Antimicrobial Activity against Foodborne Pathogens and Antioxidant Activity of Plant Leaves Traditionally Used as Food Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Collection and Extraction
2.3. HPTLC Analysis and HPTLC–DPPH Bioautography of Leaf Extracts
2.4. Total Phenolic Content Assay
2.5. Antioxidant Activity Assays
2.5.1. DPPH Radical Scavenging Assay of Leaf Extracts
2.5.2. Ferric Reducing Antioxidant Power Assay
2.5.3. Superoxide Radical Scavenging Assay
2.6. Antimicrobial Assay against Foodborne Pathogens
2.7. Bioassay-Guided Isolation of N. fruticans Extract to Obtain Antimicrobial Components
2.8. Evaluation of Antimicrobial Activity of Compounds I–III against Foodborne Pathogens
2.9. Statistical Analysis
3. Results
3.1. HPTLC Profiles and HPTLC–DPPH Bioautograms of Leaf Extracts
3.2. Total Phenolic Content and Antioxidant Activities of Leaf Extracts
3.3. Antimicrobial Activity of Leaf Extracts
3.4. Bioassay-Guided Isolation of N. fruticans Leaf Extract
3.5. Evaluation of the Antimicrobial Activity of Isolated Compounds I–III
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, R.P.; Anderson, B.A. The Major Types of Food Spoilage: An Overview. In Understanding and Measuring the Shelf-Life of Food; Steele, R., Ed.; Woodhead Publishing: Cambridge, UK, 2004; pp. 3–23. ISBN 978-1-85573-732-7. [Google Scholar]
- Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in Antioxidant Active Food Packaging. Trends Food Sci. Technol. 2014, 35, 42–51. [Google Scholar] [CrossRef]
- Martinović, T.; Andjelković, U.; Gajdošik, M.Š.; Rešetar, D.; Josić, D. Foodborne Pathogens and Their Toxins. J. Proteom. 2016, 147, 226–235. [Google Scholar] [CrossRef]
- Sarno, E.; Pezzutto, D.; Rossi, M.; Liebana, E.; Rizzi, V. A Review of Significant European Foodborne Outbreaks in the Last Decade. J. Food Prot. 2021, 84, 2059–2070. [Google Scholar] [CrossRef]
- Kamala Kumari, P.; Akhila, S.; Srinivasa Rao, Y.; Rama Devi, B. Alternative to Artificial Preservatives. Syst. Rev. Pharm. 2019, 10, 99–102. [Google Scholar] [CrossRef]
- Ng, C. Plant Leaves in Food Preparation and Packaging. UTAR Agric. Sci. J. 2015, 1, 34–39. [Google Scholar]
- Ahmadi, A.; Salehi, A.; Dadmeher, A.; Ghodarzi, S.; Sadighara, P.; Samarghandian, S.; Farkhondeh, T. The Effect of Banana Leaf Package on the Shelf Life of Rainbow Trout Fillet in Comparison with Plastic Bags. Biosci. J. 2019, 35, 503–508. [Google Scholar] [CrossRef]
- Sun, J.; Xun, H.; Yu, J.; Tang, F.; Yue, Y.-D.; Guo, X.F. Chemical Constituents and Antibacterial Properties of Indocalamus latifolius McClure Leaves, the Packaging Material for “Zongzi”. Molecules 2015, 20, 15686–15700. [Google Scholar] [CrossRef] [Green Version]
- Fu, R.; Zhang, Y.T.; Guo, Y.R.; Huang, Q.L.; Peng, T.; Xu, Y.; Tang, L.; Chen, F. Antioxidant and Anti-Inflammatory Activities of the Phenolic Extracts of Sapium sebiferum (L.) Roxb. Leaves. J. Ethnopharmacol. 2013, 147, 517–524. [Google Scholar] [CrossRef]
- Pongkittiphan, V.; Chavasiri, W.; Supabphol, R. Antioxidant Effect of Berberine and Its Phenolic Derivatives Against Human Fibrosarcoma Cells. Asian Pac. J. Cancer Prev. 2015, 16, 5371–5376. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Mehta, A.; Bajpai, V.K.; Shukla, S. In Vitro Antioxidant Activity and Total Phenolic Content of Ethanolic Leaf Extract of Stevia rebaudiana Bert. Food Chem. Toxicol. 2009, 47, 2338–2343. [Google Scholar] [CrossRef]
- Gupta, V.; Rathore, D.S. Evaluation of Anti-Oxidant Activity and Determination of Phenolic Content of Leaves Extracts of Bougainvillea glabra “Snow White”. Pharmacologyonline 2011, 2, 219–234. [Google Scholar]
- Monente, C.; Bravo, J.; Vitas, A.I.; Arbillaga, L.; De Peña, M.P.; Cid, C. Coffee and Spent Coffee Extracts Protect against Cell Mutagens and Inhibit Growth of Food-Borne Pathogen Microorganisms. J. Funct. Foods 2015, 12, 365–374. [Google Scholar] [CrossRef]
- Cetin-Karaca, H.; Newman, M.C. Antimicrobial Efficacy of Plant Phenolic Compounds against Salmonella and Escherichia coli. Food Biosci. 2015, 11, 8–16. [Google Scholar] [CrossRef]
- Lin, F.; Luo, B.; Long, B.; Long, C. Plant Leaves for Wrapping Zongzi in China: An Ethnobotanical Study. J. Ethnobiol. Ethnomed. 2019, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, M.; Nagalingam, S.; Tye, J.; Shafii, H.; Dolah, J. Looking Back to the Past: Revival of Traditional Food Packaging. In Proceedings of the 2nd Regional Conference on Local Knowledge (KEARIFAN TEMPATAN), Penang, Malaysia, 15 October 2012. [Google Scholar]
- Thai News Agency หายาก! ขนมหม้อข้าวหม้อแกงลิง (Rare! Khanom Mo Khao Mo Kaeng Ling). Available online: https://tna.mcot.net/region-492366 (accessed on 20 April 2023).
- Kora, A.J. Leaves as Dining Plates, Food Wraps and Food Packing Material: Importance of Renewable Resources in Indian Culture. Bull. Natl. Res. Cent. 2019, 43, 205. [Google Scholar] [CrossRef]
- Aminzare, M.; Hashemi, M.; Ansarian, E.; Bimkar, M.; Azar, H.H.; Mehrasbi, M.R.; Daneshamooz, S.; Raeisi, M.; Jannat, B.; Afshari, A. Using Natural Antioxidants in Meat and Meat Products as Preservatives: A Review. Adv. Anim. Vet. Sci. 2019, 7, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Estévez, M. Protein Carbonyls in Meat Systems: A Review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Pyka, A. Detection Progress of Selected Drugs in TLC. BioMed Res. Int. 2014, 2014, 732078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saikia, S.; Mahnot, N.K.; Mahanta, C.L. Phytochemical Content and Antioxidant Activities of Thirteen Fruits of Assam, India. Food Biosci. 2016, 13, 15–20. [Google Scholar] [CrossRef]
- Martillanes, S.; Rocha-Pimienta, J.; Cabrera-Bañegil, M.; Martín-Vertedor, D.; Delgado-Adámez, J. Application of Phenolic Compounds for Food Preservation: Food Additive and Active Packaging. Phenolic Compounds—Biological Activity. In Phenolic Compounds—Biological Activity; Soto-Hernandez, M., Palma-Tenango, M., Garcia-Mateos, R., Eds.; IntechOpen: London, UK, 2017; pp. 39–58. [Google Scholar]
- Sadeer, N.B.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants 2020, 9, 709. [Google Scholar] [CrossRef]
- Bastola, K.P.; Guragain, Y.N.; Bhadriraju, V.; Vadlani, P.V.; Bastola, K.P.; Guragain, Y.N.; Bhadriraju, V.; Vadlani, P.V. Evaluation of Standards and Interfering Compounds in the Determination of Phenolics by Folin-Ciocalteu Assay Method for Effective Bioprocessing of Biomass. Am. J. Analyt. Chem. 2017, 8, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of Total Phenolic Content and Other Oxidation Substrates in Plant Tissues Using Folin–Ciocalteu Reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Foti, M.C. Use and Abuse of the DPPH• Radical. J. Agric. Food Chem. 2015, 63, 8765–8776. [Google Scholar] [CrossRef]
- Huang, D.; Boxin, O.U.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comparative Study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
- Ahmed, A.S.; McGaw, L.J.; Elgorashi, E.E.; Naidoo, V.; Eloff, J.N. Polarity of Extracts and Fractions of Four Combretum (Combretaceae) Species Used to Treat Infections and Gastrointestinal Disorders in Southern African Traditional Medicine Has a Major Effect on Different Relevant in vitro Activities. J. Ethnopharmacol. 2014, 154, 339–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Sandhir, R.; Ojha, S. Evaluation of Antioxidant Activity and Total Phenol in Different Varieties of Lantana camara Leaves. BMC Res. Notes 2014, 7, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleckenstein, J.M.; Hardwidge, P.R.; Munson, G.P.; Rasko, D.A.; Sommerfelt, H.; Steinsland, H. Molecular Mechanisms of Enterotoxigenic Escherichia coli Infection. Microbes Infect. 2010, 12, 89–98. [Google Scholar] [CrossRef]
- Melton-Celsa, A.R. Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol. Spectr. 2014, 2, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.; Borges, A.; Simões, M. Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins 2018, 10, 252. [Google Scholar] [CrossRef] [Green Version]
- Information for Healthcare Professionals|Salmonella|CDC. Available online: https://www.cdc.gov/salmonella/general/technical.htmL (accessed on 4 May 2023).
- Frisvad, J.C.; Møller, L.L.H.; Larsen, T.O.; Kumar, R.; Arnau, J. Safety of the Fungal Workhorses of Industrial Biotechnology: Update on the Mycotoxin and Secondary Metabolite Potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl. Microbiol. Biotechnol. 2018, 102, 9481–9515. [Google Scholar] [CrossRef] [Green Version]
- Nsor-Atindana, J.; Zhong, F.; Kebitsamang, M.J.; Bangoura, M.L.; Lagnika, C. Quantification of Total Polyphenolic Content and Antimicrobial Activity of Cocoa (Theobroma cacao L.) Bean Shells. Pak. J. Nutr. 2012, 11, 672–677. [Google Scholar] [CrossRef] [Green Version]
- Jalal, T.K.; Ahmed, I.A.; Mikail, M.; Momand, L.; Draman, S.; Isa, M.L.M.; Abdull Rasad, M.S.B.; Nor Omar, M.; Ibrahim, M.; Abdul Wahab, R. Evaluation of Antioxidant, Total Phenol and Flavonoid Content and Antimicrobial Activities of Artocarpus altilis (Breadfruit) of Underutilized Tropical Fruit Extracts. Appl. Biochem. Biotechnol. 2015, 175, 3231–3243. [Google Scholar] [CrossRef]
- Miklasińska-Majdanik, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Wąsik, T.J. Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus aureus Clinical Strains. Int. J. Environ. Res. Public Health 2018, 15, 2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.-B.; Kim, D.H.; Je, J.Y. Antioxidant and Cytoprotective Effects of Lotus (Nelumbo nucifera) Leaves Phenolic Fraction. Prev. Nutr. Food Sci. 2015, 20, 22–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijayawardhana, N.; Cooray, D.; Jayasuriya, B.; Uluwaduge, I.; Meedin, F.; Arawwawala, M. Antimicrobial Activity of a Combination of Three Natural Plant Extracts and Development of a Herbal Soap. Pharm. Sci. Asia 2021, 48, 523–534. [Google Scholar] [CrossRef]
- Ifesan, B.O.T.; Fashakin, J.F.; Ebosele, F.; Oyerinde, A.S. Antioxidant and Antimicrobial Properties of Selected Plant Leaves. Eur. J. Med. Plants 2013, 3, 465–473. [Google Scholar] [CrossRef]
- Ebana, R.U.B.; Etok, C.A.; Edet, U.O. Phytochemical Screening and Antimicrobial Activity of Nypa fruticans Harvested from Oporo River in the Niger Delta Region of Nigeria. Int. J. Innov. Appl. Stud. 2015, 10, 1120–1124. [Google Scholar]
- Jiang, L.; Belwal, T.; Huang, H.; Ge, Z.; Limwachiranon, J.; Zhao, Y.; Li, L.; Ren, G.; Luo, Z. Extraction and Characterization of Phenolic Compounds from Bamboo Shoot Shell under Optimized Ultrasonic-Assisted Conditions: A Potential Source of Nutraceutical Compounds. Food Bioproc. Tech. 2019, 12, 1741–1755. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V. The Role of Polyphenols in Quality, Postharvest Handling, and Processing of Fruits. In Post Harvest Biology and Technology of Fruits, Vegetables, and Flowers; Paliyath, G., Murr, D.P., Handa, A.K., Lurie, S., Eds.; Wiley-Blackwell Publishing: Ames, IA, USA, 2008; pp. 260–281. ISBN 978-0-813-80408-8. [Google Scholar]
- Zeng, X.; Wang, Y.; Qiu, Q.; Jiang, C.; Jing, Y.; Qiu, G.; He, X. Bioactive Phenolics from the Fruits of Livistona chinensis. Fitoterapia 2012, 83, 104–109. [Google Scholar] [CrossRef]
- Hassanein, H.; Elsayed, W.; Abreu, A.C.; Simões, M.; Abdelmohsen, M. Polyphenolic Constituents and Antimicrobial Activity of Rhapis excels (Arecaceae, Coryphoideae). Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 1714–1722. [Google Scholar]
- Ancheeva, E.; Daletos, G.; Muharini, R.; Lin, W.H.; Teslov, L.; Proksch, P. Flavonoids from Stellaria nemorum and Stellaria holostea. Nat. Prod. Commun. 2015, 10, 437–440. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, T.; El-Hela, A.A.; Dawoud, G.T.M.; Zhran, M. Antimethicillin-Resistant Staphylococcus aureus and Biological Activities of Metabolites from Digitaria sanguinalis L. Indian J. Pharm. Sci. 2019, 81, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Li, X.; He, S.; Gao, C.; Wang, C.; Shao, Y. Effects of Natural Flavonoid Isoorientin on Growth Performance and Gut Microbiota of Mice. J. Agric. Food Chem. 2018, 66, 9777–9784. [Google Scholar] [CrossRef]
- Becker, H.; Scher, J.M.; Speakman, J.B.; Zapp, J. Bioactivity Guided Isolation of Antimicrobial Compounds from Lythrum salicaria. Fitoterapia 2005, 76, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Koryakina, L.P.; Vladimirov, L.N. Bitter Gentian Teas: Nutritional and Phytochemical Profiles, Polysaccharide Characterisation and Bioactivity. Molecules 2015, 20, 20014–20030. [Google Scholar] [CrossRef] [Green Version]
- Karpiński, T.M.; Adamczak, A.; Ożarowski, M. Antibacterial Activity of Apigenin, Luteolin, and Their C-Glucosides. In Proceedings of the 5th International Electronic Conference on Medicinal Chemistry, Online, 1–30 November 2019. [Google Scholar]
Plant Species | Family | Voucher No. | Places of Collection | Extraction Yield (%) |
---|---|---|---|---|
Nelumbo nucifera Gaertn. (1) | Nelumbonaceae | SS-856 | Chiang Mai | 39.52 |
Cocos nucifera L. (2) | Arecaceae | SS-857 | Nakhon Ratchasima | 19.91 |
Nypa fruticans Wurmb. (3) | Arecaceae | SS-858 | Nakhon Ratchasima | 14.15 |
Nepenthes mirabilis (Lour.) Druce (4) | Nepenthaceae | SS-859 | Chiang Mai | 17.47 |
Dendrocalamus asper (Schult & Schult.f.) Backer (5) | Poaceae | SS-860 | Nakhon Ratchasima | 11.41 |
Cephalostachyum pergracile Munro (6) | Poaceae | SS-861 | Nakhon Ratchasima | 7.93 |
Musa balbisiana Colla. (7) | Musaceae | SS-862 | Bangkok | 5.20 |
Piper sarmentosum Roxb. (8) | Piperaceae | SS-863 | Bangkok | 17.08 |
Leaf Extract | TPC (mg GAE/g) | DPPH (IC50, μg/mL) | FRAP (μmol Fe2+/g) | SRSA (IC50, μg/mL) |
---|---|---|---|---|
N. nucifera (1) | 115.15 ± 3.84 a | 14.71 ± 0.56 f | 545.72 ± 10.80 a | 11.19 ± 0.63 f |
C. nucifera (2) | 82.18 ± 4.03 c | 34.28 ± 0.55 e | 342.92 ± 8.51 b | 38.97 ± 1.05 c |
N. fruticans (3) | 97.54 ± 2.06 b | 16.67 ± 0.55 f | 529.36 ± 5.44 a | 27.89 ± 1.84 d |
N. mirabilis (4) | 108.39 ± 6.48 a | 14.93 ± 0.40 f | 551.38 ± 4.11 a | 20.16 ± 1.43 e |
D. asper (5) | 34.43 ± 0.27 e | 142.16 ± 3.25 a | 54.57 ± 2.80 f | >120 a |
C. pergracile (6) | 41.03 ± 2.51 de | 61.69 ± 2.45 c | 104.60 ± 4.12 d | >120 a |
M. balbisiana (7) | 50.08 ± 2.32 d | 46.70 ± 1.08 d | 191.78 ± 2.68 c | >120 a |
P. sarmentosum (8) | 38.58 ± 1.73 e | 116.09 ± 2.89 b | 98.69 ± 2.54 d | 69.05 ± 1.50 b |
Ascorbic acid 1 | nt | 2.27 ± 0.20 | 1371.60 ± 21.93 | nt |
Quercetin 2 | nt | nt | nt | 5.50 ± 0.45 |
Trolox 2 | nt | nt | nt | 57.34 ± 1.90 |
Leaf Extract | Inhibition Zone Diameter (mm) ± SD | ||||||
---|---|---|---|---|---|---|---|
S. aureus | B. cereus | L. monocytogenes | E. coli | Salmonella Abony | C. albicans | A. niger | |
N. nucifera (1) | 10.47 ± 0.58 b | 10.70 ± 1.30 b | 10.60 ± 0.17 a | 12.47 ± 0.21 b | - | - | - |
C. nucifera (2) | 8.55 ± 0.21 c | 10.17 ± 0.90 b | 7.75 ± 0.92 b | 10.13 ± 0.47 c | - | - | - |
N. fruticans (3) | 9.23 ± 0.47 c | 10.67 ± 0.21 b | 8.87 ± 0.42 b | 9.85 ± 0.78 c | - | - | - |
N. mirabilis (4) | 17.77 ± 0.15 a | 13.10 ± 0.70 a | 10.93 ± 0.61 a | 10.77 ± 0.12 c | 8.70 ± 0.53 | 24.10 ± 0.46 | - |
D. asper (5) | - | 7.80 ± 0.40 c | - | 14.67 ± 0.21 a | - | - | - |
C. pergracile (6) | - | - | - | 7.73 ± 0.12 d | - | - | - |
M. balbisiana (7) | - | - | - | 7.33 ± 0.35 d | - | - | - |
P. sarmentosum (8) | - | - | - | 7.20 ± 0.17 d | - | - | - |
Vehicle control | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Amphotericin B | nt | nt | nt | nt | nt | 19.83 ± 0.21 | 10.67 ± 0.25 |
Gentamycin | 26.47 ± 0.12 | 24.47 ± 0.15 | 24.70 ± 0.20 | 25.37 ± 0.15 | nt | nt | nt |
Extract/Fraction | Inhibition Zone Diameter (mm) ± SD | ||||||
---|---|---|---|---|---|---|---|
S. aureus | B. cereus | L. monocytogenes | E. coli | Salmonella Abony | C. albicans | A. niger | |
Extract | |||||||
N. fruticans (3) | 13.00 ± 0.00 cd | 12.55 ± 0.35 bc | 9.10 ± 0.26 bc | 11.10 ± 0.57 bc | - | - | - |
Fraction | |||||||
Hexanes (F1) | 8.93 ± 0.35 e | 8.27 ±0.12 d | 8.53 ± 0.15 c | - | - | - | - |
Dichloromethane (F2) | 11.13 ± 1.81 de | 10.37 ± 1.57 cd | 7.83 ± 0.85 c | 8.07 ± 0.51 d | - | - | - |
Ethyl acetate (F3) | 17.33 ± 0.35 a | 17.27 ± 0.55 a | 14.03 ± 0.55 a | 14.27 ± 0.49 a | 9.67 ± 0.12 | - | - |
Butanol (F4) | 14.00 ± 0.00 bc | 11.73 ± 1.43 bc | 8.83 ± 0.61 c | 10.20 ± 1.45 c | - | - | - |
Water (F5) | 15.67 ± 0.86 ab | 13.20 ± 0.44 b | 10.27 ± 0.25 b | 12.20 ± 0.46 b | - | - | - |
Vehicle control | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Compound | Minimum Inhibitory Concentration (µg/mL) | ||||
---|---|---|---|---|---|
S. aureus | B. cereus | L. monocytogenes | E. coli | Salmonella Abony | |
3-O-Caffeoyl shikimic acid (I) | 1000 | 800 | 1000 | 1000 | 1000 |
Isoorientin (II) | 1000 | 1000 | 1000 | 1000 | 1000 |
Isovitexin (III) | >1000 | 800 | 1000 | 800 | >1000 |
Gentamycin | 0.47 | 1.90 | 0.12 | 1.90 | 7.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongphichai, W.; Pongkittiphan, V.; Laorpaksa, A.; Wiwatcharakornkul, W.; Sukrong, S. Antimicrobial Activity against Foodborne Pathogens and Antioxidant Activity of Plant Leaves Traditionally Used as Food Packaging. Foods 2023, 12, 2409. https://doi.org/10.3390/foods12122409
Thongphichai W, Pongkittiphan V, Laorpaksa A, Wiwatcharakornkul W, Sukrong S. Antimicrobial Activity against Foodborne Pathogens and Antioxidant Activity of Plant Leaves Traditionally Used as Food Packaging. Foods. 2023; 12(12):2409. https://doi.org/10.3390/foods12122409
Chicago/Turabian StyleThongphichai, Wisuwat, Veerachai Pongkittiphan, Areerat Laorpaksa, Worakorn Wiwatcharakornkul, and Suchada Sukrong. 2023. "Antimicrobial Activity against Foodborne Pathogens and Antioxidant Activity of Plant Leaves Traditionally Used as Food Packaging" Foods 12, no. 12: 2409. https://doi.org/10.3390/foods12122409
APA StyleThongphichai, W., Pongkittiphan, V., Laorpaksa, A., Wiwatcharakornkul, W., & Sukrong, S. (2023). Antimicrobial Activity against Foodborne Pathogens and Antioxidant Activity of Plant Leaves Traditionally Used as Food Packaging. Foods, 12(12), 2409. https://doi.org/10.3390/foods12122409