Consumer Intention towards Buying Edible Beef Offal and the Relevance of Food Neophobia
Abstract
:1. Introduction
2. Background
Food Neophobia and Food Disgust Sensitivity
3. The Present Study
4. Methods
4.1. Sample and Procedure
4.2. Measures
4.2.1. Intention
4.2.2. Attitude
4.2.3. Subjective Norms
4.2.4. Perceived Behavioural Control
4.2.5. Food Neophobia
4.2.6. Food Disgust Sensitivity
4.3. Data Analysis
5. Results
5.1. Sociodemographic Characteristics
5.2. Measurement Model
5.3. Structural Model
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Pictures | |||||
Picture | Description | Source | Domain | Disgust Scores | |
M | SD | ||||
Wrinkled tomatoes | (a) | Rotting food | 36.26 | 31.38 | |
Beef tongue | (a) | Animal flesh | 55.33 | 37.66 | |
Marmalade with mould | (a) | Mould | 74.34 | 31.41 | |
Decaying banana | (a) | Decaying food | 54.15 | 35.15 | |
Hands handling dough, rings, painted nails | (a) | Contamination | 60.47 | 32.48 | |
Note: (a) own pictures. |
References
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Henchion, M.; McCarthy, M. Facilitators and Barriers for Foods Containing Meat Coproducts. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 237–250. [Google Scholar]
- OECD; FAO. OECD-FAO Agricultural Outlook 2022–2031; OECD: Paris, France, 2022. [Google Scholar]
- Bearth, A.; Khunnutchanart, K.; Gasser, O.; Hasler, N. The whole beast: Consumers’ perceptions of and willingness-to-eat animal by-products. Food Qual. Prefer. 2021, 89, 104144. [Google Scholar] [CrossRef]
- Xue, L.; Prass, N.; Gollnow, S.; Davis, J.; Scherhaufer, S.; Ostergren, K.; Cheng, S.; Liu, G. Efficiency and Carbon Footprint of the German Meat Supply Chain. Environ. Sci. Technol. 2019, 53, 5133–5142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henchion, M.; McCarthy, M.; O’Callaghan, J. Transforming Beef By-products into Valuable Ingredients: Which Spell/Recipe to Use? Front. Nutr. 2016, 3, 53. [Google Scholar] [CrossRef] [Green Version]
- Soladoye, P.O.; Juarez, M.; Estevez, M.; Fu, Y.; Alvarez, C. Exploring the prospects of the fifth quarter in the 21st century. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1439–1461. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.A.; Mullen, A.M.; O’Neill, E.; Drummond, L.; Alvarez, C. Opportunities and perspectives for utilisation of co-products in the meat industry. Meat Sci. 2018, 144, 62–73. [Google Scholar] [CrossRef]
- Toldra, F.; Reig, M.; Mora, L. Management of meat by- and co-products for an improved meat processing sustainability. Meat Sci. 2021, 181, 108608. [Google Scholar] [CrossRef]
- Mullen, A.M.; Álvarez, C. Offal: Types and composition. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 152–157. [Google Scholar]
- Nollet, L.M.L.; Toldrá, F. Introduction—Offal meat: Definitions, regions, cultures, generalities. In Handbook of Analysis of Edible Animal By-Products; Nollet, L.M.L., Toldrá, F., Eds.; CRC Press: New York, NY, USA, 2011; pp. 3–11. [Google Scholar]
- Mora, L.; Reig, M.; Toldra, F. Bioactive peptides generated from meat industry by-products. Food Res. Int. 2014, 65, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Alao, B.O.; Falowo, A.B.; Chulayo, A.; Muchenje, V. Consumers’ Preference and Factors Influencing Offal Consumption in Amathole District Eastern Cape, South Africa. Sustainability 2018, 10, 3323. [Google Scholar] [CrossRef] [Green Version]
- Llauger, M.; Claret, A.; Bou, R.; Lopez-Mas, L.; Guerrero, L. Consumer Attitudes toward Consumption of Meat Products Containing Offal and Offal Extracts. Foods 2021, 10, 1454. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Coker, E.N.; van der Linden, S. Fleshing out the theory of planned of behavior: Meat consumption as an environmentally significant behavior. Curr. Psychol. 2022, 41, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Lentz, G.; Connelly, S.; Mirosa, M.; Jowett, T. Gauging attitudes and behaviours: Meat consumption and potential reduction. Appetite 2018, 127, 230–241. [Google Scholar] [CrossRef]
- Wolstenholme, E.; Carfora, V.; Catellani, P.; Poortinga, W.; Whitmarsh, L. Explaining intention to reduce red and processed meat in the UK and Italy using the theory of planned behaviour, meat-eater identity, and the Transtheoretical model. Appetite 2021, 166, 105467. [Google Scholar] [CrossRef]
- Veeck, A. Encounters with Extreme Foods: Neophilic/Neophobic Tendencies and Novel Foods. J. Food Prod. Mark. 2010, 16, 246–260. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C.; Keller, C. Antecedents of food neophobia and its association with eating behavior and food choices. Food Qual. Prefer. 2013, 30, 293–298. [Google Scholar] [CrossRef]
- Armitage, C.J.; Conner, M. Efficacy of the Theory of Planned Behaviour: A meta-analytic review. Br. J. Soc. Psychol. 2001, 40, 471–499. [Google Scholar] [CrossRef] [Green Version]
- Godin, G.; Kok, G. The theory of planned behavior: A review of its applications to health-related behaviors. Am. J. Health Promot. 1996, 11, 87–98. [Google Scholar] [CrossRef]
- McDermott, M.S.; Oliver, M.; Simnadis, T.; Beck, E.J.; Coltman, T.; Iverson, D.; Caputi, P.; Sharma, R. The Theory of Planned Behaviour and dietary patterns: A systematic review and meta-analysis. Prev. Med. 2015, 81, 150–156. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.S.; Oliver, M.; Svenson, A.; Simnadis, T.; Beck, E.J.; Coltman, T.; Iverson, D.; Caputi, P.; Sharma, R. The theory of planned behaviour and discrete food choices: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 162. [Google Scholar] [CrossRef] [Green Version]
- Rozin, P. The Selection of Foods by Rats, Humans, and Other Animals. In Advances in the Study of Behavior; Rosenblatt, J.S., Hinde, R.A., Shaw, E., Beer, C., Eds.; Academic Press: New York, NY, USA, 1976; Volume 6, pp. 21–76. [Google Scholar]
- Pliner, P.; Hobden, K. Development of a Scale to Measure the Trait of Food Neophobia in Humans. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Martins, Y.; Pelchat, M.L.; Pliner, P. “Try it; it’s good and it’s good for you”: Effects of taste and nutrition information on willingness to try novel foods. Appetite 1997, 28, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Pliner, P.; Pelchat, M.L. Neophobia in humans and the special status of foods of animal origin. Appetite 1991, 16, 205–218. [Google Scholar] [CrossRef]
- Wilks, M.; Phillips, C.J.C.; Fielding, K.; Hornsey, M.J. Testing potential psychological predictors of attitudes towards cultured meat. Appetite 2019, 136, 137–145. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Perceived naturalness, disgust, trust and food neophobia as predictors of cultured meat acceptance in ten countries. Appetite 2020, 155, 104814. [Google Scholar] [CrossRef]
- Pliner, P.; Pelchat, M.; Grabski, M. Reduction of Neophobia in Humans by Exposure to Novel Foods. Appetite 1993, 20, 111–123. [Google Scholar] [CrossRef]
- Fernandez-Ruiz, V.; Claret, A.; Chaya, C. Testing a Spanish-version of the Food Neophobia Scale. Food Qual. Prefer. 2013, 28, 222–225. [Google Scholar] [CrossRef]
- Meiselman, H.L.; King, S.C.; Gillette, M. The demographics of neophobia in a large commercial US sample. Food Qual. Prefer. 2010, 21, 893–897. [Google Scholar] [CrossRef]
- Hursti, U.K.K.; Sjoden, P.O. Food and general neophobia and their relationship with self-reported food choice: Familial resemblance in Swedish families with children of ages 7–17 years. Appetite 1997, 29, 89–103. [Google Scholar] [CrossRef]
- Tuorila, H.; Lahteenmaki, L.; Pohjalainen, L.; Lotti, L. Food neophobia among the Finns and related responses to familiar and unfamiliar foods. Food Qual. Prefer. 2001, 12, 29–37. [Google Scholar] [CrossRef]
- Terrizzi, J.A.; Shook, N.J.; McDaniel, M.A. The behavioral immune system and social conservatism: A meta-analysis. Evol. Hum. Behav. 2013, 34, 99–108. [Google Scholar] [CrossRef]
- Curtis, V.; de Barra, M.; Aunger, R. Disgust as an adaptive system for disease avoidance behaviour. Philos. Trans. R. Soc. B 2011, 366, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Curtis, V.; Aunger, R.; Rabie, T. Evidence that disgust evolved to protect from risk of disease. Proc. Biol. Sci. 2004, 271 (Suppl. S4), S131–S133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Shawaf, L.; Lewis, D.M.; Alley, T.R.; Buss, D.M. Mating strategy, disgust, and food neophobia. Appetite 2015, 85, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Santisi, G.; Magnano, P.; Scuderi, V.E. Food Neophobia and Food Disgust: The Mediating Role of Perceived Vulnerability to Disease. Behav. Sci. 2021, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.; Szejda, K.; Parekh, N.; Desphande, V.; Tse, B. A Survey of Consumer Perceptions of Plant-Based and Clean Meat in the USA, India, and China. Front. Sustain. Food Syst. 2019, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Dupont, J.; Fiebelkorn, F. Attitudes and acceptance of young people toward the consumption of insects and cultured meat in Germany. Food Qual. Prefer. 2020, 85, 103983. [Google Scholar] [CrossRef]
- Ting, H.; de Run, E.C.; Cheah, J.H.; Chuah, F. Food neophobia and ethnic food consumption intention An extension of the theory of planned behaviour. Br. Food J. 2016, 118, 2781–2797. [Google Scholar] [CrossRef]
- Mancini, S.; Sogari, G.; Menozzi, D.; Nuvoloni, R.; Torracca, B.; Moruzzo, R.; Paci, G. Factors Predicting the Intention of Eating an Insect-Based Product. Foods 2019, 8, 270. [Google Scholar] [CrossRef] [Green Version]
- Santisi, G.; Magnano, P.; Di Marco, G. Psychological Sustainability and Attitudes of New Food Consumption. A Research on Food Disgust and Neophobia. Qual-Access Success 2019, 20, 549–555. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Earlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Ammann, J.; Hartmann, C.; Siegrist, M. Development and validation of the Food Disgust Picture Scale. Appetite 2018, 125, 367–379. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J. SmartPLS 4; SmartPLS GmbH: Oststeinbek, Germany, 2022. [Google Scholar]
- Hair, J.F.; Hult, G.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: New York, NY, USA, 2016. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. The Use of Partial Least Squares Path Modeling in International Marketing. New Chall. Int. Mark. 2009, 20, 277–319. [Google Scholar] [CrossRef] [Green Version]
- Joreskog, K.G. Simultaneous factor analysis in several populations. Psychometrika 1971, 36, 409–426. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Voorhees, C.M.; Brady, M.K.; Calantone, R.; Ramirez, E. Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. J. Acad. Mark. Sci. 2016, 44, 119–134. [Google Scholar] [CrossRef]
- Diamantopoulos, A.; Winklhofer, H.M. Index construction with formative indicators: An alternative to scale development. J. Mark. Res. 2001, 38, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis. Illustrated, Revised; Pearson Education Limited: Upper Saddle River, NJ, USA, 2013. [Google Scholar]
- Geisser, S. A predictive approach to the random effects model. Biometrika 1974, 61, 101–107. [Google Scholar] [CrossRef]
- Shmueli, G.; Ray, S.; Estrada, J.M.V.; Chatla, S.B. The elephant in the room: Predictive performance of PLS models. J. Bus. Res. 2016, 69, 4552–4564. [Google Scholar] [CrossRef]
- Streukens, S.; Leroi-Werelds, S. Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results. Eur. Manag. J. 2016, 34, 618–632. [Google Scholar] [CrossRef]
- Williams, J.; MacKinnon, D.P. Resampling and distribution of the product methods for testing indirect effects in complex models. Struct. Equ. Model. 2008, 15, 23–51. [Google Scholar] [CrossRef] [Green Version]
- Sarstedt, M.; Ringle, C.M.; Hair, J.F. Partial least squares structural equantion modeling. In Handbook of Market Research; Homburg, C., Klarmann, M., Vomberg, A., Eds.; Springer: Heidelberg, Germany, 2017. [Google Scholar]
- Hu, L.t.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Dupont, J.; Harms, T.; Fiebelkorn, F. Acceptance of Cultured Meat in Germany-Application of an Extended Theory of Planned Behaviour. Foods 2022, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Menozzi, D.; Sogari, G.; Veneziani, M.; Simoni, E.; Mora, C. Eating novel foods: An application of the Theory of Planned Behaviour to predict the consumption of an insect-based product. Food Qual. Prefer. 2017, 59, 27–34. [Google Scholar] [CrossRef]
- La Barbera, F.; Ajzen, I. Control Interactions in the Theory of Planned Behavior: Rethinking the Role of Subjective Norm. Eur. J. Psychol. 2020, 16, 401–417. [Google Scholar] [CrossRef]
- Egolf, A.; Siegrist, M.; Hartmann, C. How people’s food disgust sensitivity shapes their eating and food behaviour. Appetite 2018, 127, 28–36. [Google Scholar] [CrossRef]
- Mitchie, S.; Atkins, L.; West, R. The Behaviour Change Wheel: A Guide to Designing Interventions; Silverback Publishing: Sutton, UK, 2014. [Google Scholar]
- Siddiqui, S.A.; Zannou, O.; Karim, I.; Kasmiati; Awad, N.M.H.; Golaszewski, J.; Heinz, V.; Smetana, S. Avoiding Food Neophobia and Increasing Consumer Acceptance of New Food Trends-A Decade of Research. Sustainability 2022, 14, 10391. [Google Scholar] [CrossRef]
Variable | Percentage | Frequency | |
---|---|---|---|
Gender | |||
Female | 51.1 | 368 | |
Male | 48.8 | 351 | |
Prefer not to say | 0.1 | 1 | |
Household size | |||
1–3 | 74.1 | 535 | |
4–6 | 25.3 | 182 | |
>7 | 0.6 | 3 | |
Household weekly meat consumption (days) | |||
1–2 | 35.1 | 253 | |
3–4 | 47.9 | 345 | |
5–6 | 13.2 | 95 | |
7 | 3.8 | 27 | |
Age | |||
18–49 | 31.7 | 228 | |
50–64 | 41.4 | 298 | |
>65 | 26.9 | 194 | |
Annual Income | |||
<10.000 euro | 12.1 | 87 | |
10.000–20.000 euro | 22.9 | 165 | |
20.000–30.000 euro | 25.0 | 180 | |
30.000–40.000 euro | 17.1 | 123 | |
40.000–50.000 euro | 11.9 | 86 | |
>50.000 euro | 11 | 79 | |
Educational Status | |||
Less than Secondary | 24.6 | 177 | |
Secondary | 45.8 | 330 | |
Higher than Secondary | 29.6 | 213 | |
Regional Area | |||
North | 45.7 | 329 | |
Centre | 22.6 | 163 | |
South and Islands | 31.7 | 228 |
Constructs and Items | M | SD | Loading Values | Confidence Interval | Cα | CR | AVE | |
---|---|---|---|---|---|---|---|---|
2.5% | 97.5% | |||||||
Attitude | 0.73 | 0.80 | 0.55 | |||||
AT1 | 3.08 | 1.41 | 0.85 | 0.83 | 0.87 | |||
AT2 | 3.09 | 1.30 | 0.67 | 0.60 | 0.74 | |||
AT3 | 3.39 | 1.27 | 0.84 | 0.81 | 0.87 | |||
AT4 | 2.19 | 0.94 | 0.57 | 0.48 | 0.65 | |||
Subjective Norm | 0.76 | 0.82 | 0.80 | |||||
SN1 | 2.61 | 1.31 | 0.93 | 0.92 | 0.94 | |||
SN2 | 2.69 | 1.37 | 0.86 | 0.82 | 0.89 | |||
Perceived Behavioural Control | 0.66 | 0.70 | 0.59 | |||||
PBC1 | 3.42 | 1.36 | 0.85 | 0.83 | 0.87 | |||
PBC2 | 2.48 | 1.51 | 0.77 | 0.72 | 0.81 | |||
PBC3 | 2.78 | 1.50 | 0.69 | 0.61 | 0.75 | |||
Intention to consume edible offal | 0.83 | 0.84 | 0.85 | |||||
IN1 | 3.03 | 1.43 | 0.93 | 0.92 | 0.94 | |||
IN2 | 2.79 | 1.45 | 0.92 | 0.90 | 0.93 | |||
Food Neophobia | 0.86 | 0.87 | 0.51 | |||||
FN1 | 1.48 | 0.95 | 0.73 | 0.68 | 0.77 | |||
FN2 | 1.50 | 0.94 | 0.58 | 0.51 | 0.65 | |||
FN3 | 2.29 | 1.03 | 0.70 | 0.64 | 0.75 | |||
FN4 | 1.76 | 1.13 | 0.72 | 0.67 | 0.76 | |||
FN5 | 1.52 | 0.93 | 0.77 | 0.73 | 0.81 | |||
FN6 | 1.46 | 1.13 | 0.73 | 0.67 | 0.77 | |||
FN7 | 1.60 | 1.03 | 0.79 | 0.75 | 0.83 | |||
FN8 | 1.30 | 1.03 | 0.68 | 0.63 | 0.73 | |||
Food Disgust | 0.63 | 0.88 | 0.51 | |||||
FD1 | 36.27 | 31.18 | 0.58 | 0.46 | 0.67 | |||
FD2 | 55.33 | 37.66 | 0.86 | 0.82 | 0.92 | |||
FD3 | 74.34 | 31.41 | 0.51 | 0.38 | 0.61 | |||
FD4 | 54.15 | 35.35 | 0.53 | 0.41 | 0.63 |
AT | SN | PCB | IN | FN | |
---|---|---|---|---|---|
AT | |||||
SN | 0.66 | ||||
PCB | 0.77 | 0.79 | |||
IN | 0.84 | 0.79 | 0.83 | ||
FN | 0.33 | 0.32 | 0.34 | 0.38 | |
FD | 0.47 | 0.52 | 0.41 | 0.46 | 0.47 |
SRMR = 0.04 | |||
---|---|---|---|
Hypothesis | Results | ||
Dependent variable: IN | R2 adj = 0.65 | ||
Standardized β | |||
H1 | ATT | 0.337 ** | Supported |
H2 | PCB | 0.337 ** | Supported |
H3 | SN | 0.242 ** | Supported |
H7 | FN | −0.080 * | Supported |
Dependent variable: AT | R2 adj = 0.23 | ||
Standardized β | |||
H4 | FD | −0.466 ** | Supported |
Dependent variable: SN | R2 adj = 0.23 | ||
Standardized β | |||
H5 | FD | −0.475 ** | Supported |
Dependent variable: PCB | R2 adj = 0.15 | ||
Standardized β | |||
H6 | FD | −0.387 ** | Supported |
Dependent variable: FD | R2 adj = 0.19 | ||
Standardized β | |||
H8 | FN | 0.398 ** | Supported |
Age | −0.108 ** | ||
Regional Area | 0.087 * | ||
Gender | −0.085 * | ||
Dependent variable: FN | R2 adj = 0.04 | ||
Standardized β | |||
Income | −0.173 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabbagh, M.; Gutierrez, L.; Lai, R.; Nocella, G. Consumer Intention towards Buying Edible Beef Offal and the Relevance of Food Neophobia. Foods 2023, 12, 2340. https://doi.org/10.3390/foods12122340
Sabbagh M, Gutierrez L, Lai R, Nocella G. Consumer Intention towards Buying Edible Beef Offal and the Relevance of Food Neophobia. Foods. 2023; 12(12):2340. https://doi.org/10.3390/foods12122340
Chicago/Turabian StyleSabbagh, Maria, Luciano Gutierrez, Roberto Lai, and Giuseppe Nocella. 2023. "Consumer Intention towards Buying Edible Beef Offal and the Relevance of Food Neophobia" Foods 12, no. 12: 2340. https://doi.org/10.3390/foods12122340
APA StyleSabbagh, M., Gutierrez, L., Lai, R., & Nocella, G. (2023). Consumer Intention towards Buying Edible Beef Offal and the Relevance of Food Neophobia. Foods, 12(12), 2340. https://doi.org/10.3390/foods12122340