Ancient Wheats—A Nutritional and Sensory Analysis Review
Abstract
:1. Introduction
2. Research Objectives
3. Materials and Methods
4. Data Collection and Analysis
5. Results
6. Origin and Definition of Ancient Wheats
7. The Revival of Interest in Ancient Wheat Varieties
8. Ancient Wheat Production and Yielding
9. Countries Involved in Ancient Wheat Cultivation
10. Nutritional and Health Benefits of Ancient Wheats
10.1. Analytical Methods in the Investigation of the Nutritional Properties of Ancient Wheats
10.2. Nutritional Properties of Ancient Wheats: Macronutrients and Related Properties
Macronutrients | Spelt | Einkorn | Emmer | Kamut | Common Wheat | References |
---|---|---|---|---|---|---|
Moisture/Water (% or g/100 g) | 26.8 ± 1.3 (bread) 9.1 (grain) 12.5 ± 4 (flour) 10.8 ± 0.14 (pasta) 15.04 ± 0.88 (flour) | 13.7 ± 0.1 (flour) 9.84 ± 0.02 (pasta) | 28.0 ± 1.4 (bread) 12.6 ± 4 (flour) | 14.2 ± 4 (flour) 15.94 ± 0.36 (flour) | [61] [46] [47] [52] [54] [53] | |
Dry matter (% or g/100 g) | 90.7 ± 0.85 (grain) 87.36 87.77 87.44 87.76 (grain) 88.40 88.58 88.80 89.16 88.20 88.65 88.76 88.18 88.41 (wholemeal) | 90.4 ± 0.85 (grain) | 90.9 ± 0.85 (grain) | 90.5 ± 0.85 (grain) | [28] [62] [48] | |
Ether extract (% or g/100 g) | 2.17 ± 0.03 (grain) 1.85 1.95 2 2.01 (grain) | 2.43 ± 0.03 (grain) | 2.28 ± 0.03 (grain) | 1.72 ± 0.03 (grain) | [28] [62] | |
Energy (Kcal/100 g) | 280 (bread) 324 (grain) | 277 (bread) | [61] [46] | |||
Fat (% or g/100 g) | 1.8 ± 0.2 (bread) 2.5 (grain) 1.98 ± 0.2 (flour) 2.57 2.81 3.07 3.03 2.78 3.03 3.01 2.91 3.08 (wholemeal) 1.87 ± 0.021 (pasta) | 1.87 ± 0.02 (pasta) | 1.7 ± 0.2 (bread) 1.53 ± 0.3 (flour) | 1.33 ± 0.1 (flour) | [61] [46] [47] [48] [52] [53] | |
Protein (% or g/100 g) | 12.8 ± 0.31 crude (N × 5.7) > (grain) 15.9 ± 0.3 16.2 ± 0.3 17.1 ± 0.4 (N × 5.75) (seed) 12.7 < (N × 5.7) > (grain) 14.8 ± 1 (flour) 11.22 11.01 11.08 12.42 < crude protein (N × 6.25) > (grain) 13.9 ± 0.05 (pasta) 15.17 ± 1.13 (flour) | 18.1 ± 0.41 crude (N × 5.7) > (grain) 15.8 ± 0.05 24.2 ± 0.45 11.1 ± 0.02 (whole flour) 13.8 ± 0.02 22.3 ± 0.11 10.1 ± 0.07 (endosperm) 8.2 ± 0.18 26.2 ± 0.54 14.2 ± 0.10 (bran) 48.5 ± 2.26 45.4 ± 2.75 22.4 ± 2.32 (germ) 13.1 ± 0.0 11.2 ± 0.0 16.9 ± 0.1 22.3 ± 0.1 (kernel) 20.7 ± 0.1 (flour) 20.2 ± 0.3 (pasta) 19.10 ± 0.07 18.3 ± 0.2 13.3 ± 0.2 (cooked pasta) | 15.4 ± 0.39 crude (N × 5.7) > (grain) | 17.8 ± 1 (flour) | 11.0 ± 0.26 crude (N × 5.7) > (grain) 13.8 ± 0.3 (seed) 12.6 ± 1 (flour) 11.58 ± 0.28 (flour) | [28] [45] [46] [47] [62] [52] [54] [50] [51] [53] [56] |
Carbohydrate (% or g/100 g) | 71.9 ± 2.90 TC (grain) 49.7 ± 1.7 (bread) 62.7 TC (grain) 69 TC (flour) 70.77 ± 1.24 TC (flour) | 62.3 ± 2.39 TC (grain) | 65.9 ± 2.46 TC (grain) | 49.9 ± 1.7 (bread) 67 (flour) | 74.5 ± 2.99 TC (grain) 71 (flour) 67.78 ± 1.33 (flour) | [28] [61] [46] [47] [54] |
Starch (% or g/100 g) | 69.9 ± 0.89 (pasta) 64.21 ± 0.38 (flour) | 53.3 ± 0.1 48.4 ± 0.1 55.9 ± 0.3 46.2 ± 0 (kernel) RS, resistant starch 0.276 ± 0.002 0.80 ± 0.02 0.382 ± 0.005 (cooked pasta) | 66.38 ± 1.16 (flour) | [52] [54] [51] [56] | ||
Dietary fiber (% or g/100 g) | 1.96 ± 0.08 crude (grain) 6.2 ± 0.6 fiber (bread) Total: 13.8, Soluble: 1.7, Insoluble: 12.1 Total: 13.0, Soluble: 1.8, Insoluble: 11.2 Total: 12.9, Soluble: 1.7, Insoluble: 11.2 (seed) Total: 11.2, Soluble: 1.6, Insoluble: 9.6 (grain) 3.6 3.38 3.06 3.28 crude (grain) | 5.19 ± 0.11 crude (grain) 10.1 ± 0.3 10.03 ± 0.08 3.6 ± 0.3 fiber (cooked pasta) | 5.03 ± 0.10 crude (grain) | 5.9 ± 0.6 fiber (bread) | 1.78 ± 0.08 crude (grain) Total 12.8 Soluble 1.4 Insoluble 11.4 (seed) | [28] [61] [45] [46] [62] [56] |
10.3. Nutritional Properties of Ancient Wheats: Micronutrients and Phytochemicals
10.4. Nutritional Properties of Ancient Wheats: Amino Acid Composition
11. The Aim of Sensory Tests in Cereal Research
Special Sample Preparation Issues for Sensory Tests
- Step 1
- The bread loaves were partially baked for 22 min, cooled for 2 h at room temperature, and then frozen at −30 °C. When it was fully cooled, Callejo and co-workers (2015) stored the bread samples in sealable plastic bags between the baking and serving days in a freezer at −18 °C with an air speed of 1.5 m/s. This technique minimizes the loss of volatile compounds and the drying of the texture.
- Step 2
- Before sensory evaluation, the samples were taken out of the freezer, left at room temperature for 1 h, and then fully baked for about 16 min in the oven at 210 °C. Finally, they were cooled down for 2 h at room temperature and then sliced properly for the sensory analysis [67].
12. Trained Panel and Expert Test Methods
13. Affective Tests, Size of Consumer Panels
14. Sensory Room Environment
15. Statistical Analysis of Sensory Data
Comparison of Sensory Evaluation Methods for Different Ancient Wheat Products
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahbandeh, M. Wheat: Production Volume Worldwide 2011/2012–2021/22. 2022. Available online: https://www.statista.com/statistics/267268/production-of-wheat-worldwide-since-1990/ (accessed on 22 January 2023).
- Fan, M.-S.; Zhao, F.-J.; Fairweather-Tait, S.J.; Poulton, P.R.; Dunham, S.J.; McGrath, S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 2008, 22, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Su, Y.H.; Dunham, S.J.; Rakszegi, M.; Bedo, Z.; McGrath, S.P.; Shewry, P.R. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 2009, 49, 290–295. [Google Scholar] [CrossRef]
- Sharma, N.K.; Singh, R.J.; Mandal, D.; Kumar, A.; Alam, N.M.; Keesstra, S. Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maize-wheat rotation of Himalaya, India. Agric. Ecosyst. Environ. 2017, 247, 43–53. [Google Scholar] [CrossRef]
- Arzani, A.; Ashraf, M. Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Compr. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Shewry, P.R.; Hey, S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015, 65, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Longin, C.F.H.; Würschum, T. Back to the future–tapping into ancient grains for food diversity. Trends Plant Sci. 2016, 21, 731–737. [Google Scholar] [CrossRef]
- Johansson, E.; Prieto-Linde, M.L.; Larsson, H. Locally adapted and organically grown landrace and ancient spring cereals—A unique source of minerals in the human diet. Foods 2021, 10, 393. [Google Scholar] [CrossRef]
- Akar, T.; Cengiz, M.; Tekin, M. A comparative study of protein and free amino acid contents in some important ancient wheat lines. Qual. Assur. Saf. Crops Foods 2019, 11, 191–200. [Google Scholar] [CrossRef]
- Kulathunga, J.; Reuhs, B.L.; Zwinger, S.; Simsek, S. Comparative study on kernel quality and chemical composition of ancient and modern wheat species: Einkorn, emmer, spelt and hard red spring wheat. Foods 2021, 10, 761. [Google Scholar] [CrossRef] [PubMed]
- Li, A.-L.; Geng, S.-F.; Zhang, L.-Q.; Liu, D.-C.; Mao, L. Making the bread: Insights from newly synthesized allohexaploid wheat. Mol. Plant 2015, 8, 847–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvorak, J.; Deal, K.R.; Luo, M.-C.; You, F.M.; von Borstel, K.; Dehghani, H. The origin of spelt and free-threshing hexaploid wheat. J. Hered. 2012, 103, 426–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, M.; Kislev, M.E. Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Isr. J. Plant Sci. 2007, 55, 207–221. [Google Scholar] [CrossRef]
- Dinelli, G.; Di Silvestro, R.; Marotti, I.; Bosi, S.; Bregola, V.; Di Loreto, A.; Nipoti, P.; Prodi, A.; Catizone, P. Agronomic traits and deoxynivalenol contamination of two tetraploid wheat species (Triticum turgidum spp. durum, Triticum turgidum spp. turanicum) grown strictly under low input conditions. Ital. J. Agron. 2014, 9, 127–135. [Google Scholar] [CrossRef] [Green Version]
- D’Egidio, M.; Nardi, S.; Vallega, V. Grain, flour and dough characteristics of selected strains of diploid wheat (Triticum monococcum L.). Cereal Chem. 1993, 70, 298–303. [Google Scholar]
- Sodkiewicz, W. Diploid wheat—Triticum monococcum as a source of resistance genes to preharvest sprouting of triticale. Cereal Res. Commun. 2002, 30, 323–328. [Google Scholar] [CrossRef]
- Wendin, K.; Mustafa, A.; Ortman, T.; Gerhardt, K. Consumer awareness, attitudes and preferences towards heritage cereals. Foods 2020, 9, 742. [Google Scholar] [CrossRef]
- Feldman, M. Historical Aspects and Significance of the Discovery of wild wheats: (origin of wheat, evolution, gene pools). In Stadler Symp; University of Missouri: Columbia, MO, USA, 1977; pp. 9, 121–145. [Google Scholar]
- Dinu, M.; Whittaker, A.; Pagliai, G.; Benedettelli, S.; Sofi, F. Ancient wheat species and human health: Biochemical and clinical implications. J. Nutr. Biochem. 2018, 52, 1–9. [Google Scholar] [CrossRef]
- Kulathunga, J.; Reuhs, B.L.; Simsek, S. A review: Novel trends in hulled wheat processing for value addition. Trends Food Sci. Technol. 2020, 106, 232–241. [Google Scholar] [CrossRef]
- Hancock, J.F. Plant Evolution and the Origin of Crop Species, 2nd ed.; CABI Publishing: Cambridge, MA, USA, 2012; pp. 171–194. [Google Scholar]
- Duba, A.; Goriewa-Duba, K.; Wachowska, U. Trichothecene genotypes analysis of fusarium isolates from di-, tetra-and hexaploid wheat. Agronomy 2019, 9, 698. [Google Scholar] [CrossRef] [Green Version]
- Longin, C.F.H.; Ziegler, J.; Schweiggert, R.; Koehler, P.; Carle, R.; Würschum, T. Comparative study of hulled (einkorn, emmer, and spelt) and naked wheats (durum and bread wheat): Agronomic performance and quality traits. Crop Sci. 2016, 56, 302–311. [Google Scholar] [CrossRef]
- Boukid, F.; Folloni, S.; Sforza, S.; Vittadini, E.; Prandi, B. Current trends in ancient grains-based foodstuffs: Insights into nutritional aspects and technological applications. Compr. Rev. Food Sci. Food Saf. 2018, 17, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.R.; Awika, J.M. Future research needs for the ancient grains. In Gluten-Free Ancient Grains; Elsevier: Amsterdam, The Netherlands, 2017; pp. 297–328. [Google Scholar]
- Cardenas, M.G.; Cusicanqui, J. Managing Sustainability of New Quinoa Production Systems through Farming Systems Management. Innov. Ways A Sustain. Use Drylands Final. Rep. Sumamad Proj. 2014, 6, 8–17. [Google Scholar]
- Hlisnikovský, L.; Hejcman, M.; Kunzová, E.; Menšík, L. The effect of soil-climate conditions on yielding parameters, chemical composition and baking quality of ancient wheat species Triticum monococcum L., Triticum dicoccum Schrank and Triticum spelt L. in comparison with modern Triticum aestivum L. Arch. Agron. Soil Sci. 2019, 65, 152–163. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A.; Stankowski, S.; Sobolewska, M.; Kępińska-Pacelik, J. Comparison of yield, chemical composition and farinograph properties of common and ancient wheat grains. Eur. Food Res. Technol. 2021, 247, 1525–1538. [Google Scholar] [CrossRef]
- Evans, J.; Neeson, R.; Burnett, V.; Luckett, D.J.; Fettell, N.A. Phosphorus-use efficiency, growth and yield of spelt wheat (Triticum aestivum ssp. spelta) compared with standard wheat (T. aestivum ssp. vulgare) in south-eastern Australia. J. Org. Syst. 2014, 9, 63–78. [Google Scholar]
- van der Veen, M.; Palmer, C. Environmental factors and the yield potential of ancient wheat crops. J. Archaeol. Sci. 1997, 24, 163–182. [Google Scholar] [CrossRef]
- Harlan, J.R.; Zohary, D. Distribution of wild wheats and barley: The present distribution of wild forms may provide clues to the regions of early cereal domestication. Science 1966, 153, 1074–1080. [Google Scholar] [CrossRef]
- Arzani, A. Emmer (Triticum turgidum ssp. dicoccum) Flour and bread. In Flour and Breads and Their Fortification in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2019; pp. 89–98. [Google Scholar]
- Zaharieva, M.; Ayana, N.G.; Al Hakimi, A.; Misra, S.C.; Monneveux, P. Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: A review. Genet. Resour. Crop Evol. 2010, 57, 937–962. [Google Scholar] [CrossRef]
- Bilalis, D.; Roussis, I.; Fuentes, F.; Kakabouki, I.; Travlos, I. Organic agriculture and innovative crops under Mediterranean conditions. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Hendek Ertop, M. Comparison of industrial and homemade bulgur produced from einkorn wheat (Triticum monococcum) and durum wheat (Triticum durum): Physicochemical, nutritional and microtextural properties. J. Food Process. Preserv. 2019, 43, e13863. [Google Scholar] [CrossRef]
- Atalan-Helicke, N. “You can never give up Siyez if you taste it once”: Local taste, global markets, and the conservation of einkorn, an ancient wheat. Gastronomica 2018, 18, 33–45. [Google Scholar] [CrossRef]
- Troccoli, A.; Codianni, P. Appropriate seeding rate for einkorn, emmer, and spelt grown under rainfed condition in southern Italy. Eur. J. Agron. 2005, 22, 293–300. [Google Scholar] [CrossRef]
- Piergiovanni, A.R.; Simeone, R.; Pasqualone, A. Oriental wheat an underutilised tetraploid wheat species. A case study: Nutritional and technological traits of Kamut. Food 2009, 3, 33–38. [Google Scholar]
- Grausgruber, H.; Oberforster, M.; Ghambashidze, G.; Ruckenbauer, P. Yield and agronomic traits of Khorasan wheat (Triticum turanicum Jakubz.). Field Crops Res. 2005, 91, 319–327. [Google Scholar] [CrossRef]
- Nocente, F.; Galassi, E.; Taddei, F.; Natale, C.; Gazza, L. Ancient Caucasian Wheats: A Contribution for Sustainable Diets and Food Diversity. Foods 2022, 11, 1209. [Google Scholar] [CrossRef]
- Whittaker, A.; Dinu, M.; Cesari, F.; Gori, A.M.; Fiorillo, C.; Becatti, M.; Casini, A.; Marcucci, R.; Benedettelli, S.; Sofi, F. A khorasan wheat-based replacement diet improves risk profile of patients with type 2 diabetes mellitus (T2DM): A randomized crossover trial. Eur. J. Nutr. 2017, 56, 1191–1200. [Google Scholar] [CrossRef] [Green Version]
- Jirillo, E.; Carone, T.; Toffanin, R. Exploitation of old wheat properties for prevention of human disease. Nat. Prod. Commun. 2017, 12, 1934578X1701200605. [Google Scholar] [CrossRef] [Green Version]
- Fujita, A.; Simsek, S.; Schwarz, P.B. Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt. Fermentation 2020, 6, 125. [Google Scholar] [CrossRef]
- Suchowilska, E.; Wiwart, M.; Kandler, W.; Krska, R. A comparison of macro-and microelement concentrations in the whole grain of four Triticum species. Plant Soil Environ. 2012, 58, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Bonafaccia, G.; Galli, V.; Francisci, R.; Mair, V.; Skrabanja, V.; Kreft, I. Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread. Food Chem. 2000, 68, 437–441. [Google Scholar] [CrossRef]
- Ranhotra, G.; Gelroth, J.; Glaser, B.; Lorenz, K. Baking and nutritional qualities of a spelt wheat sample. LWT-Food Sci. Technol. 1995, 28, 118–122. [Google Scholar] [CrossRef]
- Angioloni, A.; Collar, C. Nutritional and functional added value of oat, Kamut®, spelt, rye and buckwheat versus common wheat in breadmaking. J. Sci. Food Agric. 2011, 91, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Ruibal-Mendieta, N.L.; Delacroix, D.L.; Mignolet, E.; Pycke, J.M.; Marques, C.; Rozenberg, R. Spelt (Triticum aestivum ssp. spelta) as a source of breadmaking flours and bran naturally enriched in oleic acid and minerals but not phytic acid. J. Agric. Food Chem. 2005, 53, 2751–2759. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa, J.; Arun, B.; Mishra, V.K.; Chand, R.; Sharma, D.; Bhardwaj, S.C.; Joshi, A.K. Accessing Spelt Gene Pool to Develop Well-Adapted Zinc-and Iron-Rich Bread Wheat. Crop Sci. 2014, 54, 2000–2010. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A. Protein, ash, lutein and tocols distribution in einkorn (Triticum monococcum L. subsp. monococcum) seed fractions. Food Chem. 2008, 107, 444–448. [Google Scholar]
- Hidalgo, A.; Scuppa, S.; Brandolini, A. Technological quality and chemical composition of puffed grains from einkorn (Triticum monococcum L. subsp. monococcum) and bread wheat (Triticum aestivum L. subsp. aestivum). LWT-Food Sci. Technol. 2016, 68, 541–548. [Google Scholar] [CrossRef]
- Witczak, T.; Gałkowska, D. Sorption and thermal characteristics of ancient grain pasta of various compositions. LWT 2021, 137, 110433. [Google Scholar] [CrossRef]
- Hidalgo, A.; Alamprese, C.; Marti, A.; Galli, S.; Terno, A.B.; Brandolini, A. Nutritional and technological properties of non-traditional einkorn (Triticum monococcum) wheat pasta. LWT 2020, 133, 109932. [Google Scholar] [CrossRef]
- Frakolaki, G.; Giannou, V.; Topakas, E.; Tzia, C. Chemical characterization and breadmaking potential of spelt versus wheat flour. J. Cereal Sci. 2018, 79, 50–56. [Google Scholar] [CrossRef]
- Costanzo, A.; Amos, D.C.; Dinelli, G.; Sferrazza, R.E.; Accorsi, G.; Negri, L.; Bosi, S. Performance and nutritional properties of einkorn, emmer and rivet wheat in response to different rotational position and soil tillage. Sustainability 2019, 11, 6304. [Google Scholar] [CrossRef] [Green Version]
- Gazza, L.; Galassi, E.; Nocente, F.; Natale, C.; Taddei, F. Cooking Quality and Chemical and Technological Characteristics of Wholegrain Einkorn Pasta Obtained from Micronized Flour. Foods 2022, 11, 2905. [Google Scholar] [CrossRef] [PubMed]
- Marconi, E.; Carcea, M.; Graziano, M.; Cubadda, R. Kernel properties and pasta-making quality of five European spelt wheat (Triticum spelta L.) cultivars. Cereal Chem. 1999, 76, 25–29. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Bajaj, R.; Kaur, A. Wheat starch production, structure, functionality and applications—A review. Int. J. Food Sci. Technol. 2017, 52, 38–58. [Google Scholar] [CrossRef]
- Rahman, S.; Bird, A.; Regina, A.; Li, Z.; Ral, J.P.; McMaugh, S.; Topping, D.; Morell, M. Resistant starch in cereals: Exploiting genetic engineering and genetic variation. J. Cereal Sci. 2007, 46, 251–260. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.-L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant starch: Promise for improving human health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Valli, V.; Taccari, A.; Di Nunzio, M.; Danesi, F.; Bordoni, A. Health benefits of ancient grains. Comparison among bread made with ancient, heritage and modern grain flours in human cultured cells. Food Res. Int. 2018, 107, 206–215. [Google Scholar] [CrossRef]
- Biel, W.; Stankowski, S.; Jaroszewska, A.; Pużyński, S.; Bośko, P. The influence of selected agronomic factors on the chemical composition of spelt wheat (Triticum aestivum ssp. spelta L.) grain. J. Integr. Agric. 2016, 15, 1763–1769. [Google Scholar] [CrossRef] [Green Version]
- Kohajdová, Z.; Karovicova, J. Nutritional value and baking application of spelt wheat. Acta Sci. Pol. Technol. Aliment. 2008, 7, 5–14. [Google Scholar]
- Pangborn, R.M. Sensory analysis as an analytical laboratory tool in food research. In Modern Methods of Food Analysis; Stewart, K.K., Whitaker, J.R., Eds.; ift Basic Symposium Series; Springer: Dordrecht, The Netherlands, 1984; pp. 265–292. [Google Scholar]
- Frimpong, T.G.; Wireko-Manu, F.D.; Oduro, I. Development and Sensory Assessment of Ready-to-Eat Breakfast Cereal. Int. J. Food Sci. 2022, 2022, 4566482. [Google Scholar] [CrossRef]
- Sidel, J.L.; Stone, H.; Bloomquist, J. Use and misuse of sensory evaluation in research and quality control. J. Dairy Sci. 1981, 64, 2296–2302. [Google Scholar] [CrossRef]
- Callejo, M.J.; Vargas-Kostiuk, M.-E.; Rodríguez-Quijano, M. Selection, training and validation process of a sensory panel for bread analysis: Influence of cultivar on the quality of breads made from common wheat and spelt wheat. J. Cereal Sci. 2015, 61, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Vindras-Fouillet, C.; Ranke, O.; Anglade, J.-P.; Taupier-Letage, B.; Véronique, C.; Goldringer, I. Sensory analyses and nutritional qualities of hand-made breads with organic grown wheat bread populations. Food Nutr. Sci. 2014, 5, 1860–1874. [Google Scholar] [CrossRef] [Green Version]
- Starr, G.; Hansen, Å.S.; Petersen, M.; Bredie, W. Aroma of wheat porridge and bread-crumb is influenced by the wheat variety. LWT-Food Sci. Technol. 2015, 63, 590–598. [Google Scholar] [CrossRef]
- Kilcast, D. Sensory Analysis for Food and Beverage Quality Control: A Practical Guide; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Vickers, Z.; Morris, E.E.; Savaria, M. Effectiveness of palate cleansers for evaluating sourness. J. Sens. Stud. 2008, 23, 526–532. [Google Scholar] [CrossRef]
- Starr, G.; Bredie, W.; Hansen, Å. Sensory profiles of cooked grains from wheat species and varieties. J. Cereal Sci. 2013, 57, 295–303. [Google Scholar] [CrossRef]
- Moser, M.; Lepage, M.; Pineau, N.; Fillion, L.; Rytz, A. Replicates in sensory profiling: Quantification of the impact of moving from two to one assessments. Food Qual. Prefer. 2018, 65, 185–190. [Google Scholar] [CrossRef]
- Van Der Meulen, B. Private Food Law: Governing Food Chains through Contract Law, Self-Regulation, Private Standards, Audits and Certification Schemes; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011. [Google Scholar]
- Korczyk-Szabó, J.; Lacko-Bartošová, M. Crumb texture of spelt bread. J. Cent. Eur. Agric. 2013, 14, 1326–1335. [Google Scholar] [CrossRef]
- Lomolino, G.; Morari, F.; Ferro, N.D.; Vincenzi, S.; Pasini, G. Investigating the einkorn (Triticum monococcum) and common wheat (Triticum aestivum) bread crumb structure with X-ray microtomography: Effects on rheological and sensory properties. Int. J. Food Sci. Technol. 2017, 52, 1498–1507. [Google Scholar] [CrossRef]
- Abdel-Aal, E.-S.M.; Hucl, P.; Sosulski, F.W.; Bhirud, P.R. Kernel, milling and baking properties of spring-type spelt and einkorn wheats. J. Cereal Sci. 1997, 26, 363–370. [Google Scholar] [CrossRef]
- Bagdi, A.; Tóth, B.; Lőrincz, R.; Szendi, S.; Gere, A.; Kókai, Z.; Sipos, L.; Tömösközi, S. Effect of aleurone-rich flour on composition, baking, textural, and sensory properties of bread. LWT-Food Sci. Technol. 2016, 65, 762–769. [Google Scholar] [CrossRef]
- Hersleth, M.; Berggren, R.; Westad, F.; Martens, M. Perception of bread: A comparison of consumers and trained assessors. J. Food Sci. 2005, 70, S95–S101. [Google Scholar] [CrossRef]
- Škrobot, D.; Dapčević-Hadnađev, T.; Tomić, J.; Maravić, N.; Popović, N.; Jovanov, P.; Hadnađev, M. Techno-Functional Performance of Emmer, Spelt and Khorasan in Spontaneously Fermented Sourdough Bread. Foods 2022, 11, 3927. [Google Scholar] [CrossRef]
- Korcari, D.; Secchiero, R.; Laureati, M.; Marti, A.; Cardone, G.; Rabitti, N.S.; Ricci, G.; Fortina, M.G. Technological properties, shelf life and consumer preference of spelt-based sourdough bread using novel, selected starter cultures. LWT 2021, 151, 112097. [Google Scholar] [CrossRef]
- Hampson, D.B.; Gibson, A.S.C.; Lambert, M.I.; Noakes, T.D. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sport. Med. 2001, 31, 935–952. [Google Scholar] [CrossRef] [PubMed]
- Kojić, J.; Belović, M.; Krulj, J.; Pezo, L.; Teslić, N.; Kojić, P.; Tukuljac, L.P.; Šeregelj, V.; Ilić, N. Textural, color and sensory features of spelt wholegrain snack enriched with betaine. Foods 2022, 11, 475. [Google Scholar] [CrossRef] [PubMed]
- Kucek, L.K.; Dyck, E.; Russell, J.; Clark, L.; Hamelman, J.; Burns-Leader, S.; Senders, S.; Jones, J.; Benscher, D.; Davis, M.; et al. Evaluation of wheat and emmer varieties for artisanal baking, pasta making, and sensory quality. J. Cereal Sci. 2017, 74, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Belcar, J.; Sobczyk, A.; Sobolewska, M.; Stankowski, S.; Gorzelany, J. Characteristics of technological properties of grain and flour from ancient varieties of wheat (einkorn, emmer and spelt). Acta Univ. Cibiniensis. Ser. E Food Technol. 2020, 24, 269–278. [Google Scholar] [CrossRef]
- Løje, H.; Møller, B.; Laustsen, A.M.; Hansen, Å. Chemical composition, functional properties and sensory profiling of einkorn (Triticum monococcum L.). J. Cereal Sci. 2003, 37, 231–240. [Google Scholar] [CrossRef]
- Cankurtaran, T. Use of Ancient Wheat (Einkorn and Emmer) to Improve the Nutritional and Functional Properties of Gevreks. J. Inst. Sci. Technol. 2022, 12, 1539–1549. [Google Scholar] [CrossRef]
- Sacks, G. Kamut: A new old grain. Gastronomica 2005, 5, 95–98. [Google Scholar] [CrossRef]
- Abdel-Haleem, A.M.; Seleem, H.A.; Galal, W.K. Assessment of Kamut® wheat quality. World J. Sci. Technol. Sustain. Dev. 2012, 9, 194–203. [Google Scholar] [CrossRef]
- Brester, G.W.; Grant, B.; Boland, M.A. Marketing organic pasta from big sandy to Rome: It’s a long Kamut®. Appl. Econ. Perspect. Policy 2009, 31, 359–369. [Google Scholar] [CrossRef]
- Kyptova, M.; Konvalina, P.; Khoa, T.D. Technological and sensory quality of grain and baking products from spelt wheat. Res. Rural Dev. 2017, 2, 46–53. [Google Scholar]
- Marconi, E.; Carcea, M.; Schiavone, M.; Cubadda, R. Spelt (Triticum spelta L.) pasta quality: Combined effect of flour properties and drying conditions. Cereal Chem. 2002, 79, 634–639. [Google Scholar] [CrossRef]
- Nocente, F.; Natale, C.; Galassi, E.; Taddei, F.; Gazza, L. Using einkorn and tritordeum brewers’ spent grain to increase the nutritional potential of durum wheat pasta. Foods 2021, 10, 502. [Google Scholar] [CrossRef] [PubMed]
- Chetrariu, A.; Dabija, A. Quality characteristics of spelt pasta enriched with spent grain. Agronomy 2021, 11, 1824. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Oniszczuk, A.; Kasprzak, K.; Olech, M.; Mitrus, M.; Oniszczuk, T. Chemical composition and selected quality characteristics of new types of precooked wheat and spelt pasta products. Food Chem. 2020, 309, 125673. [Google Scholar] [CrossRef] [PubMed]
- Konvalina, P.; Grausgruber, H.; Dang, K.T.; Vlasek, O.; Capouchova, I.; Sterba, Z.; Suchy, K.; Stolickova, M.; Kyptova, M.; Bernas, J.; et al. Rheological and technological quality of minor wheat species and common wheat. In Wheat Improvement, Management and Utilization; IntechOpen: Rijeka, Croatia, 2017; pp. 255–273. ISBN 978-953-51-4828-9. [Google Scholar]
- Yılmaz, V.A.; Koca, A.F. Quality, sensorial and textural properties of einkorn and durum bulgur produced with several methods. Int. J. Gastron. Food Sci. 2020, 22, 100263. [Google Scholar] [CrossRef]
- Paasovaara, R.; Luomala, H.T. Consumers’ experience of spelt porridge and sea buckthorn juice: The roles of product claims and need for cognition. Br. Food J. 2011, 113, 853–870. [Google Scholar] [CrossRef]
- Lee, P.; Oh, H.; Kim, S.; Kim, Y. Textural, physical and retrogradation properties of muffin prepared with kamut (Triticum turanicum Jakubz). Ital. J. Food Sci. 2020, 32, 107–124. [Google Scholar]
Measured Parameters and Methods Applied | ||||||
---|---|---|---|---|---|---|
Cereals Involved | Sample Type | Macronutrients | Micronutrients | Amino Acids | Results | Reference |
Emmer Einkorn Spelt Bread wheat | Whole grain | Five macroelements (K, P, S, Mg, Ca): ICP-SFMS measurements were performed on a double-focusing ICP-sector field | Eleven microelements and trace elements (Zn, Fe, Mn, Na, Cu, Al, Ba, Sr, B, Rb, Mo): ICP-SFMS measurements were performed on a double-focusing ICP-sector field | Potassium concentrations were significantly higher in the grains of spelt and emmer than in common wheat. | [44] | |
Einkorn Emmer Spelt Bread wheat | Grain | (Total protein, crude fat, crude fiber, total ash, and total carbohydrates): (AOAC method) | (K, Ca, Mg, Fe, Mn, Zn, Cu): atomic absorption spectrometer | The highest protein content was determined in einkorn wheat (18.1%), followed by emmer (15.4%), spelt (12.8%), and common wheat (11.0%). | [28] | |
Spelt Bread wheat Durum | Milled seeds | Ash and moisture: (AACC, 1995) methods Protein: (Kjeldahl method N × 5.7) (979.09) (AOAC, 1990) Total dietary fiber (TDF): enzymatic and gravimetric procedures Starch: enzymatic hydrolysis | Beckman System Gold | The spelt wheat cultivars studied had a higher protein content than the standard cultivars of common wheat and durum wheat. No difference was found in the ash content between spelt and common wheat. | [45] | |
Spelt | Grain | Moisture: Standard AACC (5) Protein: (Kjeldahl method N × 5.7) Fat: ether extract Ash: Standard AACC (5) Fiber (total, soluble, and insoluble): enzymatic-gravimetric method Carbohydrate: subtracting the sum of moisture, protein, fat, ash, and fiber content from 100 | Minerals (Ca, Cu, Fe, K, Mg, Zn, Na), except phosphorus: atomic absorption or flame emission (sodium) spectrophotometry Total phosphorus: colorimetrically | Amino acids, except tryptophan and cysteine: phenylisothiocyanate (PITC) method | Spelt grain has a little higher total fat and digestible carbohydrates (starch and sugars), and it contains about 3% more energy. | [46] |
Durum Spelt Einkorn Emmer Bread wheat | Grain | K, Ca, Mg, S, P, Fe, Zn, Mn, Cu: inductively coupled plasma (ICP) atomic emission spectrometry Se: inductively coupled plasma mass spectrometry | Spelt, einkorn, and emmer wheat grains contain higher Se concentrations than bread and durum wheats. | [47] | ||
Spelt | Grain | Crude protein: (Kjeldahl method N × 6.25) Ether extract: Soxhlet extraction Crude fiber: fiber analyzer | Crude ash: incineration in a muffle furnace at 580 °C for 8 h | Amino acids (methionine, tryptophane, leucine, phenylalanine, and total sulfur-containing amino acids): AAA 400 automatic amino acid analyzer Tryptophan: method described in AOAC (2006) | There are positive correlations between Fe and Zn concentrations and protein content. | [3] |
Spelt | Wholemeal Sieved flour Fine bran Coarse bran | Total lipid: Soxhlet method Dry Matter: desiccation of cereal samples, weighed and dried at 105 °C for 24 h, and then weighed again | Ash: 5 g samples; incineration at 550 °C for 16 h All minerals (Ca, Mg, Fe, Zn, Cu, Mn) except phosphorus: atomic absorption after the ashing Na and K: flame photometry P: colorimetry, AOAC method 995.11 Total tocopherols: HPLC | The nutritional advantages of spelt over wheat would be best expressed in wholemeal bread or bran nutrition bars rather than in bread from sieved or refined flours. | [48] | |
Spelt | Grain | Protein: Infratec 1241 Grain Analyzer | Zn and Fe: X-ray fluorescence | The grains of spelt wheat parents contained significantly more Zn and Fe than bread wheat. | [49] | |
Emmer Einkorn Durum | Grain | Total protein: Dumas method | Liquid chromatography tandem mass spectrometer (LC-MS/MS) method | Einkorn had the highest mean protein content, followed by emmer, whereas durum wheat had the lowest concentration of protein. | [9] | |
Einkorn | Whole flour endosperm Bran Germ | (AACC, 1994) Dry matter: 44–15 Protein: 46–10 (N × 5.7) | Ash: (AACC, 1994) 08–03 Tocopherols and tocotrienols: normal-phase HPLC | A nutritional advantage over the de-branned and de-germinated flour, mainly because of the high tocol content in the germ and bran. | [50] | |
Einkorn Bread wheat | Kernels | Total starch: Megazyme assay kit Protein: (AACC, 1995) 46–10 (N × 5.7) | Carotenoid: extraction and quantification by HPLC Tocols: HPLC | The einkorn cultivars showed a superior concentration of total carotenoids than the bread wheat in the raw kernels. | [51] | |
Spelt Einkorn Emmer Quinoa Durum | Raw (uncooked) pasta | Moisture: drying at 130 °C for 1.5 h in a forced air oven Crude protein: Kjeldahl method (N × 5.7) Starch: Ewers method (ISO 10520, 1997) Fat: acid hydrolysis and subsequent Soxhlet extraction | Ash: incineration in a muffle furnace for 4 h at 900 °C | The spelt wheat pasta had a higher ash content (1.10%) compared to the durum wheat pasta. | [52] | |
Einkorn | Flours Semolina Dry pasta | (AACC) Moisture: 44–15.02 Ash: 08–03.01 Protein: Kjeldahl method (N × 5.7) 925.31 (AOAC, 1995) Lipid: Soxhlet method 136 (ICC, 1995) | Total carotenoid: spectrophotometric method 14–60.01 (AACC) | Einkorn pasta had more protein than durum wheat. | [53] | |
Spelt | Flours | Moisture: (ICC methods 110/1) Protein: Kjeldahl method (N × 5.7) (979.09) (AOAC, 1990) Starch: dinitrosalicylic acid spectrophotometric method (DNS) | Ash: ICC standard No. 104/1 | Spelt wheat flour had a higher protein content and exhibited different protein fractions and properties from common wheat. | [54] | |
Einkorn Emmer Rivet | Whole grains were stone milled (on a whole flour dry weight basis) | Protein: Foss Infratec 1229 NIT spectrophotometer Lipid analysis: AOAC method Total dietary fiber: enzymatic-gravimetric procedure using a Megazyme assay kit | The highest protein content was found in emmer, followed by einkorn. The highest fat content was detected for einkorn, followed by emmer, and appreciably higher than those reported in the literature for common wheat. | [55] | ||
Einkorn | Whole grain Cooked pasta Freeze-dried pasta | Moisture: thermal balance at 120 °C. Protein: micro-Kjeldhal nitrogen analysis (ICC 105/2 method) (N × 5.7) Resistant starch (RS): Official Method 2002.02, using Resistant Starch Assay Kit Total dietary fiber (TDF): enzymatic-gravimetric kit for fiber determination according to the Official Method 991.43 | Ash: AACC 08-01.01 method | Significantly higher protein contents were observed in einkorn pasta in comparison with those reported for durum wheat semolina pasta. | [56] | |
Spelt | Wholemeal flour Flour Pasta | Standard (ICC 1995) for: Moisture: (ICC Method 110/1) Crude protein: (N × 5.7) (Method 105/2) Total fat: (Method 136) Soluble, insoluble, and total dietary fibers: enzymatic gravimetric procedure of Prosky, Method 985.29 (AOAC 1995) | Ash: (ICC 1995) (Method 104/1) | Spelt samples (wholemeal flour) had fat contents significantly higher than those of common wheat. | [57] | |
Einkorn | Whole grain Cooked pasta Freeze-dried pasta | Moisture: thermobalance at 120 °C Protein: micro-Kjeldhal nitrogen analysis (ICC 105/2 method) (N × 5.7) Resistant starch (RS): Official Method 2002.02, using Resistant Starch Assay Kit Total dietary fiber (TDF): enzymatic-gravimetric kit for fiber determination according to the Official Method 991.43 | Ash content: AACC 08-01.01 method | Significantly higher protein contents were observed in einkorn pasta in comparison with those reported for durum wheat semolina pasta. | [56] | |
Spelt | Whole-meal flour Flour Pasta | Standard (ICC 1995) for: Moisture: (ICC Method 110/1) Crude protein: (N × 5.7) (Method 105/2) Total fat: (Method 136) Soluble, insoluble, and total dietary fibers: enzymatic gravimetric procedure of Prosky, Method 985.29 (AOAC 1995) | Ash: (ICC 1995) (Method 104/1) | Spelt samples (wholemeal flour) had a high fat content, significantly higher than that of common wheat. | [57] |
Macronutrients | Spelt | Einkorn | Emmer | Kamut | Common Wheat | References |
---|---|---|---|---|---|---|
Ash (% or g/100 g) | 1.86 ± 0.07 crude (grain) 2.2 ± 0.3 (bread) 1.76 ± 0.02 1.82 ± 0.02 1.85 ± 0.01 (seed) 1.8 (grain) 0.161 ± 0.02 (flour) 1.97 1.98 1.86 1.98 (grain) 1.67 1.81 1.94 1.94 1.81 1.85 1.96 1.68 1.76 (wholemeal) 1.24 (pasta) 1.95 ± 0.41 (flour) | 2.65 ± 0.08 crude (grain) 0.69 ± 0.01 (flour) 0.71 (pasta) 2.2 ± 0.01 2.5 ± 0.01 1.5 ± 0.00 (whole flour) 0.4 ± 0.01 0.7 ± 0.03 0.4 ± 0.00 (endosperm) 7.5 ± 0.03 6.8 ± 0.01 6.8 ± 0.01 (bran) 4.8 ± 0.11 4.4 ± 0.15 2.7 ± 0.11 (germ) 2.59 ± 0.01 2.26 ± 0.03 0.708 ± 0.001 (cooked pasta) | 2.16 ± 0.07 crude (grain) | 2.0 ± 0.3 (bread) 0.136 ± 0.05 (flour) | 1.52 ± 0.06 crude (grain) 1.83 ± 0.01 (seed) 0.063 ± 0.01 (flour) 0.63 ± 0.09 (flour) | [28] [61] [45] [46] [47] [62] [48] [52] [54] [53] [50] [56] |
Sodium Na (mg/kg) | 10 (grain) 10 (grain) 6.10 6.46 9.22 8.93 10.92 7.46 7.07 8.30 11.89 (wholemeal) | 7 (grain) | 12 (grain) | 10 (grain) | [44] [46] [48] | |
Potassium K (g/kg) | 4.17 (grain) 4.11 (grain) 3.10 3.82 4.03 3.91 3.68 3.83 3.66 3.58 3.85 (wholemeal) | 4.29 (grain) | 4.39 (grain) | 5 (grain) | [44] [46] [48] | |
Phosphorus P (g/kg) | 4.7 (grain) 4.62 (grain) 3.173 2.819 2.445 2.969 2.813 2.845 2.959 3.317 2.965 (wholemeal) | 5.2 (grain) | 5.12 (grain) | 4.18 (grain) | [44] [46] [48] | |
Magnesium Mg (g/kg) | 1.5 (grain) 1.31 (grain) 1.2750 1.3331 1.3223 1.2986 1.3032 1.2560 1.2956 1.1881 1.1952 (wholemeal) | 1.63 (grain) | 1.67 (grain) | 1.44 (grain) | [44] [46] [48] | |
Sulfur S (g/kg) | 1.8 (grain) | 1.93 (grain) | 1.88 (grain) | 1.4 (grain) | [44] | |
Iron Fe (mg/kg) | 50 (grain) 38 (grain) 41.8 (grain) 34.7 30.7 28.4 36.5 28.5 28.8 38 27.9 26.4 (wholemeal) 51.4 51.99 51.37 49.58 42.73 52.35 51.65 46.86 44.68 51.9 (grain) | 45.9 (grain) 49 (grain) | 49 (grain) 34.1 (grain) | 38.2 (grain) 37.5 (grain) | [44] [46] [3] [48] [49] [44] | |
Copper Cu (mg/kg) | 5 (grain) 6 (grain) For all 9 cultivators: < 1 (wholemeal) | 4 (grain) | 4.1 (grain) | 3.9 (grain) | [44] [46] [48] | |
Zinc Zn (mg/kg) | 47 (grain) 42 (grain) 22.9 (grain) 30.9 29.7 29.7 31.7 31.9 29.8 35.1 25.8 29.8 (wholemeal) 56.73 54.64 54.32 54.2 53.9 53.87 52.69 51.64 51.29 51.14 (grain) | 53 (grain) 22.4 (grain) | 54 (grain) 22.8 (grain) | 35 (grain) 21.4 (grain) | [44] [46] [3] [48] | |
Selenium Se (μg/kg) | 790 ± 10 (bread) 125.1–244.0 (grain) | 178.5–440.0 (grain) | 150.6–325.8 (grain) | 560 ± 20 (bread) | 32.9–237.9 (grain) | [61] [3] |
Manganese Mn (g/kg) | 27 (grain) 31.9 28.5 26.8 27.8 29.1 29.2 28.2 26 28 (wholemeal) | 28 (grain) | 24 (grain) | 26 (grain) | [44] [48] | |
Aluminium Al (mg/kg) | 4.4 (grain) | 2.5 (grain) | 3.8 (grain) | 1.7 (grain) | [44] | |
Rubidium Rb (mg/kg) | 1.1 (grain) | 0.8 (grain) | 0.8 (grain) | 1.45 (grain) | [44] | |
Strontium Sr (mg/kg) | 3.6 (grain) | 5.4 (grain) | 2.6 (grain) | 3.0 (grain) | [44] | |
Barium Ba (mg/kg) | 3.5 (grain) | 2.6 (grain) | 2 (grain) | 2.95 (grain) | [44] | |
Molybdenum Mo (mg/kg) | 0.7 (grain) | 1.2 (grain) | 1 (grain) | 0.65 (grain) | [44] | |
Boron B (mg/kg) | 0.7 (grain) | 0.8 (grain) | 0.6 (grain) | 0.75 (grain) | [44] | |
Total carotenoid (mg/kg) | 8.13 ± 0.01 (flour) 4.79 ± 0.16 (pasta) | 0.48 ± 0.01 0.89 ± 0.02 3.21 ± 0.04 2.01 ± 0.06 (kernel) | [53] [51] | |||
Carotenoid (Lutein) (μg/g) or (mg/kg) | 7.5 ± 0.02 5.8 ± 0.19 0.9 ± 0.09 (whole flour) 7.4 ± 0.15 5.1 ± 0.03 0.8 ± 0.01 (endosperm) 4.0 ± 0.08 4.5 ± 0. 0.7 ± 0.01 (bran) 38.0 ± 1.06 26.3 ± 3.83 6.3 ± 2.88 (germ) | 0.19 ± 0.00 0.48 ± 0.01 1.04 ± 0.05 0.81 ± 0.04 (kernel) | [51] [50] |
Amino Acids | Spelt (g/100 g) | Emmer (g/100 g) | Einkorn (g/100 g) | ||||||
---|---|---|---|---|---|---|---|---|---|
Aspartic acid | 5.2 | 5.3 | 5.65 | 24.22 ↔ 49.20 | 64.33 ↔ 150.38 | ||||
Threonine | 2.7 | 2.9 | 2.11 | 2.4 | 2.5 | 2.5 | 2.4 | 0.87 ↔ 5.32 | 1.81 ↔ 7.63 |
Serine | 4.7 | 4.7 | 4.79 | 0.00 ↔ 33.26 | 0.00 ↔ 65.42 | ||||
Glutamic acid | 36.0 | 30.9 | 26.79 | 26.30 ↔ 66.10 | 50.74 ↔ 87.92 | ||||
Proline | 11.9 | 8.9 | 8.12 | 1.29 ↔ 30.84 | 4.30 ↔ 18.45 | ||||
Glycine | 3.8 | 4.4 | 4.92 | ||||||
Alanine | 3.4 | 3.6 | 3.45 | ||||||
Cysteine | 2.1 | 2.4 | 0.00 ↔ 2.00 | 0.00 ↔ 5.12 | |||||
Valine | 4.7 | 4.7 | 1.81 | 3.8 | 3.8 | 3.7 | 3.6 | 0.00 ↔ 31.84 | 0.00 ↔ 54.81 |
Leucine + Isoleucine | 1.86 ↔ 5.75 | 7.80 ↔ 16.57 | |||||||
Methionine + Cysteine | 3.1 | 3.1 | 3.1 | 2.9 | |||||
Methionine | 1.7 | 2.0 | 1.33 | 1.6 | 1.6 | 1.7 | 1.5 | 0.39 ↔ 2.69 | 1.03 ↔ 4.06 |
Isoleucine | 3.8 | 3.8 | 1.03 | 2.9 | 3.0 | 2.9 | 2.9 | ||
Leucine | 7.1 | 7.0 | 4.15 | 6.5 | 6.5 | 6.4 | 6.6 | ||
Tyrosine | 2.7 | 2.3 | 1.44 | 2.5 | 2.5 | 2.4 | 2.4 | 2.23 ↔ 7.71 | 6.34 ↔ 12.18 |
Phenylalanine | 5.1 | 5.4 | 3.02 | 4.6 | 4.4 | 4.6 | 4.6 | 3.90 ↔ 6.89 | 6.67 ↔ 11.10 |
Lysine | 2.7 | 2.8 | 2.04 | 2.6 | 2.7 | 2.6 | 2.4 | 14.97 ↔ 76.72 | 69.006 ↔ 231.30 |
Histidine | 2.4 | 2.3 | 3.14 | 1.9 | 1.9 | 1.8 | 1.8 | 0.95 ↔ 2.90 | 1.79 ↔ 4.03 |
Arginine | 4.5 | 4.5 | 2.38 | 0.05 ↔ 5.30 | 0.10 ↔ 4.45 | ||||
Tryptophan | 1.1 | 1.1 | 1.1 | 1.1 | 64.33 ↔ 150.38 | ||||
References | [45] | [45] | [46] | [62] | [62] | [62] | [62] | [9] | [9] |
Cereals Involved | Product Type | Sensory Test Type | Number of Panelists/Consumers | Reference |
---|---|---|---|---|
Spelt Bread wheat | Bread | Questionnaire | 25 participants | [91] |
Spelt Bread wheat | Bread | (ISO 6564, 1985; ISO 4121, 2003). The intensity of each attribute was scored on an unstructured 10-cm straight line labeled “not noticeable” and “very strong” at the left and right end points, respectively. | 18 adults (nine females and nine males) aged between 27 and 65. Then, 9 members were selected and trained. | [67] |
Spelt Einkorn Durum Hard red spring | Bread | Nine-point hedonic scale | 12-member panel of food scientists trained in sensory evaluation | [77] |
Spelt Common wheat | Bread | Scale scoring 0–10; evaluated by quantitative descriptive profile analysis (QDA) | 4–9 trained panelists | [54] |
Einkorn Common wheat | Bread | Ten-point scale (where “1” represented low intensity and “10” high intensity) | 15 testers familiar with sensory analysis of food but not specially trained in the evaluation of sourdough breads; ages ranged from 22 to 40 years old (9 women and 6 men). | [76] |
Spelt | Pasta (Spaghetti) | Five-point hedonic scale and then converted into numerical scores | Trained panel of 3 assessors | [92] |
Einkorn | Pasta (Spaghetti) | Each sensorial parameter was scored from 10–100 | Panel of 5 trained assessors, who are food technicians at the ‘Cereal Food Processing Lab’ in Rome | [56] |
Einkorn Durum | Pasta | Each descriptor was scored from 10–100 | Panel of 3 trained assessors | [93] |
Spelt | Pasta | Ranking test/hedonic scale Nine-point hedonic rating scale | Panel of 7 experts, selected according to their sensorial skills and trained in sensory vocabulary and identification of particular attributes | [94] |
Spelt | Pasta | Score of 0–100 | Not available | [57] |
Spelt | Pasta | Nine-point hedonic scale | 15-member semi-trained panel (7 males and 8 females, ages 23–40) | [95] |
Spelt Einkorn Emmer Common wheat | Pasta | Questionnaire | Group of 10 evaluators | [96] |
Emmer | Pasta and cooked grains | Descriptive sensory analysis | 12 trained panelists and 26 public preference tasters | [84] |
Spelt Einkorn Emmer Kamut Modern wheat | Cooked grains | Descriptive tests/sensory profile analysis | 10 experienced assessors (3 men and 7 women between the ages of 21 and 39) | [72] |
Einkorn Durum | Uncooked and cooked bulgur samples | Ranking test/hedonic scale 5-point hedonistic scale (1: very defective, 3: acceptable, 5: perfect) Mixture of hedonic testing and quality scoring | 10 well-briefed panelists | [97] |
Spelt | Porridge made from whole grains | Questionnaire using a 5-point Likert scale from “extremely unpleasant” (1) to “extremely pleasant” (9), followed by a 5-point scale from “totally agree” to “totally disagree”. | Total of 129 volunteer Finnish women in 4 experimental groups | [98] |
Spelt | Snack products made from whole grains | Unstructured linear scale from imperceptible (0) to very intense (100) | 8 trained panelists, between 25 and 50 years old | [83] |
Kamut | Muffin | Nine-point hedonic scale | 51 panelists from Korean University (ages 20–60) | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roumia, H.; Kókai, Z.; Mihály-Langó, B.; Csobod, É.C.; Benedek, C. Ancient Wheats—A Nutritional and Sensory Analysis Review. Foods 2023, 12, 2411. https://doi.org/10.3390/foods12122411
Roumia H, Kókai Z, Mihály-Langó B, Csobod ÉC, Benedek C. Ancient Wheats—A Nutritional and Sensory Analysis Review. Foods. 2023; 12(12):2411. https://doi.org/10.3390/foods12122411
Chicago/Turabian StyleRoumia, Hala, Zoltán Kókai, Bernadett Mihály-Langó, Éva Csajbókné Csobod, and Csilla Benedek. 2023. "Ancient Wheats—A Nutritional and Sensory Analysis Review" Foods 12, no. 12: 2411. https://doi.org/10.3390/foods12122411
APA StyleRoumia, H., Kókai, Z., Mihály-Langó, B., Csobod, É. C., & Benedek, C. (2023). Ancient Wheats—A Nutritional and Sensory Analysis Review. Foods, 12(12), 2411. https://doi.org/10.3390/foods12122411