Extraction, Rheological, and Physicochemical Properties of Water-Soluble Polysaccharides with Antioxidant Capacity from Penthorum chinense Pursh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polysaccharide
2.3. Single-Factor Experiment Design
2.4. Response Surface Experimental Design
2.5. Rheological Determination
2.6. Characterization Analysis of the PCP-100
2.6.1. Chemical Composition Analysis
2.6.2. Molecular Weight Analysis
2.6.3. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
2.6.4. Monosaccharide Composition Analysis
2.6.5. Crystallinity Analysis
2.6.6. Thermal Analysis
2.6.7. Morphological Analysis
2.7. Antioxidant Activities of the PCP-100
2.7.1. ABTS Radical Scavenging Activity
2.7.2. DPPH Radical Scavenging Activity
2.7.3. Hydroxyl Radical Scavenging Assay
2.7.4. Reducing Power Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Single-Factor Experiment Analysis
3.2. Optimization of the Extraction Process of the Polysaccharides
3.2.1. Model Fitting
3.2.2. Statistical Analysis
3.2.3. Verification of the Predictive Model
3.3. Rheological Properties Analysis
3.3.1. Effect of Concentration on Rheological Properties
3.3.2. Effect of pH on Rheological Properties
3.3.3. Effect of Temperature on Rheological Properties
3.3.4. Effect of Salt on the Rheological Properties
3.3.5. Effects of the Freeze–Thaw Treatments on the Rheological Properties
3.4. Physicochemical Properties Analysis of the PCP-100
3.4.1. Chemical Composition Analysis
3.4.2. Molecular Weight Analysis
3.4.3. FT-IR Spectra Analysis
3.4.4. Monosaccharide Composition Analysis
3.4.5. Crystallinity Analysis
3.4.6. Thermal Properties Analysis
3.4.7. Morphological Properties Analysis
3.5. Antioxidant Activities of the PCP-100
3.5.1. ABTS Radical Scavenging Activity
3.5.2. DPPH Radical Scavenging Activity
3.5.3. Hydroxyl Radical Scavenging Activity
3.5.4. Reducing Power
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, T.; Li, Q.; Bi, K. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Elekofehinti, O.O. Saponins: Anti-diabetic principles from medicinal plants—A review. Pathophysiology 2015, 22, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Kuang, S.; Liu, L.; Hu, Z.; Luo, M.; Fu, X.; Lin, C.; He, Q. A review focusing on the benefits of plant-derived polysaccharides for osteoarthritis. Int. J. Biol. Macromol. 2023, 228, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, Z.; Zhao, H.; Liu, M.; Lin, C.; Li, L.; Ma, B. Pectin polysaccharide from Flos Magnoliae (Xin Yi, Magnolia biondii Pamp. flower buds): Hot-compressed water extraction, purification and partial structural characterization. Food Hydrocoll. 2022, 122, 107061. [Google Scholar] [CrossRef]
- Yuan, Q.; Lin, S.; Fu, Y.; Nie, X.-R.; Liu, W.; Su, Y.; Han, Q.-H.; Zhao, L.; Zhang, Q.; Lin, D.-R.; et al. Effects of extraction methods on the physicochemical characteristics and biological activities of polysaccharides from okra (Abelmoschus esculentus). Int. J. Biol. Macromol. 2019, 127, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Li, F.; Zhao, J.; Wei, Y.; Zhang, L.; Wang, H.; Yu, W.; Li, Q. Structural diversity and physicochemical properties of polysaccharides isolated from pumpkin (Cucurbita moschata) by different methods. Food Res. Int. 2023, 163, 112157. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, H.; Zhang, J.; Wen, C.; Zhou, J.; Yao, H.; He, Y.; Ma, H.; Duan, Y. Optimization, characterization, rheological study and immune activities of polysaccharide from Sagittaria sagittifolia L. Carbohydr. Polym. 2020, 246, 116595. [Google Scholar]
- Capitani, M.I.; Corzo-Rios, L.J.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A.; Nolasco, S.M.; Tomás, M.C. Rheological properties of aqueous dispersions of chia (Salvia hispanica L.) mucilage. J. Food Eng. 2015, 149, 70–77. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Chen, T.; Chen, X. A review of the antibacterial activity and mechanisms of plant polysaccharides. Trends Food Sci. Technol. 2022, 123, 264–280. [Google Scholar]
- Sun, Z.L.; Zhang, Y.Z.; Zhang, F.; Zhang, J.W.; Zheng, G.C.; Tan, L.; Wang, C.Z.; Zhou, L.D.; Zhang, Q.H.; Yuan, C.S. Quality assessment of Penthorum chinense Pursh through multicomponent qualification and fingerprint, chemometric, and antihepatocarcinoma analyses. Food Funct. 2018, 9, 3807–3814. [Google Scholar] [CrossRef]
- Wang, A.; Li, M.; Huang, H.; Xiao, Z.; Shen, J.; Zhao, Y.; Yin, J.; Kaboli, P.J.; Cao, J.; Cho, C.H.; et al. A review of Penthorum chinense Pursh for hepatoprotection: Traditional use, phytochemistry, pharmacology, toxicology and clinical trials. J. Ethnopharmacol. 2020, 251, 112569. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Ren, W.; Wei, B.; Huang, H.; Li, M.; Wu, X.; Wang, A.; Xiao, Z.; Shen, J.; Zhao, Y.; et al. Characterization of chemical composition and prebiotic effect of a dietary medicinal plant Penthorum chinense Pursh. Food Chem. 2020, 319, 126568. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Lin, L.; Wang, Y. Traditional Chinese Herbal Medicine Penthorum chinense Pursh: A Phytochemical and Pharmacological Review. Am. J. Chin. Med. 2015, 43, 601–620. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, B.; Fu, L.; Wang, H.; Liu, J.; Zhou, L.; Yuan, M.; Ding, C. Optimization Extraction, Purification and Antioxidant Activities of Polysaccharides from Penthorum Chinense Pursh. J. Food Eng. 2019, 15, 20180152. [Google Scholar] [CrossRef]
- Lin, L.-M.; Zhao, L.-J.; Deng, J.; Xiong, S.-H.; Tang, J.; Li, Y.-M.; Xia, B.-H.; Liao, D.-F. Enzymatic Extraction, Purification, and Characterization of Polysaccharides from Penthorum chinense Pursh: Natural Antioxidant and Anti-Inflammatory. BioMed Res. Int. 2018, 2018, 3486864. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, P.; Liu, H.; Zhang, Y.; Zhang, X. Penthorum chinense Pursh polysaccharide induces a mitochondrial-dependent apoptosis of H22 cells and activation of immunoregulation in H22 tumor-bearing mice. Int. J. Biol. Macromol. 2023, 224, 510–522. [Google Scholar] [CrossRef]
- Guo, Y.; Ye, Q.; Yang, S.; Wu, J.; Ye, B.; Wu, Y.; Huang, Z.; Zheng, C. Therapeutic effects of polysaccharides from Anoectochilus roxburghii on type II collagen-induced arthritis in rats. Int. J. Biol. Macromol. 2019, 122, 882–892. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Raza, A.; Li, F.; Xu, X.; Tang, J. Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. Int. J. Biol. Macromol. 2017, 94, 335–344. [Google Scholar] [CrossRef]
- Pan, F.; Su, T.-J.; Liu, Y.; Hou, K.; Chen, C.; Wu, W. Extraction, purification and antioxidation of a polysaccharide from Fritillaria unibracteata var. wabuensis. Int. J. Biol. Macromol. 2018, 112, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Sun, Y.; Li, X.; Zeng, B.; Chen, D. Extraction, structural characterization, and antioxidant and immunomodulatory activities of a polysaccharide from Notarchus leachii freeri eggs. Bioorg. Chem. 2021, 116, 105275. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Guo, J.; Cheng, J.; Zhao, X.; Ma, B.; Yang, X.; Shao, H. Ultrasound-assisted extraction of polysaccharide from spent Lentinus edodes substrate: Process optimization, precipitation, structural characterization and antioxidant activity. Int. J. Biol. Macromol. 2021, 191, 1038–1045. [Google Scholar] [PubMed]
- Zhang, H.; Xie, G.; Tian, M.; Pu, Q.; Qin, M. Optimization of the Ultrasonic-Assisted Extraction of Bioactive Flavonoids from Ampelopsis grossedentata and Subsequent Separation and Purification of Two Flavonoid Aglycones by High-Speed Counter-Current Chromatography. Molecules 2016, 21, 1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.-d.; Liu, Y.-n.; Yu, S.-s.; Ji, H.-y.; Feng, Y.-y.; Liu, A.; Yu, J. Extraction, optimization, and biological activities of a low molecular weight polysaccharide from Platycodon grandiflorus. Ind. Crops Prod. 2021, 165, 113427. [Google Scholar] [CrossRef]
- Mzoughi, Z.; Abdelhamid, A.; Rihouey, C.; Le Cerf, D.; Bouraoui, A.; Majdoub, H. Optimized extraction of pectin-like polysaccharide from Suaeda fruticosa leaves: Characterization, antioxidant, anti-inflammatory and analgesic activities. Carbohydr. Polym. 2018, 185, 127–137. [Google Scholar] [CrossRef]
- Yu, P.; Chao, X. Statistics-based optimization of the extraction process of kelp polysaccharide and its activities. Carbohydr. Polym. 2013, 91, 356–362. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Yin, J.-Y.; Huang, X.-J.; Nie, S.-P. Structural characteristics and rheological properties of high viscous glucan from fruit body of Dictyophora rubrovolvata. Food Hydrocoll. 2020, 101, 105514. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Lv, X.; Wang, X.; Wang, X.; Cui, J.; Yan, M. Extractions and rheological properties of polysaccharide from okra pulp under mild conditions. Int. J. Biol. Macromol. 2020, 148, 510–517. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, W.; Bai, X.; Li, C.; Xiang, D. Rheological and physicochemical properties of polysaccharides extracted from stems of Dendrobium officinale. Food Hydrocoll. 2020, 103, 105706. [Google Scholar]
- Morales-Martínez, Y.; López-Cuellar, M.d.R.; Chavarría-Hernández, N.; Rodríguez-Hernández, A.I. Rheological behaviour of acetylated pectins from cactus pear fruits (Opuntia albicarpa and O. matudae). Food Hydrocoll. 2018, 85, 110–119. [Google Scholar]
- Huang, F.; Liu, Y.; Zhang, R.; Dong, L.; Yi, Y.; Deng, Y.; Wei, Z.; Wang, G.; Zhang, M. Chemical and rheological properties of polysaccharides from litchi pulp. Int. J. Biol. Macromol. 2018, 112, 968–975. [Google Scholar] [CrossRef]
- Dikeman, C.L.; Fahey, G.C. Viscosity as Related to Dietary Fiber: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 649–663. [Google Scholar] [CrossRef]
- Fabek, H.; Messerschmidt, S.; Brulport, V.; Goff, H.D. The effect of in vitro digestive processes on the viscosity of dietary fibres and their influence on glucose diffusion. Food Hydrocoll. 2014, 35, 718–726. [Google Scholar] [CrossRef]
- Li, K.; Zhu, L.; Li, H.; Zhu, Y.; Pan, C.; Gao, X.; Liu, W. Structural characterization and rheological properties of a pectin with anti-constipation activity from the roots of Arctium lappa L. Carbohydr. Polym. 2019, 215, 119–129. [Google Scholar] [CrossRef]
- Shao, H.; Zhang, H.; Tian, Y.; Song, Z.; Lai, P.F.H.; Ai, L. Composition and Rheological Properties of Polysaccharide Extracted from Tamarind (Tamarindus indica L.) Seed. Molecules 2019, 24, 1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Wu, Q.; Luo, Y.; Yang, Q.; Chen, G.; Wei, X.; Kan, J. Japanese grape (Hovenia dulcis) polysaccharides: New insight into extraction, characterization, rheological properties, and bioactivities. Int. J. Biol. Macromol. 2019, 134, 631–644. [Google Scholar] [CrossRef]
- Mierczyńska, J.; Cybulska, J.; Sołowiej, B.; Zdunek, A. Effect of Ca2+, Fe2+ and Mg2+ on rheological properties of new food matrix made of modified cell wall polysaccharides from apple. Carbohydr. Polym. 2015, 133, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.-Y.; Liao, A.-M.; Huang, J.-H.; Zhang, J.-G.; Thakur, K.; Wei, Z.-J. The rheological properties of differentially extracted polysaccharides from potatoes peels. Int. J. Biol. Macromol. 2019, 137, 1–7. [Google Scholar] [CrossRef]
- Lin, L.; Shen, M.; Liu, S.; Tang, W.; Wang, Z.; Xie, M.; Xie, J. An acidic heteropolysaccharide from Mesona chinensis: Rheological properties, gelling behavior and texture characteristics. Int. J. Biol. Macromol. 2018, 107, 1591–1598. [Google Scholar] [CrossRef]
- Liu, J.; Wang, B.; Lin, L.; Zhang, J.; Liu, W.; Xie, J.; Ding, Y. Functional, physicochemical properties and structure of cross-linked oxidized maize starch. Food Hydrocoll. 2014, 36, 45–52. [Google Scholar] [CrossRef]
- Yu, J.; Ji, H.; Yang, Z.; Liu, A. Relationship between structural properties and antitumor activity of Astragalus polysaccharides extracted with different temperatures. Int. J. Biol. Macromol. 2019, 124, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liang, K.; Zhong, H.; Liu, S.; He, R.; Sun, P. A cold-water polysaccharide-protein complex from Grifola frondosa exhibited antiproliferative activity via mitochondrial apoptotic and Fas/FasL pathways in HepG2 cells. Int. J. Biol. Macromol. 2022, 218, 1021–1032. [Google Scholar] [CrossRef]
- Guan, Y.; Sun, H.; Chen, H.; Li, P.; Shan, Y.; Li, X. Physicochemical characterization and the hypoglycemia effects of polysaccharide isolated from Passiflora edulis Sims peel. Food Funct. 2021, 12, 4221–4230. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Zhu, P.; Ma, S.; Wang, M.; Hu, Y. Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce. Carbohydr. Polym. 2018, 188, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Jin, X.; Xie, M.; Liu, J.; Gontcharov, A.A.; Wang, H.; Lv, R.; Liu, D.; Wang, Q.; Li, Y. Characterization of a polysaccharide from Sanghuangporus vaninii and its antitumor regulation via activation of the p53 signaling pathway in breast cancer MCF-7 cells. Int. J. Biol. Macromol. 2020, 163, 865–877. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Yan, Y.; Hou, C.; Shi, M.; Liu, Y. Structural characterization of a galacturonic acid-rich polysaccharide from Ziziphus Jujuba cv. Muzao. Int. J. Biol. Macromol. 2020, 147, 844–852. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Kan, J. Polysaccharides from ginger stems and leaves: Effects of dual and triple frequency ultrasound assisted extraction on structural characteristics and biological activities. Food Biosci. 2021, 42, 101166. [Google Scholar] [CrossRef]
- Chen, S.; Qin, L.; Xie, L.; Yu, Q.; Chen, Y.; Chen, T.; Lu, H.; Xie, J. Physicochemical characterization, rheological and antioxidant properties of three alkali-extracted polysaccharides from mung bean skin. Food Hydrocoll. 2022, 132, 107867. [Google Scholar] [CrossRef]
- Karimi, S.; Ghanbarzadeh, B.; Roufegarinejad, L.; Falcone, P.M. Polysaccharide extracted from Althaea officinalis L. root: New studies of structural, rheological and antioxidant properties. Carbohydr. Res. 2021, 510, 108438. [Google Scholar] [CrossRef]
- Kong, L.; Yu, L.; Feng, T.; Yin, X.; Liu, T.; Dong, L. Physicochemical characterization of the polysaccharide from Bletilla striata: Effect of drying method. Carbohydr. Polym. 2015, 125, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, W.; Zhu, Y.; Chen, Y.; Zhang, W.; Yu, P.; Mao, G.; Zhao, T.; Feng, W.; Yang, L.; et al. Structural elucidation and antioxidant activity a novel Se-polysaccharide from Se-enriched Grifola frondosa. Carbohydr. Polym. 2017, 161, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chen, Z.; Liu, P.; Wei, Y.; Zhang, M.; Huang, X.; Peng, L.; Wei, X. Structural characterization of a pure polysaccharide from Bletilla striata tubers and its protective effect against H2O2-induced injury fibroblast cells. Int. J. Biol. Macromol. 2021, 193, 2281–2289. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, Y.; Wang, S.; Wang, S.; Yang, J.; Ismael, M.; Wang, X.; Lü, X. Purification, structural characterization and antioxidant activities of two neutral polysaccharides from persimmon peel. Int. J. Biol. Macromol. 2023, 225, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Chen, J.; Chen, Y.; Ma, Y.; Yang, Q.; Fan, Y.; Fu, C.; Limsila, B.; Li, R.; Liao, W. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides. LWT 2022, 154, 112805. [Google Scholar] [CrossRef]
- Chou, C.-H.; Sung, T.-J.; Hu, Y.-N.; Lu, H.-Y.; Yang, L.-C.; Cheng, K.-C.; Lai, P.-S.; Hsieh, C.-W. Chemical analysis, moisture-preserving, and antioxidant activities of polysaccharides from Pholiota nameko by fractional precipitation. Int. J. Biol. Macromol. 2019, 131, 1021–1031. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, B.; Ibrahim, S.A.; Gao, S.-S.; Yang, H.; Huang, W. Purification, characterization and antioxidant activity of polysaccharides from Flammulina velutipes residue. Carbohydr. Polym. 2016, 145, 71–77. [Google Scholar] [CrossRef]
- Zhang, H.; Zou, P.; Zhao, H.; Qiu, J.; Regenstein, J.M.; Yang, X. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis. Carbohydr. Polym. 2021, 251, 117078. [Google Scholar] [CrossRef]
- Yang, B.; Zhao, M.; Prasad, K.N.; Jiang, G.; Jiang, Y. Effect of methylation on the structure and radical scavenging activity of polysaccharides from longan (Dimocarpus longan Lour.) fruit pericarp. Food Chem. 2010, 118, 364–368. [Google Scholar] [CrossRef]
- Sakai, T.; Imai, J.; Ito, T.; Takagaki, H.; Ui, M.; Hatta, S. The novel antioxidant TA293 reveals the role of cytoplasmic hydroxyl radicals in oxidative stress-induced senescence and inflammation. Biochem. Biophys. Res. Commun. 2017, 482, 1183–1189. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, G.; Pan, H.; Shi, L.; Fan, L. Optimization of the Microwave-Assisted Extraction Process for Polysaccharides in Himematsutake (Agaricus blazei Murrill) and Evaluation of Their Antioxidant Activities. Food Sci. Technol. Res. 2011, 17, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.-Y.; Yu, J.; Li, Y.-B.; Wang, L.; Hu, L.; Zhang, L.; Zhou, Y.-H. Extraction and antioxidant activities of polysaccharides from roots of Arctium lappa L. Int. J. Biol. Macromol. 2019, 123, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Chen, B.; Yi, F.; Zou, S. Optimization of extraction of polysaccharide from dandelion root by response surface methodology: Structural characterization and antioxidant activity. Int. J. Biol. Macromol. 2019, 140, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Qiu, Z.; Yang, Y.; Liu, C.; Zhang, R. Preparation, structural characterization and antioxidant activity of water-soluble polysaccharides and purified fractions from blackened jujube by an activity-oriented approach. Food Chem. 2022, 385, 132637. [Google Scholar] [CrossRef] [PubMed]
Number | Liquid–Solid Ratio (X1) (mL/g) | Extraction Time (X2) (h) | Number of Extraction Times (X3) | Yield (%) |
---|---|---|---|---|
1 | (1)30 | (−1)2 | (0)3 | 2.97 |
2 | (0)20 | (0)3 | (0)3 | 4.17 |
3 | (0)20 | (1)4 | (1)4 | 3.75 |
4 | (0)20 | (−1)2 | (−1)2 | 3.03 |
5 | (1)30 | (0)3 | (1)4 | 3.66 |
6 | (1)30 | (0)3 | (−1)2 | 3.50 |
7 | (0)20 | (0)3 | (0)3 | 4.23 |
8 | (0)20 | (−1)2 | (1)4 | 3.16 |
9 | (0)20 | (0)3 | (0)3 | 4.11 |
10 | (−1)10 | (−1)2 | (0)3 | 2.63 |
11 | (0)20 | (0)3 | (0)3 | 3.95 |
12 | (−1)10 | (0)3 | (−1)2 | 3.18 |
13 | (0)20 | (0)3 | (0)3 | 4.14 |
14 | (−1)10 | (0)3 | (1)4 | 3.38 |
15 | (0)20 | (1)4 | (−1)2 | 3.42 |
16 | (1)30 | (1)4 | (0)3 | 3.33 |
17 | (−1)10 | (1)4 | (0)3 | 3.08 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 3.71 | 9 | 0.41 | 58.97 | <0.0001 | ** |
X1 | 0.18 | 1 | 0.18 | 25.35 | 0.0015 | ** |
X2 | 0.4 | 1 | 0.40 | 57.36 | 0.0001 | ** |
X3 | 0.084 | 1 | 0.084 | 12.04 | 0.0104 | * |
X1X2 | 0.002 | 1 | 0.002 | 0.29 | 0.6069 | |
X1X3 | 4 × 10−4 | 1 | 4 × 10−4 | 0.057 | 0.8177 | |
X2X3 | 0.01 | 1 | 0.01 | 1.43 | 0.2704 | |
X12 | 1.11 | 1 | 1.11 | 159.17 | <0.0001 | ** |
X22 | 1.53 | 1 | 1.53 | 219.82 | <0.0001 | ** |
X32 | 0.13 | 1 | 0.13 | 18.73 | 0.0034 | ** |
Residual | 0.049 | 7 | 0.007 | - | - | |
Pure error | 0.044 | 4 | 0.011 | - | - | - |
Lack of fit | 0.0049 | 3 | 0.002 | 0.15 | 0.9260 | |
Cor Total | 3.75 | 16 | - | - | - | |
R2 | 0.9870 | |||||
R2adj | 0.9702 | |||||
Adequate precision | 23.60 | |||||
C.V. (%) | 2.38 |
Item | Value |
---|---|
Physicochemical property | |
Polysaccharide content (%) | 89.01 ± 1.39 |
Uronic acid content (%) | 29.69 ± 1.15 |
Protein content (%) | 3.08 ± 0.35 |
Total phenol content (mg GAE/ 100 mg) | 0.23 ± 0.01 |
Molecular weight (Da) | 1.46 × 106 |
Monosaccharide composition (%)/molar ratio | |
Rhamnose | 4.22/1.00 |
Arabinose | 22.87/5.41 |
Galactose | 26.72/6.32 |
Glucose | 18.99/4.49 |
Xylose | 1.44/0.34 |
Mannose | 0.67/0.16 |
Ribose | 2.08/0.49 |
Galacturonic acid | 21.89/5.18 |
Glucuronic acid | 1.10/0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Song, L.; Chen, P.; Liu, H.; Zhang, X. Extraction, Rheological, and Physicochemical Properties of Water-Soluble Polysaccharides with Antioxidant Capacity from Penthorum chinense Pursh. Foods 2023, 12, 2335. https://doi.org/10.3390/foods12122335
Chen Y, Song L, Chen P, Liu H, Zhang X. Extraction, Rheological, and Physicochemical Properties of Water-Soluble Polysaccharides with Antioxidant Capacity from Penthorum chinense Pursh. Foods. 2023; 12(12):2335. https://doi.org/10.3390/foods12122335
Chicago/Turabian StyleChen, Yi, Li Song, Pei Chen, Huiping Liu, and Xiaowei Zhang. 2023. "Extraction, Rheological, and Physicochemical Properties of Water-Soluble Polysaccharides with Antioxidant Capacity from Penthorum chinense Pursh" Foods 12, no. 12: 2335. https://doi.org/10.3390/foods12122335
APA StyleChen, Y., Song, L., Chen, P., Liu, H., & Zhang, X. (2023). Extraction, Rheological, and Physicochemical Properties of Water-Soluble Polysaccharides with Antioxidant Capacity from Penthorum chinense Pursh. Foods, 12(12), 2335. https://doi.org/10.3390/foods12122335