Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Samples and Sample Preparation
2.3. Nutritional Analysis
2.4. Hydroethanolic Extracts
2.5. Estimation of Antioxidant Compounds
2.5.1. Total Phenolic Content (TPC)
2.5.2. Total Flavonoids Content (TFC)
2.6. In Vitro Antioxidant Activity
2.6.1. DPPH• Scavenging Activity
2.6.2. Ferric Reducing Antioxidant Power (FRAP)
2.7. Caffeine, Caffeoylquinic Acids, and 5-Hydroxymethylfurfural
2.8. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition of Coffee By-Products
3.2. Phenolic Compounds and Potential Antioxidant Activity of Coffee By-Products
3.3. Caffeine, Caffeoylquinic Acids, and 5-Hydroxymethylfurfural
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef] [Green Version]
- Reguengo, L.M.; Salgaco, M.K.; Sivieri, K.; Marostica Junior, M.R. Agro-industrial by-products: Valuable sources of bioactive compounds. Food Res. Int. 2022, 152, 110871. [Google Scholar] [CrossRef]
- International Coffee Organization (ICO). Coffee Production by Exporting Countries. 2021. Available online: https://www.ico.org/prices/po-production.pdf (accessed on 4 April 2023).
- Li, Z.; Zhou, B.; Zheng, T.; Zhao, C.; Gao, Y.; Wu, W.; Fan, Y.; Wang, X.; Qiu, M.; Fan, J. Structural characteristics, rheological properties, and antioxidant and anti-glycosylation activities of pectin polysaccharides from Arabica coffee husks. Foods 2023, 12, 423. [Google Scholar] [CrossRef] [PubMed]
- Serna-Jiménez, J.A.; Siles, J.A.; Ángeles Martín, M.; Chica, A.F. A review on the applications of coffee waste derived from primary processing: Strategies for revalorization. Processes 2022, 10, 2436. [Google Scholar] [CrossRef]
- Mendonca, J.C.; Franca, A.S.; Oliveira, L.S.; Nunes, M. Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS). Food Chem. 2008, 111, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Ansar; Sukmawaty; Murad; Muttalib, S.A.; Putra, R.H.; Abdurrahim. Design and performance test of the coffee bean classifier. Processes 2021, 9, 1462. [Google Scholar] [CrossRef]
- Pourfarzad, A.; Mahdavian-Mehr, H.; Sedaghat, N. Coffee silverskin as a source of dietary fiber in bread-making: Optimization of chemical treatment using response surface methodology. LWT 2013, 50, 599–606. [Google Scholar] [CrossRef]
- Beltran-Medina, E.A.; Guatemala-Morales, G.M.; Padilla-Camberos, E.; Corona-Gonzalez, R.I.; Mondragon-Cortez, P.M.; Arriola-Guevara, E. Evaluation of the use of a coffee industry by-product in a cereal-based extruded food product. Foods 2020, 9, 1008. [Google Scholar] [CrossRef]
- Cosgun, G.; Gungor, K.K.; Balci-Torun, F.; Sahin, S.; Torun, M. Design of encapsulation method for chlorogenic acid and caffeine in coffee waste by-product. Phytochem. Anal. 2023, 1–16. [Google Scholar] [CrossRef]
- Eckhardt, S.; Franke, H.; Schwarz, S.; Lachenmeier, D.W. Risk assessment of coffee cherry (cascara) fruit products for flour replacement and other alternative food uses. Molecules 2022, 27, 8435. [Google Scholar] [CrossRef]
- Janissen, B.; Huynh, T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour. Conserv. Recycl. 2018, 128, 110–117. [Google Scholar] [CrossRef]
- Hechmi, S.; Guizani, M.; Kallel, A.; Zoghlami, R.I.; Ben Zrig, E.; Louati, Z.; Jedidi, N.; Trabelsi, I. Impact of raw and pre-treated spent coffee grounds on soil properties and plant growth: A mini-review. Clean Technol. Environ. Policy 2023, 1–13. [Google Scholar] [CrossRef]
- Peixoto, J.A.B.; Silva, J.F.; Oliveira, M.B.P.P.; Alves, R.C. Sustainability issues along the coffee chain: From the field to the cup. Compr. Rev. Food Sci. Food Saf. 2023, 22, 287–332. [Google Scholar] [CrossRef]
- Lemos, M.F.; Salustriano, N.A.; Costa, M.M.S.; Lirio, K.; Fonseca, A.F.A.; Pacheco, H.P.; Endringer, D.C.; Fronza, M.; Scherer, R. Chlorogenic acid and caffeine contents and anti-inflammatory and antioxidant activities of green beans of conilon and arabica coffees harvested with different degrees of maturation. J. Saudi Chem. Soc. 2022, 26, 101467. [Google Scholar] [CrossRef]
- Roshan, H.; Nikpayam, O.; Sedaghat, M.; Sohrab, G. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: A randomised clinical trial. Br. J. Nutr. 2018, 119, 250–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Safety of dried coffee husk (cascara) from Coffea arabica L. as a novel food pursuant to regulation (EU) 2015/2283. EFSA J. 2022, 20, e07185. [Google Scholar]
- Hassoun, A.; Cropotova, J.; Trif, M.; Rusu, A.V.; Bobis, O.; Nayik, G.A.; Jagdale, Y.D.; Saeed, F.; Afzaal, M.; Mostashari, P.; et al. Consumer acceptance of new food trends resulting from the fourth industrial revolution technologies: A narrative review of literature and future perspectives. Front. Nutr. 2022, 9, 972154. [Google Scholar] [CrossRef]
- Rios, M.B.; Iriondo-DeHond, A.; Iriondo-DeHond, M.; Herrera, T.; Velasco, D.; Gomez-Alonso, S.; Callejo, M.J.; Del Castillo, M.D. Effect of coffee cascara dietary fiber on the physicochemical, nutritional and sensory properties of a gluten-free bread formulation. Molecules 2020, 25, 1358. [Google Scholar] [CrossRef] [Green Version]
- Ateş, G.Y.; Elmacı, Y. Coffee silverskin as fat replacer in cake formulations and its effect on physical, chemical and sensory attributes of cakes. LWT 2018, 90, 519–525. [Google Scholar] [CrossRef]
- Severini, C.; Caporizzi, R.; Fiore, A.G.; Ricci, I.; Onur, O.M.; Derossi, A. Reuse of spent espresso coffee as sustainable source of fibre and antioxidants. a map on functional, microstructure and sensory effects of novel enriched muffins. LWT 2020, 119, 108877. [Google Scholar] [CrossRef]
- Baldissera, C.; Hoppe, A.; Carlini, N.R.B.S.; Sant’Anna, V. Factors influencing consumers’ attitudes towards the consumption of grape pomace powder. Appl. Food Res. 2022, 2, 100103. [Google Scholar] [CrossRef]
- Rodrigues, R.; Oliveira, M.B.P.P.; Alves, R.C. Chlorogenic acids and caffeine from coffee by-products: A review on skincare applications. Cosmetics 2023, 10, 12. [Google Scholar] [CrossRef]
- Machado, M.; Machado, S.; Ferreira, H.; Oliveira, M.B.P.P.; Alves, R.C. Chlorogenic acids profile of Coffee arabica by-products (cascara and silverskin): A comparison with green and roasted beans. Biol. Life Sci. Forum 2022, 18, 57. [Google Scholar]
- Jiamjariyatam, R.; Samosorn, S.; Dolsophon, K.; Tantayotai, P.; Lorliam, W.; Krajangsang, S. Effects of drying processes on the quality of coffee pulp. J. Food Process Preserv. 2022, 46, e16876. [Google Scholar] [CrossRef]
- Myo, H.; Khat-Udomkiri, N. Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrason. Sonochem. 2022, 89, 106127. [Google Scholar] [CrossRef] [PubMed]
- Bobkova, A.; Polakova, K.; Demianova, A.; Belej, L.; Bobko, M.; Jurcaga, L.; Galik, B.; Novotna, I.; Iriondo-DeHond, A.; Castillo, M.D.D. Comparative analysis of selected chemical parameters of Coffea arabica, from cascara to silverskin. Foods 2022, 11, 1082. [Google Scholar] [CrossRef]
- Silva, M.O.; Honfoga, J.N.B.; Medeiros, L.L.; Madruga, M.S.; Bezerra, T.K.A. Obtaining bioactive compounds from the coffee husk (Coffea arabica L.) using different extraction methods. Molecules 2020, 26, 46. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M. Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food Bioproc. Tech. 2010, 5, 897–903. [Google Scholar] [CrossRef]
- Rebollo-Hernanz, M.; Canas, S.; Taladrid, D.; Benitez, V.; Bartolome, B.; Aguilera, Y.; Martin-Cabrejas, M.A. Revalorization of coffee husk: Modeling and optimizing the green sustainable extraction of phenolic compounds. Foods 2021, 10, 653. [Google Scholar] [CrossRef]
- Cangussu, L.B.; Melo, J.C.; Franca, A.S.; Oliveira, L.S. Chemical characterization of coffee husks, a by-product of Coffea arabica Production. Foods 2021, 10, 3125. [Google Scholar] [CrossRef]
- McDonald, K.; Langenbahn, H.J.; Miller, J.D.; McMullin, D.R. Phytosterol oxidation products from coffee silverskin. J. Food Sci. 2022, 87, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.; Bertolino, M.; Belviso, S.; Ghirardello, D.; Zeppa, G. Effects of species, post-harvest treatment, and roasting on fibre, volatile compounds, and polyphenol contents in coffee silverskin. Foods 2022, 11, 3132. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Barreira, S.V.P.; Nunes, M.A.; Cunha, L.M.; Oliveira, M.B.P.P. Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Ind. Crops Prod. 2014, 53, 350–357. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Alves, R.C.; Costa, A.S.G.; Nunes, M.A.; Oliveira, M.B.P.P. Coffea canephora silverskin from different geographical origins: A comparative study. Sci. Total Environ. 2018, 645, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Prandi, B.; Ferri, M.; Monari, S.; Zurlini, C.; Cigognini, I.; Verstringe, S.; Schaller, D.; Walter, M.; Navarini, L.; Tassoni, A.; et al. Extraction and chemical characterization of functional phenols and proteins from coffee (Coffea arabica) by-products. Biomolecules 2021, 11, 1571. [Google Scholar] [CrossRef] [PubMed]
- Habtamu, D.; Belay, A. First order derivative spectra to determine caffeine and chlorogenic acids in defective and non-defective coffee beans. Food Sci. Nutr. 2020, 8, 4757–4762. [Google Scholar] [CrossRef]
- Ramalakshmi, K.; Kubra, I.R.; Rao, L.J. Physicochemical characteristics of green coffee: Comparison of graded and defective beans. J. Food Sci. 2007, 72, S333–S337. [Google Scholar] [CrossRef]
- Benitez, V.; Rebollo-Hernanz, M.; Hernanz, S.; Chantres, S.; Aguilera, Y.; Martin-Cabrejas, M.A. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Res. Int. 2019, 122, 105–113. [Google Scholar] [CrossRef]
- Benitez, V.; Rebollo-Hernanz, M.; Aguilera, Y.; Bejerano, S.; Canas, S.; Martin-Cabrejas, M.A. Extruded coffee parchment shows enhanced antioxidant, hypoglycaemic, and hypolipidemic properties by releasing phenolic compounds from the fibre matrix. Food Funct. 2021, 12, 1097–1110. [Google Scholar] [CrossRef]
- Alkaltham, M.S.; Salamatullah, A.; Hayat, K. Determination of coffee fruit antioxidants cultivated in Saudi Arabia under different drying conditions. J. Food Meas. Charact 2020, 14, 1306–1313. [Google Scholar] [CrossRef]
- Mirón-Mérida, V.A.; Yáñez-Fernández, J.; Montañez-Barragán, B.; Huerta, B.E.B. Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. LWT 2019, 101, 167–174. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed; AOAC International: Rockville, MD, USA, 2019; Volume 1. [Google Scholar]
- Iriondo-DeHond, A.; Elizondo, A.S.; Iriondo-DeHond, M.; Rios, M.B.; Mufari, R.; Mendiola, J.A.; Ibanez, E.; Castillo, M.D.D. Assessment of healthy and harmful maillard reaction products in a novel coffee cascara beverage: Melanoidins and acrylamide. Foods 2020, 9, 620. [Google Scholar] [CrossRef] [PubMed]
- Machado, S.; Costa, A.S.G.; Pimentel, B.F.; Oliveira, M.; Alves, R.C. A study on the protein fraction of coffee silverskin: Protein/non-protein nitrogen and free and total amino acid profiles. Food Chem. 2020, 326, 126940. [Google Scholar] [CrossRef] [PubMed]
- Almeida, F.S.; Dias, F.F.G.; Sato, A.C.K.; Bell, J.M.L.N.M. From solvent extraction to the concurrent extraction of lipids and proteins from green coffee: An eco-friendly approach to improve process feasibility. Food Bioprod. Process 2021, 129, 144–156. [Google Scholar] [CrossRef]
- Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt Boix, A. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr. Polym. 2018, 191, 205–215. [Google Scholar] [CrossRef]
- Alves, R.C.; Costa, A.S.; Jerez, M.; Casal, S.; Sineiro, J.; Nunez, M.J.; Oliveira, B. Antiradical activity, phenolics profile, and hydroxymethylfurfural in espresso coffee: Influence of technological factors. J. Agric. Food Chem. 2010, 58, 12221–12229. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Plant proteins as high-quality nutritional source for human diet. Trends Food Sci. Technol. 2020, 97, 170–184. [Google Scholar] [CrossRef]
- Patil, S.; Pimpley, V.; Warudkar, K.; Murthy, P.S. Valorisation of coffee pulp for development of innovative probiotic beverage using kefir: Physicochemical, antioxidant, sensory analysis and shelf life studies. Waste Biomass Valorization 2021, 13, 905–916. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef]
- Alves, R.C.; Casal, S.; Alves, M.R.; Oliveira, M.B. Discrimination between arabica and robusta coffee species on the basis of their tocopherol profiles. Food Chem. 2009, 114, 295–299. [Google Scholar] [CrossRef]
- Casas, M.I.; Vaughan, M.J.; Bonello, P.; Gardener, B.M.; Grotewold, E.; Alonso, A.P. Identification of biochemical features of defective Coffea arabica L. beans. Food Res. Int. 2017, 95, 59–67. [Google Scholar] [CrossRef] [PubMed]
- McRorie, J.W., Jr.; McKeown, N.M. Understanding the physics of functional fibers in the gastrointestinal tract: An evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet 2017, 117, 251–264. [Google Scholar]
- Machado, M.; Ferreira, H.; Oliveira, M.; Alves, R.C. Coffee by-products: An underexplored source of prebiotic ingredients. Crit Rev. Food Sci. Nutr. 2023, 1–20. [Google Scholar] [CrossRef]
- Pimpley, V.A.; Murthy, P.S. Influence of green extraction techniques on green coffee: Nutraceutical compositions, antioxidant potential and in vitro bio-accessibility of phenolics. Food Biosci. 2021, 43, 101284. [Google Scholar] [CrossRef]
- Abdel-Mohsen, D.M.; Akabawy, A.M.A.; El-Khadragy, M.F.; Abdel Moneim, A.E.; Amin, H.K.; Elfalleh, W. Green coffee bean extract potentially ameliorates liver injury due to HFD/STZ-induced diabetes in rats. J Food Biochem. 2023, 2023, 1500032. [Google Scholar] [CrossRef]
- Marques, A.D.J.F.; Tavares, J.L.; Carvalho, L.M.; Abreu, T.L.; Pereira, D.A.; Santos, M.M.F.; Madruga, M.S.; Medeiros, L.L.; Bezerra, T.K.A. Oxidative stability of chicken burgers using organic coffee husk extract. Food Chem. 2022, 393, 133451. [Google Scholar] [CrossRef] [PubMed]
- Iriondo-DeHond, A.; Bragagnolo, F.S.; Carneiro, R.L.; Pereira, I.O.C.; Ribeiro, J.A.A.; Rodrigues, C.M.; Jelley, R.E.; Fedrizzi, B.; Funari, C.S. Validation of coffee by-products as novel food ingredients. Innov. Food Sci. Emerg. Technol. 2019, 51, 194–204. [Google Scholar]
- Cheng, B.; Furtado, A.; Henry, R.J. The coffee bean transcriptome explains the accumulation of the major bean components through ripening. Sci. Rep. 2018, 8, 11414. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, T.; Anwar, F.; Abbas, M.; Saari, N. Effect of maturity on phenolics (phenolic acids and flavonoids) profile of strawberry cultivars and mulberry species from Pakistan. Int. J. Mol. Sci. 2012, 13, 4591–4607. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, M.; Anwar, F.; Saari, N.; Ashraf, M. Variations of antioxidant characteristics and mineral contents in pulp and peel of different apple (Malus domestica Borkh.) cultivars from Pakistan. Molecules 2012, 17, 390–407. [Google Scholar] [CrossRef] [Green Version]
- Bilge, G.; Yurdakul, M.; Buzrul, S.; Bulut, O. Evaluation of the effect of pulsed electric field on Coffee Arabica beans. Food Bioproc. Tech. 2022, 15, 1073–1081. [Google Scholar] [CrossRef]
- Liao, Y.-C.; Kim, T.; Silva, J.L.; Hu, W.-Y.; Chen, B.-Y. Effects of roasting degrees on phenolic compounds and antioxidant activity in coffee beans from different geographic origins. LWT 2022, 168, 113965. [Google Scholar] [CrossRef]
- Piluzza, G.; Bullitta, S. Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharm Biol. 2011, 49, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Dziki, D.; Gawlik-Dziki, U.; Pecio, Ł.; Różyło, R.; Świeca, M.; Krzykowski, A.; Rudy, S. Ground green coffee beans as a functional food supplement—preliminary study. LWT 2015, 63, 691–699. [Google Scholar] [CrossRef]
- Adnan, A.; Naumann, M.; Mörlein, D.; Pawelzik, E. Reliable discrimination of green coffee beans species: A comparison of UV-Vis-based determination of caffeine and chlorogenic acid with non-targeted near-infrared spectroscopy. Foods 2020, 9, 788. [Google Scholar] [CrossRef] [PubMed]
- Farah, A.; Donangelo, C.M. Phenolic compounds in coffee. Braz. J. Plant Physiol. 2006, 18, 23–26. [Google Scholar] [CrossRef]
Pulp | Husk | Parchment | Silverskin | Defective Beans | Sieving Residue | |
---|---|---|---|---|---|---|
Ash | 10.72 ± 0.21 a | 7.86 ± 0.07 c | 0.65 ± 0.05 f | 9.47 ± 0.06 b | 5.64 ± 0.04 e | 6.55 ± 0.08 d |
Protein | 10.23 ± 0.08 d | 8.77 ± 0.14 e | 1.66 ± 0.07 f | 16.31 ± 0.12 a | 13.28 ± 0.07 c | 14.60 ± 0.08 b |
Fat | 1.70 ± 0.01 d | 1.06 ± 0.07 e | 0.18 ± 0.03 f | 2.91 ± 0.09 c | 8.47 ± 0.22 a | 7.11 ± 0.37 b |
Total dietary fiber | 46.12 ± 0.00 e | 39.04 ± 0.49 f | 94.19 ± 0.38 a | 65.87 ± 0.00 b | 57.00 ± 0.21 d | 60.67 ± 0.09 c |
Insoluble dietary fiber | 36.99 ± 0.08 d | 32.13 ± 0.28 e | 93.62 ± 0.39 a | 56.86 ± 0.00 b | 56.08 ± 0.24 c | 56.19 ± 0.17 bc |
Soluble dietary fiber | 9.13 ± 0.07 a | 6.91 ± 0.21 b | 0.57 ± 0.01 d | 9.01 ± 0.00 a | 0.93 ± 0.04 d | 4.48 ± 0.26 c |
Available carbohydrates | 31.23 ± 0.29 b | 43.27 ± 0.48 a | 3.32 ± 0.28 f | 5.44 ± 0.24 e | 15.61 ± 0.36 c | 11.08 ± 0.26 d |
Pulp | Husks | Parchment | Silverskin | Defective Beans | Sieving Residue | |
---|---|---|---|---|---|---|
TPC (CGAE) | 2.37 ± 0.10 c | 2.12 ± 0.02 c | 0.18 ± 0.02 e | 1.28 ± 0.01 d | 6.54 ± 0.24 a | 5.11 ± 0.36 b |
TFC (CE) | 1.23 ± 0.01 c | 0.88 ± 0.02 d | 0.08 ± 0.00 f | 0.70 ± 0.01 e | 5.23 ± 0.10 a | 4.91 ± 0.12 b |
FRAP (FSE) | 8.58 ± 0.32 b | 4.57 ± 0.21 c | 0.35 ± 0.02 d | 4.05 ± 0.12 c | 17.68 ± 0.33 a | 17.56 ± 0.35 a |
DPPH•-SA (TE) | 0.77 ± 0.10 b | 0.29 ± 0.11 c | 0.05 ± 0.00 d | 0.19 ± 0.05 c | 3.11 ± 0.03 a | 2.85 ± 0.18 a |
Pulp | Husk | Parchment | Silverskin | Defective Beans | Sieving Residue | |
---|---|---|---|---|---|---|
Caffeine | 0.85± 0.02 c | 0.46 ± 0.00 e | 0.06 ± 0.00 f | 0.71 ± 0.02 d | 1.40 ± 0.07 a | 1.12 ± 0.01 b |
3-CQA | 6.54 ± 0.14 c | 4.01 ± 0.12 c | n.d. | 9.44 ± 0.22 c | 408.20 ± 22.63 a | 323.10 ± 5.42 b |
5-CQA | 220.56 ± 6.99 c | 83.93 ± 1.09 cd | 5.36 ± 0.57 d | 52.53 ± 0.83 cd | 3787.58 ± 147.35 a | 2533.06 ± 44.76 b |
4-CQA | 14.83 ± 1.05 c | 11.82 ± 0.05 c | n.d. | 17.71 ± 0.30 c | 684.96 ± 28.31 a | 484.65 ± 6.34 b |
HMF | - | - | - | 39.52 ± 1.07 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, M.; Espírito Santo, L.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Oliveira, M.B.P.P.; Ferreira, H.; Alves, R.C. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods 2023, 12, 2354. https://doi.org/10.3390/foods12122354
Machado M, Espírito Santo L, Machado S, Lobo JC, Costa ASG, Oliveira MBPP, Ferreira H, Alves RC. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods. 2023; 12(12):2354. https://doi.org/10.3390/foods12122354
Chicago/Turabian StyleMachado, Marlene, Liliana Espírito Santo, Susana Machado, Joana C. Lobo, Anabela S. G. Costa, Maria Beatriz P. P. Oliveira, Helena Ferreira, and Rita C. Alves. 2023. "Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin" Foods 12, no. 12: 2354. https://doi.org/10.3390/foods12122354
APA StyleMachado, M., Espírito Santo, L., Machado, S., Lobo, J. C., Costa, A. S. G., Oliveira, M. B. P. P., Ferreira, H., & Alves, R. C. (2023). Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods, 12(12), 2354. https://doi.org/10.3390/foods12122354