Comparison of the Main Constituents in Two Varieties of Proso Millet Using GC–MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. GC–MS Analysis
2.3. Chemicals and Reagents
2.4. Statistical Analysis
3. Results
3.1. Saccharides
3.2. Amino Acids
3.3. Carboxylic Acids
3.4. Fatty Acids
3.5. Amyrin, Phytosterols and Miliacin
3.6. Miscellaneous Compounds
4. Discussion
4.1. Saccharides
4.2. Amino Acids
4.3. Carboxylic Acids
4.4. Fatty Acids
4.5. Phytosterols, Amyrin, and Miliacin
4.6. Miscellaneous Compounds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, H.; Zhang, J.; Wu, N.; Liu, K.B.; Xu, D.; Li, Q. Phytoliths analysis for the discrimination of foxtail millet (Setaria italica) and common millet (Panicum miliaceum). PLoS ONE 2009, 4, e4448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awika, J.M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion, 1st ed.; Awika, J., Piironen, V., Bean, S., Eds.; American Chemical Society: Washington, DC, USA, 2011; pp. 1–13. [Google Scholar]
- FAOSTAT, Food and Agriculture Organization of The United Nations, Rome. Available online: https://fenix.fao.org/faostat/internal/en/#data/QCL (accessed on 30 July 2022).
- Demirbas, A. β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem. 2005, 90, 773–777. [Google Scholar] [CrossRef]
- Becker, H.G. Buchweizen, Dinkel, Gerste, Hafer, Hirse und Reis- die Schäl- und Spelzgetreide und ihre Bedeutung für die Ernährung. AID-Verbrauchrdienst 1994, 39, 123–130. [Google Scholar]
- Sridhar, R.; Lakshminarayana, G. Contents of total and lipid classes and composition of fatty acids in small mllets: Foxtail (Setaria italica), proso (Panicum miliaceum), and finger (Elelusine coracana). Cereal Chem. 1994, 71, 355–359. [Google Scholar]
- Banerjee, A. Use of Novel Polysaccharides in Textile Printing. Doctoral Dissertation, Colorado State University, Fort Collins, CO, USA, 2013. [Google Scholar]
- Das, S.; Khound, R.; Santra, M.; Santra, D.K. Beyond bird feed: Proso millet for human health and environment. Agriculture 2019, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Schoenlechner, R.; Szatmari, M.; Bagdi, A.; Tömösközi, S. Optimisation of bread quality produced from wheat and proso millet (Panicum miliaceum L.) by adding emulsifiers, transglutaminase and xylanase. LWT-Food Sci. Technol. 2013, 51, 361–366. [Google Scholar] [CrossRef]
- Lorenz, K.; Dilsaver, W. Rheological properties and food applications of proso millet flours. Cereal Chem. 1980, 57, 21–24. [Google Scholar]
- McSweeney, M.B.; Seetharaman, K.; Dan Ramdath, D.; Duizer, L.M. Chemical and physical characteristics of proso millet (Panicum miliaceum)-based products. Cereal Chem. 2017, 94, 357–362. [Google Scholar] [CrossRef]
- Cordelino, I.G.; Tyl, C.; Inamdar, L.; Vickers, Z.; Marti, A.; Ismail, B.P. Cooking quality, digestibility, and sensory properties of proso millet pasta as impacted by amylose content and prolamin profile. LWT 2019, 99, 1–7. [Google Scholar] [CrossRef]
- Khound, R.; Santra, D.K. Omics for proso millet genetic improvement. Nucleus 2020, 63, 241–247. [Google Scholar] [CrossRef]
- Martin-Guay, M.O.; Paquette, A.; Dupras, J.; Rivest, D. The new green revolution: Sustainable intensification of agriculture by intercropping. Sci. Total Environ. 2018, 615, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Dang, K.; Liu, L.; Zhao, G.; Lv, S.; Tian, L.; Jin, F.; Feng, Y.; Zhao, Y.; Feng, B. Intercropping combined with nitrogen input promotes proso millet (Panicum miliaceum L.) growth and resource use efficiency to increase grain yield on the Loess plateau of China. Agric. Water Manag. 2021, 243, 106434. [Google Scholar] [CrossRef]
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Siddique, K.H.M. Future Smart Food- Rediscovering Hiddent Treasures of Neglected and Underutilized Species for Zero Hunger in Asia; FAO: Bangkok, Thailand, 2018; pp. 12–194. [Google Scholar]
- Habiyaremye, C.; Barth, V.; Highet, K.; Coffey, T.; Murphy, K.M. Phenotypic responses of twenty diverse proso millet (Panicum miliaceum L.) accessions to irrigation. Sustainability 2017, 9, 389. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Hunt, H.V.; Qiao, Z.; Wang, L.; Han, Y. Diversity and cultivation of broomcorn millet (Panicum miliaceum L.) in China: A review. Econ. Bot. 2016, 70, 332–342. [Google Scholar] [CrossRef]
- Stein, S.E. NIST/EPA/NIH Mass Spectral Library (NIST 08) and NIST Mass Spectral Search Program; Version 2.0f; National Institute of Standards and Technology, Standard Reference Data Program: Gaithersburg, MD, USA, 2008. [Google Scholar]
- Halford, N.G.; Curtis, T.Y.; Muttucumaru, N.; Postles, J.; Mottram, D.S. Sugars in crop plants. Ann. Appl. Biol. 2011, 158, 1–25. [Google Scholar] [CrossRef]
- Salerno, G.L.; Curatti, L. Origin of sucrose metabolism in higher plants: When, how and why? Trends Plant Sci. 2003, 8, 63–69. [Google Scholar] [CrossRef]
- Wach, W. Fructose. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2004; ISBN 9783527303854. [Google Scholar] [CrossRef]
- Oshima, H.; Kimura, I.; Izumori, K. Psicose contents in various food products and its origin. Food Sci. Technol. Res. 2006, 12, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Gonzali, S.; Novi, G.; Loreti, E.; Paolicchi, F.; Poggi, A.; Alpi, A.; Perata, P. A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana. Plant J. 2005, 44, 633–645. [Google Scholar] [CrossRef]
- He, J.; Kong, M.; Qian, Y.; Gong, M.; Lv, G.; Song, J. Cellobiose elicits immunity in lettuce conferring resistance to Botrytis cinerea. J. Exp. Bot. 2023, 74, 1022–1038. [Google Scholar] [CrossRef]
- Kordowska-Wiater, M. Production of arabitol by yeasts: Current status and future prospects. J. Appl. Microbiol. 2015, 119, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.D.; Chapman, G.W., Jr.; Hoveland, C.S.; Bacon, C.W. Sugar alcohols in endophyte-infected tall fescue under drought. Crop Sci. 1992, 32, 1060–1061. [Google Scholar] [CrossRef]
- Shindou, T.; Sasaki, Y.; Eguchi, T.; Euguchi, T.; Hagiwara, K.; Ichikawa, T. Identification of erythritol by HPLC and GC-MS and quantitative measurement in pulps of various fruits. J. Agric. Food Chem. 1989, 37, 1474–1476. [Google Scholar] [CrossRef]
- Jain, M.; Tiwary, S.; Gadre, R. Sorbitol-induced changes in various growth and biochemici parameters in maize. Plant Soil Environ. 2010, 56, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Pleyerová, I.; Hamet, J.; Konrádová, H.; Lipavská, H. Versatile roles of sorbitol in higher plants: Luxury resource, effective defender or something else? Planta 2022, 256, 13. [Google Scholar] [CrossRef]
- Alexandersson, E.; Nestor, G. Complete 1H and 13C NMR spectral assignment of D-glucofuranose. Carbohydr. Res. 2022, 511, 108477. [Google Scholar] [CrossRef]
- Guo, N.; Zhang, S.; Gu, M.; Xu, G. Function, transport, and regulation of amino acids: What is missing in rice? Crop J. 2021, 9, 530–542. [Google Scholar] [CrossRef]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids; Study Guide from StatPearls Publishing; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Kalinova, J.; Moudry, J. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum. Nutr. 2006, 61, 43–47. [Google Scholar] [CrossRef]
- Wiedemair, V.; Scholl-Bürgi, S.; Karall, D.; Huck, C.W. Amino acid profiles and compositions of different cultivars of Panicum miliaceum L. Chromatographia 2020, 83, 829–837. [Google Scholar] [CrossRef]
- Edgar, K.F.; Draper, S.R. Amino acids in Hordeum distichon and Panicum miliaceum grown in sand culture. Phytochemistry 1974, 13, 325–327. [Google Scholar] [CrossRef]
- Neumann, G.; Römheld, V. Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 1999, 211, 121–130. [Google Scholar] [CrossRef]
- Mejri, S.; Siah, A.; Abuhaie, C.M.; Halama, P.; Magnin-Robert, M.; Randoux, B.; Reignault, P.; Rigo, B.; Ghinet, A. New salicylic acid and pyroglutamic acid conjugated derivatives confer protection to bread wheat against Zymoseptoria tritici. J. Sci. Food Agric. 2019, 99, 1780–1786. [Google Scholar] [CrossRef] [PubMed]
- Pucher, G.W.; Vickery, H.B.; Wakeman, A.J. Determination of Malic Acid in Plant Tissue. Ind. Eng. Chem. Anal. Ed. 1934, 6, 288–291. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, H.; Sun, L.; Zhang, W.; Lu, X.; Li, Z.; Xu, J.; Ren, Q. The changes of microbial diversity and flavor compounds during the fermentation of millet Huangjiu, a traditional Chinese beverage. PLoS ONE 2022, 17, e0262353. [Google Scholar] [CrossRef] [PubMed]
- Endo, M.; Ikusima, I. Diurnal rhythm and characteristics of photosynthesis and respiration in the leaf and root of a Phalaenopsis plant. Plant Cell Physiol. 1989, 30, 43–47. [Google Scholar] [CrossRef]
- Ilica, R.A.; Kloetzer, L.; Galaction, A.I.; Caşcaval, D. Fumaric acid: Production and separation. Biotechnol. Lett. 2019, 41, 47–57. [Google Scholar] [CrossRef]
- Chia, D.W.; Yoder, T.J.; Reiter, W.D.; Gibson, S.I. Fumaric acid: An overlooked form of fixed carbon in Arabidopsis and other plant species. Planta 2000, 211, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Lima, J.F.; Dias, M.I.; Pereira, C.; Ivanov, M.; Soković, M.; Steinmacher, N.C.; Fereira, I.C.F.; Barros, L. Characterization of nonconventional food plants seeds Guizotia abyssinica (Lf) Cass., Panicum miliaceum L., and Phalaris canariensis L. for application in the bakery industry. Agronomy 2021, 11, 1873. [Google Scholar] [CrossRef]
- Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712. [Google Scholar] [CrossRef]
- Salvador, V.H.; Lima, R.B.; dos Santos, W.D.; Soares, A.R.; Böhm, P.A.F.; Marchiosi, R.; Ferrarese, M.L.L.; Ferrarese-Filho, O. Cinnamic acid increases lignin production and inhibits soybean root growth. PLoS ONE 2013, 8, e69105. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.S.; Chung, I.M.; Ma, K.H.; Kim, E.H.; Yong, S.J.; Ahn, J.K. Analysis of phenolic compounds in sorghum, foxtail millet and common millet. Korean J. Crop Sci. 2011, 56, 361–374. [Google Scholar] [CrossRef]
- Rawsthorne, S. Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 2002, 41, 182–196. [Google Scholar] [CrossRef]
- Kalinová, J. Nutritionally important components of proso millet (Panicum miliaceum L.). Food 2007, 1, 91–100. [Google Scholar]
- Lorenz, K.; Hwang, Y.S. Lipids in proso millet (Panicum miliaceum) flours and brans. Cereal Chem. 1986, 63, 387–390. [Google Scholar]
- Tulloch, A.P. Epicuticular waxes of Panicum miliaceum, Panicum texanum and Setaria italica. Phytochemistry 1982, 21, 2251–2255. [Google Scholar] [CrossRef]
- Bossard, N.; Jacob, J.; Le Milbeau, C.; Sauze, J.; Terwilliger, V.; Poissonnier, B.; Vergès, E. Distribution of miliacin (olean-18-en-3β-ol methyl ether) and related compounds in broomcorn millet (Panicum miliaceum) and other reputed sources: Implications for the use of sedimentary miliacin as a tracer of millet. Org. Geochem. 2013, 63, 48–55. [Google Scholar] [CrossRef] [Green Version]
- An, Y.J.; Lee, B.W.; Chu, J.H.; Song, S.B.; Kim, J.Y.; Ju, Y.K.; Han, S.I. Determination of miliacin from proso millet oil by GC/MS. Korean J. Crop Sci. 2022, 67, 335–341. [Google Scholar]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef]
- Kalinova, J.; Triska, J.; Vrchotova, N. Distribution of vitamin E, squalene, epicatechin, and rutin in common buckwheat plants (Fagopyrum esculentum Moench). J. Aric. Food Chem. 2006, 54, 5330–5335. [Google Scholar] [CrossRef]
- Dickinson, A.J.; Zhang, J.; Luciano, M.; Wachsman, G.; Sandoval, E.; Schnermann, M.; Dinneny, J.; Benfey, P.N. A plant lipocalin promotes retinal-mediated oscillatory lateral root initiation. Science 2021, 373, 1532–1536. [Google Scholar] [CrossRef]
- Ke, D.; Guo, J.; Li, K.; Wang, Y.; Han, X.; Fu, W.; Miao, Y.; Jia, K.P. Carotenoid-derived bioactive metabolites shape plant root architecture to adapt to the rhizospheric environments. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, J.K.; Uddin, M.R.; Park, C.H.; Kim, H.H.; Chung, E.; Lee, J.H.; Park, S.U. Carotenoid contents in different millets cultivars collected from China and Korea. Asian J. Chem. 2014, 26, 464. [Google Scholar] [CrossRef]
- Patton, S.; Benson, A.A. Synthesis of phytanic acid. J. Lipid Res. 1966, 7, 452–453. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.A. Plant membrane lipids. Ann. Rev. Plant Physiol. 1964, 15, 1–16. [Google Scholar] [CrossRef]
- Kim, S.J.; Rahman, M.M.; Lee, M.K.; Seo, J.M.; Arasu, M.V.; Suzuki, T.; Al-Dhabi, N.A.; Yoon, Y.H.; Shim, J.H. Identification and quantification of volatile and phenolic compounds composition in buckwheat sprouts by GC/MS and HPLC. Asian J. Chem. 2014, 26, 777–782. [Google Scholar] [CrossRef]
GC Oven Number | Rate (°C per min) | Temperature (°C) | Hold Time (min) |
---|---|---|---|
Initial temperature | 0 | 60 | 1 |
1 | 40 | 200 | 0 |
2 | 5 | 290 | 20 |
Compound | Plant Part | |||
---|---|---|---|---|
Roots | Stems | Leaves | Seeds | |
Saccharides | 71.33 ab | 82.75 b | 53.12 ab | 46.16 a |
Amino acids | 6.96 | 2.54 | 4.68 | 1.81 |
Fatty acids | 11.17 | 8.41 | 14.68 | 24.60 |
Carboxylic acids | 3.00 | 1.92 | 1.34 | 1.36 |
Phytosterols | 2.77 a | 0.92 a | 4.29 a | 10.51 b |
Miscellaneous | 1.39 | 1.39 | 4.14 | 1.29 |
Unidentified | 1.04 | 0.00 | 5.79 | 0.19 |
Compound | Plant Part | |||
---|---|---|---|---|
Roots | Stems | Leaves | Seeds | |
Monosaccharides | ||||
Fructopyranose | 5.05 ± 0.294 c | 3.85 ± 0.237 bc | 3.19 ± 0.237 b | 0.35 ± 0.398 a |
Fructose | 8.54 ± 0.525 | 3.31 ± 2.373 | 4.45 ± 2.003 | 0.95 ± 0.393 |
Fucopyranose/Fucose | 0.11 ± 0.127 a | n.d. a | 2.01 ± 0.277 b | n.d. a |
Glucofuranose | 4.56 ± 0.219 | 4.73 ± 3.741 | 2.37 ± 1.484 | 0.13 ± 0.134 |
Glucose | n.d. a | 0.64 ± 0.231 b | 0.09 ± 0.098 ab | n.d. a |
Psicofuranose | n.d. | n.d. | 1.74 ± 2.003 | 1.37 ± 0.548 |
Psicose | 3.94 ± 0.110 | 4.29 ± 4.295 | 2.52 ± 0.416 | n.d. |
Rhamnopyranose | 0.05 ± 0.052 a | 0.01 ± 0.012 a | 1.73 ± 0.219 b | n.d. a |
Talopyranose | 6.07 ± 0.225 | 4.39 ± 1.518 | 3.85 ± 0.081 | 2.52 ± 0.323 |
Talose | 8.42 ± 0.473 | 6.24 ± 4.971 | 5.75 ± 0.058 | 1.85 ± 1.975 |
Disaccharides | ||||
Cellobiose | 0.36 ± 0.046 b | 0.10 ± 0.115 ab | n.d. a | n.d. a |
Trehalose | 0.40 ± 0.052 | n.d. | 0.79 ± 0.231 | 0.82 ± 0.947 |
Sucrose | 28.23 ± 4.163 | 51.25 ± 22.430 | 18.74 ± 0.139 | 35.36 ± 5.196 |
Turanose | 0.06 ± 0.069 | 0.19 ± 0.219 | n.d. | 0.14 ± 0.162 |
Sugar alcohols and others | ||||
Arabitol | 1.39 ± 0.323 | n.d. | 1.86 ± 0.803 | 1.88 ± 0.491 |
Erythritol | 0.24 ± 0.104 | 1.02 ± 0.214 | 0.65 ± 0.219 | 0.15 ± 0.153 |
Sorbitol | 3.17 ± 0.075 b | 2.05 ± 0.439 ab | 2.99 ± 0.335 b | 0.57 ± 0.658 a |
Threonic acid | 0.78 ± 0.433 | 0.30 ± 0.179 | 0.42 ± 0.035 | 0.09 ± 0.098 |
Compound | Plant Part | |||
---|---|---|---|---|
Roots | Stems | Leaves | Seeds | |
Isoleucine | 1.86 ± 1.128 | 0.45 ± 0.381 | 0.44 ± 0.162 | n.d. |
Phenylalanine | n.d. | n.d. | 0.57 ± 0.562 | 0.14 ± 0.156 |
Threonine | 0.44 ± 0.029 ab | 0.24 ± 0.144 a | 0.77 ± 0.087 b | 0.53 ± 0.040 ab |
Valine | 1.86 ± 1. 828 | 0.45 ± 0.381 | 0.44 ± 0.162 | n.d. |
Alanine | 0.99 ± 0.237 | 0.56 ± 0.358 | 0.89 ± 0.289 | 0.42 ± 0.012 |
Glutamine | n.d. | n.d. | 0.57 ± 0.652 | 0.14 ± 0.162 |
Proline | 1.58 ± 0.208 | 0.74 ± 0.491 | 0.79 ± 0.191 | 0.52 ± 0.075 |
Serine | 0.24 ± 0.023 | 0.11 ± 0.069 | 0.23 ± 0.133 | 0.07 ± 0.081 |
Compound | Plant Part | |||
---|---|---|---|---|
Roots | Stems | Leaves | Seeds | |
Cinnamic acid | 0.57 ± 0.562 | n.d. | 0.13 ± 0.144 | n.d. |
Fumaric acid | 0.17 ± 0.191 | 0.15 ± 0.167 | n.d. | 0.09 ± 0.098 |
Malic acid | 0.70 ± 0.283 | 0.67 ± 0.346 | 0.51 ± 0.214 | 0.10 ± 0.115 |
Pyroglutamic acid | 0.72 ± 0.115 | 0.70 ± 0.427 | 0.42 ± 0.485 | 1.04 ± 0.064 |
Succinic acid | 0.86 ± 0.248 | 0.41 ± 0.121 | 0.41 ± 0.323 | 0.14 ± 0.156 |
Compound | Plant Part | |||
---|---|---|---|---|
Roots | Stems | Leaves | Seeds | |
Saturated acids | ||||
Eicosanoic acid | 0.56 ± 0.046 | 0.22 ± 0.075 | 0.60 ± 0.092 | 0.24 ± 0.231 |
Hexacosanoic acid | 0.19 ± 0.023 b | n.d. a | 0.15 ± 0.012 b | n.d. a |
Lauric acid | n.d. a | n.d. a | 1.01 ± 0.318 b | n.d. a |
Octadecenoic acid | 1.20 ± 0.069 a | 0.60 ± 0.329 a | 2.82 ± 0.254 b | 5.07 ± 0.439 c |
Palmitic acid | 2.42 ± 0.179 a | 1.07 ± 0.566 a | 2.51 ± 0.214 a | 5.76 ± 0.058 b |
Stearic acid | 2.13 ± 0.017 | 1.07 ± 0.537 | 2.13 ± 0.127 | 2.38 ± 2.229 |
Tetracosanoic acid | 0.90 ± 0.001 | 0.36 ± 0.012 | 0.73 ± 0.312 | 0.13 ± 0.134 |
Tetradecanoic acid | 1.18 ± 1.057 | 4.35 ± 4.023 | 3.38 ± 1.472 | 0.26 ± 0.294 |
Unsaturated acids | ||||
Linoleic acid | 2.25 ± 0.294 b | 0.75 ± 0.439 a | 1.28 ± 0.214 ab | 9.84 ± 0.052 c |
Esters | ||||
1-Glyceryl mono-eicosanoate-2TMS | 0.25 ± 0.046 | n.d. | 0.09 ± 0.104 | n.d. |
Linoleic acid, 1.3-bis-(O-TMS)-2-propyl ester | 0.11 ± 0.121 | n.d. | n.d. | 0.94 ± 0.514 |
Compound | Plant Part | |||
---|---|---|---|---|
Roots | Stems | Leaves | Seeds | |
Amyrin | n.d. | n.d. | 0.95 ± 0.439 | n.d. |
Campesterol | 0.37 ± 0.058 | 0.02 ± 0.023 | 0.37 ± 0.081 | 0.23 ± 0.266 |
Miliacin | 0.19 ± 0.017 a | 0.18 ± 0.098 a | 0.36 ± 0.087 a | 7.86 ± 1.160 b |
β-Sitosterol | 1.20 ± 0.162 ab | 0.52 ± 0.381 a | 2.62 ± 0.531 b | 2.27 ± 0.069 b |
Stigmasterol | 1.02 ± 0.029 b | 0.2 ± 0.150 a | 0.95 ± 0.214 ab | 0.16 ± 0.179 a |
Compound | Plant Part | |||
---|---|---|---|---|
Roots | Stems | Leaves | Seeds | |
Retinal | 1.30 ± 0.947 | 0.26 ± 0.173 | 0.16 ± 0.023 | n.d. |
Squalene | n.d. a | n.d. a | n.d. a | 1.29 ± 0.104 b |
Tetramethyl-2-hexadecenol | n.d. | 1.13 ± 1.305 | 1.84 ± 0.964 | n.d. |
Tocopherols | 0.09 ± 0.104 a | n.d. a | 2.15 ± 0.167 b | n.d. a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pexová Kalinová, J.; Tříska, J.; Hořejší, K. Comparison of the Main Constituents in Two Varieties of Proso Millet Using GC–MS. Foods 2023, 12, 2294. https://doi.org/10.3390/foods12122294
Pexová Kalinová J, Tříska J, Hořejší K. Comparison of the Main Constituents in Two Varieties of Proso Millet Using GC–MS. Foods. 2023; 12(12):2294. https://doi.org/10.3390/foods12122294
Chicago/Turabian StylePexová Kalinová, Jana, Jan Tříska, and Karel Hořejší. 2023. "Comparison of the Main Constituents in Two Varieties of Proso Millet Using GC–MS" Foods 12, no. 12: 2294. https://doi.org/10.3390/foods12122294
APA StylePexová Kalinová, J., Tříska, J., & Hořejší, K. (2023). Comparison of the Main Constituents in Two Varieties of Proso Millet Using GC–MS. Foods, 12(12), 2294. https://doi.org/10.3390/foods12122294