) | GC-qMS BP21 (50 m × 0.25 mm i.d., film thickness = 0.25 µm) | 5-(Hydroxymethyl)-2-furfural and sotolon | [48] |
Tawny, Ruby | 50 mL of wine | LLE
| 3-Octanol (466 mg/L) | GC-ion trap MS Stabilwax-DA (60 m × 0.25 mm i.d., film thickness = 0.25 µm) | Norisoprenoids | [6] |
Tawny, Ruby | 50 mL of wine | LLE
| 3-Octanol (466 mg/L) | GC-ion trap MS Stabilwax DA (60 m × 0.25 mm i.d., film thickness = 0.25 µm) | Sotolon | [14] |
Port wine # | 40 mL of wine | SPE (clean up, column 1) + Derivatization + SPE (extraction, column 2)
| 2,3-Hexanedione (25 mg/L) | HPLC Superspher 100 RP-18 (250 mm, 4 μm particle size) + | Aldehydes, ketones | [16] |
Tawny; Ruby | 10 mL of wine | SPE
| 2-Octanol (46.4 mg/L) | GC-ion trap MS DB-WAXETR (60 m × 0.25 mm i.d., film thickness = 0.25 µm) Precolumn Supelco (3m × 0.25 mm uncoated) | Aldehydes, sulphur compounds | [15] |
White, Tawny, Ruby | 100 mL of wine | SPE
| 4-Hydroxy-4-methyl-2-pentanone (1500 mg/L) | PTV-GC–GC–MS (GC1: GC-FID; GC2: GC-ion trap MS, connected through a Deans switch) GC1: DB-WAX (30 m × 0.32 mm i.d., film thickness = 0.50 µm) GC2: FactorFour-VF5MS (30 m × 0.32 mm i.d., film thickness = 1µm) | Esters | [49] |
Port wine | 20 mL of wine | HS-SPME
| 3-Octanol (47.7 mg/L) | GC-ion trap MS Stabilwax DA (60 m × 0.25 mm i.d., film thickness = 0.25 µm) | Norisoprenoids, terpenic compounds | [17] |
Experimental Port wine | 10 mL of experimental wine | HS-SPME
| 2-Octanol (0.10 mg/L) | GC-qMS Innowax (30 m × 0.25 mm i.d., film thickness = 0.5 µm) | Acids, alcohols, aldehydes, esters, ketones, norisoprenoids, phenols, sulphur compounds, terpenic compounds | [50] |
Port wine | 50 mL of wine | LLE
| 3-Octanol (427 mg/L) | GC-ion trap MS Stabilwax-DA (60 m × 0.25 mm i.d., film thickness = 0.25 µm) | Dioxanes, dioxolanes, furans, lactones | [53] |
Port wine # | 50 mL of wine | LLE
| 3-Octanol (-) | GC-FID BP-21 (50 m × 0.25 mm i.d., film thickness = 0.25 μm) | Acids, alcohols, aldehydes, dioxanes, Dioxalanes, esters, furans, lactones | [21] |
Port wine # | 50 mL of wine | LLE
| 3-Octanol (466 mg/L) | GC-ion trap MS Stabilwax-DA (60 m × 0.25 mm i.d., film thickness = 0.25 µm) | Alcohols, dioxanes, dioxolanes, esters, furans, lactones | [23] |
Port wine # | 50 mL of wine | LLE
| 3-Octanol (427 mg/L) | GC-ion trap MS Stabilwax-DA (60 m × 0.25 mm i.d., film thickness = 0.25 µm) | Acids, aldehydes, esters, furans, lactones, phenols, other compounds | [24] |
Port wine # | 9.9 mL of wine | HS-SPME
| Trideuteriomethanol (30,000 mg/L) Pentan-1-ol (46,000 mg/L) | GC-qMS HP-INNOWa (30 m × 0.25 mm i.d., film thickness = 0.25 µm) | Alcohols, aldehydes, esters | [26] |
White, Tawny, Ruby | 2 mL of wine | Derivatization + HS-SPME
| p-Fluorobenzaldehyde (0.4 mg/L) | GC-TQ/MS BR-5 ms (30 m × 0.25 mm i.d., film thickness = 0.25μm) | Aldehydes, furans, lactones, ketones | [27] |
Tawny, Ruby, White | 10 mL of wine | LLE
| Veratric acid (200 mg/L) | RP-HPLC- DAD Kinetex C18 column (100 mm × 4.6 mm, 2.6 μm diameter particles) | Sotolon | [51] |
Tawny, Ruby, White | Derivatization + reduction methodology
| Trans-stilbene (200 mg/L) | RP-HPLC-DAD Kinetex C18 column (100 mm × 4.6 mm, 2.6 μm diameter particles) | Aldehydes | [46] | |
Ruby | 250 µL of wine | HS-SPME
| - | GC-qMS Rxi-5Sil MS (30 m × 0.25 mm i.d., film thickness = 0.25 μm) | Aldehydes, esters, furans, lactones | [52] |
5. Grape Spirits’ and Port Wines’ Volatile Components and Their Potential Impact on Aroma Properties
Compound | Aroma Descriptor | Concentration Range in Grape Spirits (µg/L) | Concentration Range in Port Wine (µg/L) | |||
---|---|---|---|---|---|---|
Phenylmethanol | Floral, sweet, disinfectant | [83,84] | 100 | [3] | 85.3–2720 | [3,50] |
2-Phenylethanol | Rose, honey | [3,83,84,85,86] | 1150 | [3] | 10,200–56,700 | [3,9,50] |
Acetaldehyde | Overripe apple | [84,87] | 31,100–185,710 | [29,45,46] | 1360–94,000 | [39,46,50] |
2-Oxopropanal | Pungent, stinging | [106] | 420–16,340 | [29] | 571–25,400 | [16,27,39] |
Propanal | Sharp and pungent | [106] | nd–220 | [29,45] | 4.1–403 | [27] |
2-Methylpropanal | Sharp, pungent | [106] | 0.41–16.6 | [29,45] | 24–1087 | [15,27] |
2-Methylbutanal | Powerful, choking | [106] | 0.19–5690 | [29,45] | 17–806 | [15,27] |
3-Methylbutanal | Choking, powerful, acrid, pungent, apple-like | [106] | 9.07–4140 | [29,45] | 20–2246 | [15,27] |
Benzaldehyde | Smokey, nutty, almond | [3,83,84,85] | 20–690 | [3,29] | 0.79–837 | [3,9,27,39,50,52] |
Nonanal | Fatty | [106] | 0.211–33.5 | [45] | 1.2–3.1 | [27] |
3-Methylbutyl acetate | Banana, fruity, sweet | [3,83,85,86,87] | 434 | [3] | 330–1269 | [3,39,50] |
Diethyl succinate | Fruity, melon, yeasty | [3,83,84,85,86,87] | 6500 | [3] | 20–18,700 | [3,39,50] |
Ethyl hexanoate | Fruity, green apple, banana, brandy, wine-like | [3,83,84,85,86,87] | 827 | [3] | 109–1097 | [3,39,50] |
2-Phenylethyl acetate | Flowery, honey | [3,83,84,85,86] | 55.4 | [3] | 11.6–1179 | [3,9,50] |
Ethyl octanoate | Sweet, floral, fruity, banana, pear, brandy | [3,83,84,85,86,87] | 3210 | [3] | 56–3180 | [3,39,50] |
Ethyl 3-phenylpropanoate | Floral, sweet, fruity | [3,83] | 2.2 | [3] | 3.5–6.7 | [3] |
Ethyl decanoate | Brandy, fruity, grape, chemical | [3,83,85,86,87] | 4600 | [3] | 60.9–4490 | [3,50] |
Ethyl dodecanoate | Sweet, floral, fruity, cream | [3,83,86] | 441 | [3] | 491–892 | [3] |
Eugenol | Cinnamon, clove, honey | [84,87,88] | 1.8 | [3] | 5.2–10.3 | [3,9] |
Linalool | Citrus, floral, sweet, lavender | [83,85,87] | 20.3 | [3] | 1.22–61.0 | [3,9,50] |
Geraniol | Floral, sweet | [3] | 12.7 | [3] | 10.5–61.4 | [3,9] |
α-Terpineol | Lilac, floral, sweet | [83,84,85,86] | 20.1 | [3] | 10.1–58.2 | [3,9] |
6. Global Outlook and Future Challenges
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IVDP Instituto Dos Vinhos Do Douro e Porto, I.P. Available online: www.ivdp.pt (accessed on 24 February 2022).
- Jackson, R.S. Postfermentation Treatments and Related Topics. In Wine Science; Elsevier: Amsterdam, The Netherlands, 2008; pp. 418–519. [Google Scholar]
- Rogerson, F.S.S.; Freitas, V.A.P. Fortification Spirit, a Contributor to the Aroma Complexity of Port. J. Food Sci. 2002, 67, 1564–1569. [Google Scholar] [CrossRef]
- Regulamento 242/2010, de 15 de Março Do Ministério Da Agricultura, Do Desenvolvimento Rural e Das Pescas—Instituto Dos Vinhos Do Douro e Do Porto, I.P. In Diário da República n.o 51/2010, Série II de 2010-03-15; Diário da República: Lisbon, Portugal, 2010; pp. 11988–11997.
- Prata-Sena, M.; Castro-Carvalho, B.M.; Nunes, S.; Amaral, B.; Silva, P. The Terroir of Port Wine: Two Hundred and Sixty Years of History. Food Chem. 2018, 257, 388–398. [Google Scholar] [CrossRef]
- Ferreira, A.C.S.; de Pinho, P.G. Nor-Isoprenoids Profile during Port Wine Ageing—Influence of Some Technological Parameters. Anal. Chim. Acta 2004, 513, 169–176. [Google Scholar] [CrossRef]
- Pereira, V.; Pereira, A.C.; Marques, J.C. Emerging Trends in Fortified Wines: A Scientific Perspective. In Alcoholic Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 419–470. [Google Scholar]
- Williams, A.A.; Lewis, M.J.; May, H.V. The Volatile Flavour Components of Commercial Port Wines. J. Sci. Food Agric. 1983, 34, 311–319. [Google Scholar] [CrossRef]
- de Freitas, V.A.; Ramalho, P.S.; Azevedo, Z.; Macedo, A. Identification of Some Volatile Descriptors of the Rock-Rose-like Aroma of Fortified Red Wines from Douro Demarcated Region. J. Agric. Food Chem. 1999, 47, 4327–4331. [Google Scholar] [CrossRef] [PubMed]
- Guedes de Pinho, P.; Silva Ferreira, A.C.; Mendes Pinto, M.; Benitez, J.G.; Hogg, T.A. Determination of Carotenoid Profiles in Grapes, Musts, and Fortified Wines from Douro Varieties of Vitis vinifera. J. Agric. Food Chem. 2001, 49, 5484–5488. [Google Scholar] [CrossRef]
- Rogerson, F.S.; Azevedo, Z.; Fortunato, N.; de Freitas, V.A. 1,3-Dimethoxybenzene, a Newly Identified Component of Port Wine. J. Sci. Food Agric. 2002, 82, 1287–1292. [Google Scholar] [CrossRef]
- Rogerson, F.S.S.; Castro, H.; Fortunato, N.; Azevedo, Z.; Macedo, A.; De Freitas, V.A.P. Chemicals with Sweet Aroma Descriptors Found in Portuguese Wines from the Douro Region: 2,6,6-Trimethylcyclohex-2-Ene-1,4-Dione and Diacetyl. J. Agric. Food Chem. 2001, 49, 263–269. [Google Scholar] [CrossRef]
- da Silva Ferreira, A.C.; Barbe, J.-C.; Bertrand, A. Heterocyclic Acetals from Glycerol and Acetaldehyde in Port Wines: Evolution with Aging. J. Agric. Food Chem. 2002, 50, 2560–2564. [Google Scholar] [CrossRef]
- Ferreira, A.C.S.; Avila, I.M.L.B.; de Pinho, P.G. Sensorial Impact of Sotolon as the “Perceived Age” of Aged Port Wine. In Natural Flavors and Fragances, Chemistry, Analysis and Production; ACS Publications: Washington, DC, USA, 2005; Volume 908, pp. 141–159. [Google Scholar]
- Culleré, L.; Cacho, J.; Ferreira, V. An Assessment of the Role Played by Some Oxidation-Related Aldehydes in Wine Aroma. J. Agric. Food Chem. 2007, 55, 876–881. [Google Scholar] [CrossRef]
- Da Silva Ferreira, A.C.; Reis, S.; Rodrigues, C.; Oliveira, C.; De Pinho, P.G. Simultaneous Determination of Ketoacids and Dicarbonyl Compounds, Key Maillard Intermediates on the Generation of Aged Wine Aroma. J. Food Sci. 2007, 72, S314–S318. [Google Scholar] [CrossRef] [PubMed]
- Silva Ferreira, A.C.; Monteiro, J.; Oliveira, C.; Guedes de Pinho, P. Study of Major Aromatic Compounds in Port Wines from Carotenoid Degradation. Food Chem. 2008, 110, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Faria, M.A.; Fernandes, J.O. Gas Chromatography-Mass Spectrometry Assessment of Amines in Port Wine and Grape Juice after Fast Chloroformate Extraction/Derivatization. J. Agric. Food Chem. 2011, 59, 8742–8753. [Google Scholar] [CrossRef] [PubMed]
- Moreira, N.; Guedes de Pinho, P. Port Wine. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2011; Volume 63, pp. 119–146. [Google Scholar]
- Guedes de Pinho, P.; Martins, R.C.; Vivier, M.A.; Young, P.R.; Oliveira, C.M.; Silva Ferreira, A.C. Monitoring Carotenoids and Derived Compounds in Grapes and Port Wines: Impact on Quality. In Carotenoid Cleavage Products; ACS: Washington, DC, USA, 2013; Volume 1134, pp. 139–154. [Google Scholar]
- Jacobson, D.; Monforte, A.R.; Silva Ferreira, A.C. Untangling the Chemistry of Port Wine Aging with the Use of GC-FID, Multivariate Statistics, and Network Reconstruction. J. Agric. Food Chem. 2013, 61, 2513–2521. [Google Scholar] [CrossRef]
- Monteiro, B.; Vilela, A.; Correia, E. Sensory Profile of Pink Port Wines: Development of a Flavour Lexicon. Flavour Fragr. J. 2014, 29, 50–58. [Google Scholar] [CrossRef]
- Castro, C.C.; Martins, R.C.; Teixeira, J.A.; Ferreira, A.C.S. Application of a High-Throughput Process Analytical Technology Metabolomics Pipeline to Port Wine Forced Ageing Process. Food Chem. 2014, 143, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Monforte, A.R.; Jacobson, D.; Silva Ferreira, A.C. Chemiomics: Network Reconstruction and Kinetics of Port Wine Aging. J. Agric. Food Chem. 2015, 63, 2576–2581. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Santos, S.A.O.; Silvestre, A.J.D.; Barros, A.S.; Ferreira, A.C.S.; Silva, A.M.S. Quantification of 3-Deoxyglucosone (3DG) as an Aging Marker in Natural and Forced Aged Wines. J. Food Compos. Anal. 2016, 50, 70–76. [Google Scholar] [CrossRef]
- Stupak, M.; Kocourek, V.; Kolouchova, I.; Hajslova, J. Rapid Approach for the Determination of Alcoholic Strength and Overall Quality Check of Various Spirit Drinks and Wines Using GC–MS. Food Control. 2017, 80, 307–313. [Google Scholar] [CrossRef]
- Moreira, N.; Araújo, A.M.; Rogerson, F.; Vasconcelos, I.; De Freitas, V.; Pinho, P.G. de Development and Optimization of a HS-SPME-GC-MS Methodology to Quantify Volatile Carbonyl Compounds in Port Wines. Food Chem. 2019, 270, 518–526. [Google Scholar] [CrossRef]
- Vilela, A.; Ferreira, R.; Nunes, F.; Correia, E. Creation and Acceptability of a Fragrance with a Characteristic Tawny Port Wine-like Aroma. Foods 2020, 9, 1244. [Google Scholar] [CrossRef] [PubMed]
- Pissarra, J.; Lourenço, S.; Machado, J.M.; Mateus, N.; Guimaraens, D.; de Freitas, V. Contribution and Importance of Wine Spirit to the Port Wine Final Quality-Initial Approach. J. Sci. Food Agric. 2005, 85, 1091–1097. [Google Scholar] [CrossRef]
- Decreto-Lei 97/2012, de 23 de Abril Do Ministério Da Agricultura, Do Mar, Do Ambiente e Do Ordenamento Do Território. In Diário da República n.o 80/2012, Série I de 2012-04-23; Diário da República: Lisbon, Portugal, 2012; pp. 2269–2274.
- Museu Do Douro—Douro Museum. Available online: https://www.museudodouro.pt/regiao-demarcada-do-douro (accessed on 26 October 2022).
- Blanco-Ward, D.; Monteiro, A.; Lopes, M.; Borrego, C.; Silveira, C.; Viceto, C.; Rocha, A.; Ribeiro, A.; Andrade, J.; Feliciano, M.; et al. Analysis of Climate Change Indices in Relation to Wine Production: A Case Study in the Douro Region (Portugal). BIO Web Conf. 2017, 9, 01011. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Ward, D.; Ribeiro, A.C.; Feliciano, M.; Barreales, D.; Paoletti, E.; Miranda, A.I. Improvement of Local Ozone Phytotoxicity Modelling for Autochthonous Grape Cultivars. Atmos. Environ. 2023, 295, 119538. [Google Scholar] [CrossRef]
- Blanco-Ward, D.; Ribeiro, A.; Barreales, D.; Castro, J.; Verdial, J.; Feliciano, M.; Viceto, C.; Rocha, A.; Carlos, C.; Silveira, C.; et al. Climate Change Potential Effects on Grapevine Bioclimatic Indices: A Case Study for the Portuguese Demarcated Douro Region (Portugal). BIO Web Conf. 2019, 12, 01013. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V.; Alves, F. Impact of Climate Change on Wine Production: A Global Overview and Regional Assessment in the Douro Valley of Portugal. Int. J. Glob. Warm. 2012, 4, 383. [Google Scholar] [CrossRef]
- Portaria 383/2017 de 20 de Dezembro Do Ministério Da Agricultura, Florestas e Desenvolvimento Rural. In Diário da República, 1.a Série—N.o 243; Diário da República: Lisbon, Portugal, 2017; pp. 6659–6661.
- Portaria 413/2001, de 18 de Abril Do Ministério Da Agricultura, Do Desenvolvimento Rural e Das Pescas. In Diário da República n.o 91/2001, Série I-B de 2001; Diário da República: Lisbon, Portugal, 2001; pp. 2280–2287.
- Instituto da Vinha e do Vinho, I.P. Vinhos e Aguardentes de Portugal; Instituto Da Vinha e do Vinho: Lisboa, Portugal, 2021; ISBN 978-972-8023-42-3.
- Cristovam, E.; Paterson, A. PORT|Composition and Analysis. In Encyclopedia of Food Sciences and Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 4638–4644. [Google Scholar]
- Regulamento 84/2010 de 8 de Fevereiro Do Ministério Da Agricultura, Do Desenvolvimento Rural e Das Pescas—Instituto Dos Vinhos Do Douro e Do Porto, I.P. In Diário da República, 2a Série—No 26; Diário da República: Lisbon, Portugal, 2010; pp. 5976–5979.
- Bakker, J.; Clarke, R.J. Sherry, Port and Madeira. In Wine: Flavour Chemistry; Bakker, J., Clarke, R.J., Eds.; Wiley-Blackwell: Oxford, UK, 2011; pp. 291–339. ISBN 978-1-444-33042-7. [Google Scholar]
- Tredoux, A.G.J.; Silva Ferreira, A.C. Fortified Wines: Styles, Production and Flavour Chemistry. In Alcoholic Beverages; Elsevier: Amsterdam, The Netherlands, 2012; pp. 159–179. [Google Scholar]
- Christoph, N.; Bauer-Christoph, C. Flavour of Spirit Drinks: Raw Materials, Fermentation, Distillation, and Ageing. In Flavours and Fragrances; Springer: Berlin/Heidelberg, Germany, 2007; pp. 219–239. ISBN 978-3-540-49339-6. [Google Scholar]
- Allen, M.S.; Clark, A.C.; Schmidtke, L.M.; Torley, P.J. Distillation for the Production of Fortification Spirit. In Food Engineering Handbook: Food Engineering Fundamentals; Varzakas, T., Tzia, C., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 343–368. ISBN 9781482261691. [Google Scholar]
- Azevedo, J.; Pissarra, J.; Amaro, F.; Guido, L.; Oliveira, J.; Lopes, P.; Guedes de Pinho, P.; Mateus, N.; De Freitas, V. Development of a New Procedure for the Determination of the Reactivity of Brandies Used in Wine Fortification. OENO One 2021, 55, 161–172. [Google Scholar] [CrossRef]
- Milheiro, J.; Cosme, F.; Filipe-Ribeiro, L.; Nunes, F.M. Reductive Amination of Aldehyde 2,4-Dinitrophenylhydrazones Using Cyanoborohydride for Determination of Selected Carbonyl Compounds in Port Wines, Table Wines, and Wine Spirits. Food Chem. 2022, 405, 134897. [Google Scholar] [CrossRef]
- Silva Ferreira, A.C.; Rodrigues, P.; Hogg, T.; De Pinho, P.G. Influence of Some Technological Parameters on the Formation of Dimethyl Sulfide, 2-Mercaptoethanol, Methionol, and Dimethyl Sulfone in Port Wines. J. Agric. Food Chem. 2003, 51, 727–732. [Google Scholar] [CrossRef]
- Silva Ferreira, A.C.; Barbe, J.-C.; Bertrand, A. 3-Hydroxy-4,5-Dimethyl-2(5H)-Furanone: A Key Odorant of the Typical Aroma of Oxidative Aged Port Wine. J. Agric. Food Chem. 2003, 51, 4356–4363. [Google Scholar] [CrossRef]
- Campo, E.; Cacho, J.; Ferreira, V. Solid Phase Extraction, Multidimensional Gas Chromatography Mass Spectrometry Determination of Four Novel Aroma Powerful Ethyl Esters. Assessment of Their Occurrence and Importance in Wine and Other Alcoholic Beverages. J. Chromatogr. A 2007, 1140, 180–188. [Google Scholar] [CrossRef]
- Gonçalves, B.; Falco, V.; Moutinho-Pereira, J.; Bacelar, E.; Peixoto, F.; Correia, C. Effects of Elevated CO2 on Grapevine (Vitis vinifera L.): Volatile Composition, Phenolic Content, and in Vitro Antioxidant Activity of Red Wine. J. Agric. Food Chem. 2009, 57, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Milheiro, J.; Vilamarim, R.; Filipe-Ribeiro, L.; Cosme, F.; Nunes, F.M. An Accurate Single-Step LLE Method Using Keeper Solvent for Quantification of Trace Amounts of Sotolon in Port and White Table Wines by HPLC-DAD. Food Chem. 2021, 350, 129268. [Google Scholar] [CrossRef]
- Azevedo, J.; Pinto, J.; Teixeira, N.; Oliveira, J.; Cabral, M.; Guedes de Pinho, P.; Lopes, P.; Mateus, N.; de Freitas, V. The Impact of Storage Conditions and Bottle Orientation on the Evolution of Phenolic and Volatile Compounds of Vintage Port Wine. Foods 2022, 11, 2270. [Google Scholar] [CrossRef]
- Martins, R.C.; Monforte, A.R.; Silva Ferreira, A. Port Wine Oxidation Management: A Multiparametric Kinetic Approach. J. Agric. Food Chem. 2013, 61, 5371–5379. [Google Scholar] [CrossRef] [PubMed]
- Petronilho, S.; Coimbra, M.A.; Rocha, S.M. A Critical Review on Extraction Techniques and Gas Chromatography Based Determination of Grapevine Derived Sesquiterpenes. Anal. Chim. Acta 2014, 846, 8–35. [Google Scholar] [CrossRef] [PubMed]
- Cayot, N.; Lafarge, C.; Bou-Maroun, E.; Cayot, P. Substitution of Carcinogenic Solvent Dichloromethane for the Extraction of Volatile Compounds in a Fat-Free Model Food System. J. Chromatogr. A 2016, 1456, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Blanch, G.P.; Reglero, G.; Herraiz, M.; Tabera, J. A Comparison of Different Extraction Methods for the Volatile Components of Grape Juice. J. Chromatogr. Sci. 1991, 29, 11–15. [Google Scholar] [CrossRef]
- Rocha, S.M.; Costa, C.P.; Martins, C. Aroma Clouds of Foods: A Step Forward to Unveil Food Aroma Complexity Using GC × GC. Front. Chem. 2022, 10, 820749. [Google Scholar] [CrossRef]
- de Souza, J.R.B.; Dias, F.F.G.; Caliman, J.D.; Augusto, F.; Hantao, L.W. Opportunities for Green Microextractions in Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometry-Based Metabolomics—A Review. Anal. Chim. Acta 2018, 1040, 1–18. [Google Scholar] [CrossRef]
- Carriço, Í.R.; Marques, J.; Trujillo-Rodriguez, M.J.; Anderson, J.L.; Rocha, S.M. Sorbent Coatings for Solid-Phase Microextraction Targeted towards the Analysis of Death-Related Polar Analytes Coupled to Comprehensive Two-Dimensional Gas Chromatography: Comparison of Zwitterionic Polymeric Ionic Liquids versus Commercial Coatings. Microchem. J. 2020, 158, 105243. [Google Scholar] [CrossRef]
- Nerin, C.; Bentayeb, K.; Rodriguez-Lafuente, A. Sampling Techniques for the Determination of Migrants from Packaging Materials in Food. In Comprehensive Sampling and Sample Preparation; Pawliszyn, J., Ed.; Academic Press: Amsterdam, The Netherlands, 2012; Volume 4, pp. 357–379. ISBN 978-0-12-381373-2. [Google Scholar]
- Piri-Moghadam, H.; Alam, N.; Pawliszyn, J. Review of Geometries and Coating Materials in Solid Phase Microextraction: Opportunities, Limitations, and Future Perspectives. Anal. Chim. Acta 2017, 984, 42–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirey, R.E. SPME Commercial Devices and Fibre Coatings. In Handbook of Solid Phase Microextraction; Pawliszyn, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 99–133. ISBN 978-7-122-04701-4. [Google Scholar]
- Godage, N.H.; Gionfriddo, E. A Critical Outlook on Recent Developments and Applications of Matrix Compatible Coatings for Solid Phase Microextraction. TrAC—Trends Anal. Chem. 2019, 111, 220–228. [Google Scholar] [CrossRef]
- van Den Dool, H.; Dec Kratz, P. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas—Liquid Partition Chroma—tography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Martins, C.; Costa, C.P.; Rocha, S.M. Multidimensional Gas Chromatography for Environmental Exposure Measurement. In Multidimensional Analytical Techniques in Environmental Research; Duarte, R., Duarte, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 209–229. [Google Scholar]
- Martins, C.; Salvador, Â.C.; Rocha, S.M. The Role of the Gas Chromatography Based Methodologies for the Understanding of Food Aromas. In Food Aroma Evolution: During Food Processing, Cooking and Aging, Series: Food Analysis & Properties; Bordiga, M., Nollet, L., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 141–157. [Google Scholar]
- Marriott, P.J.; Massil, T.; Hügel, H. Molecular Structure Retention Relationships in Comprehensive Two-Dimensional Gas Chromatography. J. Sep. Sci. 2004, 27, 1273–1284. [Google Scholar] [CrossRef]
- Martins, C.; Almeida, A.; Rocha, S.M. Recent Advances and Challenges for Beer Volatile Characterization Based on Gas Chromatographic Techniques. In Recent Advances in Analytical Techniques; Ahmed, R., Ozkan, S., Atta-ur-Rahman, Eds.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2017; pp. 141–199. ISBN 978-1-68108-448-0. [Google Scholar]
- Prebihalo, S.E.; Berrier, K.L.; Freye, C.E.; Bahaghighat, H.D.; Moore, N.R.; Pinkerton, D.K.; Synovec, R.E. Multidimensional Gas Chromatography: Advances in Instrumentation, Chemometrics, and Applications. Anal. Chem. 2018, 90, 505–532. [Google Scholar] [CrossRef]
- Marriott, P.J.; Chin, S.-T.; Maikhunthod, B.; Schmarr, H.-G.; Bieri, S. Multidimensional Gas Chromatography. Trends Anal. Chem. 2012, 34, 1–21. [Google Scholar] [CrossRef]
- Seeley, J.V.; Seeley, S.K. Multidimensional Gas Chromatography: Fundamental Advances and New Applications. Anal. Chem. 2013, 85, 557–578. [Google Scholar] [CrossRef]
- Perestrelo, R.; Petronilho, S.; Câmara, J.S.; Rocha, S.M. Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry Combined with Solid Phase Microextraction as a Powerful Tool for Quantification of Ethyl Carbamate in Fortified Wines. The Case Study of Madeira Wine. J. Chromatogr. A 2010, 1217, 3441–3445. [Google Scholar] [CrossRef]
- Perestrelo, R.; Barros, A.S.; Câmara, J.S.; Rocha, S.M. In-Depth Search Focused on Furans, Lactones, Volatile Phenols, and Acetals as Potential Age Markers of Madeira Wines by Comprehensive Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry Combined with Solid Phase Microextraction. J. Agric. Food Chem. 2011, 59, 3186–3204. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Song, X.; Zhu, L.; Geng, X.; Zheng, F.; Zhao, Q.; Sun, X.; Zhao, D.; Feng, S.; Zhao, M.; et al. Unraveling the Acetals as Ageing Markers of Chinese Highland Qingke Baijiu Using Comprehensive Two-Dimensional Gas Chromatography–Time-of-Flight Mass Spectrometry Combined with Metabolomics Approach. Food Qual. Saf. 2021, 5, fyab014. [Google Scholar] [CrossRef]
- Zhang, P.; Carlin, S.; Lotti, C.; Mattivi, F.; Vrhovsek, U. On Sample Preparation Methods for Fermented Beverage VOCs Profiling by GCxGC-TOFMS. Metabolomics 2020, 16, 102. [Google Scholar] [CrossRef] [PubMed]
- Boban, A.; Vrhovsek, U.; Carlin, S.; Mucalo, A.; Budić-Leto, I. A Targeted and an Untargeted Metabolomics Approach to the Volatile Aroma Profile of Young ‘Maraština’ Wines. Metabolites 2022, 12, 1295. [Google Scholar] [CrossRef] [PubMed]
- Carlin, S.; Vrhovsek, U.; Franceschi, P.; Lotti, C.; Bontempo, L.; Camin, F.; Toubiana, D.; Zottele, F.; Toller, G.; Fait, A.; et al. Regional Features of Northern Italian Sparkling Wines, Identified Using Solid-Phase Micro Extraction and Comprehensive Two-Dimensional Gas Chromatography Coupled with Time-of-Flight Mass Spectrometry. Food Chem. 2016, 208, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Brandão, T.; Almeida, A.; Rocha, S.M. Enlarging Knowledge on Lager Beer Volatile Metabolites Using Multidimensional Gas Chromatography. Foods 2020, 9, 1276. [Google Scholar] [CrossRef]
- Martins, C.; Brandão, T.; Almeida, A.; Rocha, S.M. Insights on Beer Volatile Profile: Optimization of Solid-Phase Microextraction Procedure Taking Advantage of the Comprehensive Two-Dimensional Gas Chromatography Structured Separation. J. Sep. Sci. 2015, 38, 2140–2148. [Google Scholar] [CrossRef]
- The Good Scents Company. Available online: http://www.thegoodscentscompany.com/index.html (accessed on 18 April 2023).
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- El-Sayed, A.M. The Pherobase: Database of Pheromones and Semiochemicals. Available online: https://www.pherobase.com (accessed on 18 April 2023).
- Xiao, Q.; Zhou, X.; Xiao, Z.; Niu, Y. Characterization of the Differences in the Aroma of Cherry Wines from Different Price Segments Using Gas Chromatography–Mass Spectrometry, Odor Activity Values, Sensory Analysis, and Aroma Reconstitution. Food Sci. Biotechnol. 2017, 26, 331–338. [Google Scholar] [CrossRef]
- Zea, L.; Moyano, L.; Moreno, J.A.; Medina, M. Aroma Series as Fingerprints for Biological Ageing in Fino Sherry-Type Wines. J. Sci. Food Agric. 2007, 87, 2319–2326. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative Study of Aromatic Compounds in Two Young White Wines Subjected to Pre-Fermentative Cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Li, H.; Tao, Y.-S.; Wang, H.; Zhang, L. Impact Odorants of Chardonnay Dry White Wine from Changli County (China). Eur. Food Res. Technol. 2008, 227, 287–292. [Google Scholar] [CrossRef]
- Chaves, M.; Zea, L.; Moyano, L.; Medina, M. Changes in Color and Odorant Compounds during Oxidative Aging of Pedro Ximenez Sweet Wines. J. Agric. Food Chem. 2007, 55, 3592–3598. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Bencomo, J.J.; Ortega-Heras, M.; Pérez-Magariño, S.; González-Huerta, C. Volatile Compounds of Red Wines Macerated with Spanish, American, and French Oak Chips. J. Agric. Food Chem. 2009, 57, 6383–6391. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Pinto, M.M. Carotenoid Breakdown Products The-Norisoprenoids-in Wine Aroma. Arch. Biochem. Biophys. 2009, 483, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative Determination of the Odorants of Young Red Wines from Different Grape Varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Giri, A.; Osako, K.; Ohshima, T. Identification and Characterisation of Headspace Volatiles of Fish Miso, a Japanese Fish Meat Based Fermented Paste, with Special Emphasis on Effect of Fish Species and Meat Washing. Food Chem. 2010, 120, 621–631. [Google Scholar] [CrossRef]
- Buettner, A. (Ed.) Springer Handbook of Odor; Springer Handbooks; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-26932-0. [Google Scholar]
- Culleré, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas Chromatography-Olfactometry and Chemical Quantitative Study of the Aroma of Six Premium Quality Spanish Aged Red Wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef]
- Fritsch, H.T.; Schieberle, P. Identification Based on Quantitative Measurements and Aroma Recombination of the Character Impact Odorants in a Bavarian Pilsner-Type Beer. J. Agric. Food Chem. 2005, 53, 7544–7551. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, P.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, R. Evaluation of the Perceptual Interaction among Ester Aroma Compounds in Cherry Wines by GC–MS, GC–O, Odor Threshold and Sensory Analysis: An Insight at the Molecular Level. Food Chem. 2019, 275, 143–153. [Google Scholar] [CrossRef]
- Saison, D.; De Schutter, D.P.; Uyttenhove, B.; Delvaux, F.; Delvaux, F.R. Contribution of Staling Compounds to the Aged Flavour of Lager Beer by Studying Their Flavour Thresholds. Food Chem. 2009, 114, 1206–1215. [Google Scholar] [CrossRef]
- Cometto-Muñiz, J.E.; Abraham, M.H. Olfactory Psychometric Functions for Homologous 2-Ketones. Behav. Brain Res. 2009, 201, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Escudero, A.; Campo, E.; Fariña, L.; Cacho, J.; Ferreira, V. Analytical Characterization of the Aroma of Five Premium Red Wines. Insights into the Role of Odor Families and the Concept of Fruitiness of Wines. J. Agric. Food Chem. 2007, 55, 4501–4510. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, T.; Niclass, Y.; Frérot, E.; Dubourdieu, D. Stereoisomeric Distribution of 3-Mercaptohexan-1-ol and 3-Mercaptohexyl Acetate in Dry and Sweet White Wines Made from Vitis vinifera (var. Sauvignon Blanc and Semillon). J. Agric. Food Chem. 2006, 54, 7251–7255. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Ding, Z.; Zhao, L.; Fei, J.; Xuan, Z.; Huang, C.; Chen, X. Determination of Seven Odorants in Purified Water among Worldwide Brands by HS-SPME Coupled to GC-MS. Chromatographia 2014, 77, 729–735. [Google Scholar] [CrossRef]
- Qian, Y.L.; An, Y.; Chen, S.; Qian, M.C. Characterization of Qingke Liquor Aroma from Tibet. J. Agric. Food Chem. 2019, 67, 13870–13881. [Google Scholar] [CrossRef] [PubMed]
- Mestres, M.; Busto, O.; Guasch, J. Analysis of Organic Sulfur Compounds in Wine Aroma. J. Chromatogr. A 2000, 881, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Noble, A.C. Characterization of Odor-Active Compounds in Californian Chardonnay Wines Using GC-Olfactometry and GC-Mass Spectrometry. J. Agric. Food Chem. 2003, 51, 8036–8044. [Google Scholar] [CrossRef]
- Chemical Book. Available online: https://www.chemicalbook.com/ProductIndex_EN.aspx (accessed on 21 March 2023).
- National Institutes of Health (NIH) PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov (accessed on 18 April 2023).
- Burdock, G.A.; Fenaroli, G. Fenaroli’s Handbook of Flavor Ingredients; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0-8493-3034-3. [Google Scholar]
- Saerens, S.M.G.; Delvaux, F.; Verstrepen, K.J.; Van Dijck, P.; Thevelein, J.M.; Delvaux, F.R. Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation. Appl. Environ. Microbiol. 2008, 74, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Tylewicz, U.; Inchingolo, R.; Rodriguez-Estrada, M.T. Food Aroma Compounds. In Nutraceutical and Functional Food Components; Elsevier: Amsterdam, The Netherlands, 2017; pp. 297–334. [Google Scholar]
- Dunlevy, J.D.; Kalua, C.M.; Keyzers, R.A.; Boss, P.K. The Production of Flavour & Aroma Compounds in Grape Berries. In Grapevine Molecular Physiology and Biotechnology, 2nd ed.; Roubelakis-Angelakis, K.A., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 293–340. ISBN 978-90-481-2304-9. [Google Scholar]
- King, A.; Dickinson, J.R. Biotransformation of Monoterpene Alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii And Kluyveromyces lactis. Yeast 2000, 16, 499–506. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons, Inc.: Chichester, UK, 2016; ISBN 978-1-118-62780-8. [Google Scholar]
- Ramsey, I.; Dinu, V.; Linforth, R.; Yakubov, G.E.; Harding, S.E.; Yang, Q.; Ford, R.; Fisk, I. Understanding the Lost Functionality of Ethanol in Non-Alcoholic Beer Using Sensory Evaluation, Aroma Release and Molecular Hydrodynamics. Sci. Rep. 2020, 10, 20855. [Google Scholar] [CrossRef]
- Chacko, R.; Jain, D.; Patwardhan, M.; Puri, A.; Karande, S.; Rai, B. Data Based Predictive Models for Odor Perception. Sci. Rep. 2020, 10, 17136. [Google Scholar] [CrossRef]
- Saini, K.; Ramanathan, V. Predicting Odor from Molecular Structure: A Multi-Label Classification Approach. Sci. Rep. 2022, 12, 13863. [Google Scholar] [CrossRef] [PubMed]
- Achebouche, R.; Tromelin, A.; Audouze, K.; Taboureau, O. Application of Artificial Intelligence to Decode the Relationships between Smell, Olfactory Receptors and Small Molecules. Sci. Rep. 2022, 12, 18817. [Google Scholar] [CrossRef] [PubMed]
- Billesbølle, C.B.; de March, C.A.; van der Velden, W.J.C.; Ma, N.; Tewari, J.; del Torrent, C.L.; Li, L.; Faust, B.; Vaidehi, N.; Matsunami, H.; et al. Structural Basis of Odorant Recognition by a Human Odorant Receptor. Nature 2023, 615, 742–749. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, S.G.; Martins, C.; Tavares, T.; Rudnitskaya, A.; Alves, F.; Rocha, S.M. Volatile Composition of Fortification Grape Spirit and Port Wine: Where Do We Stand? Foods 2023, 12, 2432. https://doi.org/10.3390/foods12122432
Ribeiro SG, Martins C, Tavares T, Rudnitskaya A, Alves F, Rocha SM. Volatile Composition of Fortification Grape Spirit and Port Wine: Where Do We Stand? Foods. 2023; 12(12):2432. https://doi.org/10.3390/foods12122432
Chicago/Turabian StyleRibeiro, Sónia Gomes, Cátia Martins, Tiago Tavares, Alisa Rudnitskaya, Fernando Alves, and Sílvia M. Rocha. 2023. "Volatile Composition of Fortification Grape Spirit and Port Wine: Where Do We Stand?" Foods 12, no. 12: 2432. https://doi.org/10.3390/foods12122432
APA StyleRibeiro, S. G., Martins, C., Tavares, T., Rudnitskaya, A., Alves, F., & Rocha, S. M. (2023). Volatile Composition of Fortification Grape Spirit and Port Wine: Where Do We Stand? Foods, 12(12), 2432. https://doi.org/10.3390/foods12122432