Textural and Consumer-Aided Characterisation and Acceptability of a Hybrid Meat and Plant-Based Burger Patty
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Texture Attributes
3.2. Climate Impact
3.3. Consumer Survey, Evaluation of Hybrid and Beef Burgers
3.3.1. Overall Liking
3.3.2. CATA Term Usage
3.3.3. Penalty Analysis
3.3.4. Cluster Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Our World in Data. Meat Supply per Person. Available online: https://ourworldindata.org/grapher/meat-supply-per-person (accessed on 18 November 2022).
- OECD. World Meat Projections; Organisation for Economic Co-operation and Development: Paris, France, 2022. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987. [Google Scholar] [CrossRef] [Green Version]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- FAO. Food-Based Dietary Guidelines. Available online: http://www.fao.org/nutrition/education/food-dietary-guidelines/home/en/ (accessed on 1 December 2022).
- Fanelli, N.S.; Bailey, H.M.; Thompson, T.W.; Delmore, R.; Nair, M.N.; Stein, H.H. Digestible Indispensable Amino Acid Score (DIAAS) Is Greater in Animal-Based Burgers than in Plant-Based Burgers If Determined in Pigs. Eur. J. Nutr. 2022, 61, 461–475. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; O’Keefe, E.L.; Lavie, C.J.; Cordain, L. Debunking the Vegan Myth: The Case for a Plant-Forward Omnivorous Whole-Foods Diet. Prog. Cardiovasc. Dis. 2022, 74, 2–8. [Google Scholar] [CrossRef]
- Gilani, G.S.; Xiao, C.W.; Cockell, K.A. Impact of Antinutritional Factors in Food Proteins on the Digestibility of Protein and the Bioavailability of Amino Acids and on Protein Quality. Br. J. Nutr. 2012, 108, S315–S332. [Google Scholar] [CrossRef] [Green Version]
- Coop Analyse. Forbruget i 2021 og Tendenser for 2022. Available online: https://coopanalyse.dk/analyse/02_9999-21-forbruget-i-2021/ (accessed on 1 December 2022).
- Løbner, M.H.; Alexi, N.; Pedersen, L.; Wilken, M.R.; Kidmose, U. Forbrugsanalyse for Bælgfrugter; DVA rapport; DCA—Nationalt Center for Fødevarer og Jordbrug: Aarhus, Denmark, 2022. [Google Scholar]
- Osen, R.; Schweiggert-Weisz, U. High-Moisture Extrusion: Meat Analogues. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Kyriakopoulou, K.; Dekkers, B.; van der Goot, A.J. Chapter 6—Plant-Based Meat Analogues. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 103–126. ISBN 978-0-12-814874-7. [Google Scholar]
- Tonsor, G.; Lusk, J.L.; Schroeder, T.C. Impact of New Plant-Based Protein Alternatives on U.S. Beef Demand—Full Report; Kansas State University: Manhattan, KS, USA, 2021. [Google Scholar]
- Giacalone, D.; Clausen, M.P.; Jaeger, S.R. Understanding Barriers to Consumption of Plant-Based Foods and Beverages: Insights from Sensory and Consumer Science. Curr. Opin. Food Sci. 2022, 48, 100919. [Google Scholar] [CrossRef]
- Grasso, S. Hybrid Meat. Food Sci. Technol. 2020, 34, 48–51. [Google Scholar] [CrossRef]
- Brisan Group. The Future of Hybrid Meat: Here to Stay or Gone Tomorrow?|Brisan. Available online: https://brisangroup.com/food-industry-thoughts-articles/hybrid-animal-plant-protein-future-flexitarian (accessed on 10 March 2021).
- Profeta, A.; Baune, M.-C.; Smetana, S.; Broucke, K.; Van Royen, G.; Weiss, J.; Heinz, V.; Terjung, N. Discrete Choice Analysis of Consumer Preferences for Meathybrids—Findings from Germany and Belgium. Foods 2021, 10, 71. [Google Scholar] [CrossRef]
- Fortune Business Insights. Fast Food Market Size, Share, Trends & Growth [2021–2028]. Available online: https://www.fortunebusinessinsights.com/fast-food-market-106482 (accessed on 9 May 2023).
- DTU Fødevareinstituttet Frida. Database Med Fødevaredata. Available online: https://frida.fooddata.dk/?lang=da (accessed on 12 March 2019).
- Sinha, A.; Bhargav, A. Young’s Modulus Estimation in Food Samples: Effect of Experimental Parameters. Mech. Ind. 2020, 21, 404. [Google Scholar] [CrossRef]
- Earl, L.A.; King, A.J.; Fitzpatrick, D.P.; Cooper, J.E. A Modification of a Method to Determine Expressible Moisture in Ground, Dark Poultry Meat. Poult. Sci. 1996, 75, 1433–1436. [Google Scholar] [CrossRef]
- Ares, G.; Jaeger, S.R. Check-All-That-Apply (CATA) Questions with Consumers in Practice: Experimental Considerations and Impact on Outcome. In Rapid Sensory Profiling Techniques; Delarue, J., Lawlor, J.B., Rogeaux, M., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2015; pp. 227–245. ISBN 978-1-78242-248-8. [Google Scholar]
- Meyners, M.; Castura, J.C. Randomization of CATA Attributes: Should Attribute Lists Be Allocated to Assessors or to Samples? Food Qual. Prefer. 2016, 48, 210–215. [Google Scholar] [CrossRef]
- CONCITO. The Big Climate Database, Version 1. Available online: https://denstoreklimadatabase.dk/en (accessed on 25 April 2023).
- Llobell, F.; Cariou, V.; Vigneau, E.; Labenne, A.; Qannari, E.M. A New Approach for the Analysis of Data and the Clustering of Subjects in a CATA Experiment. Food Qual. Prefer. 2019, 72, 31–39. [Google Scholar] [CrossRef]
- Wobbrock, J.O.; Findlater, L.; Gergle, D.; Higgins, J.J. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only Anova Procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 143–146. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Szczesniak, A.S. Texture Is a Sensory Property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Trinh, T. On the Texture Profile Analysis Test. In Proceedings of the Chemece 2012, Wellington, New Zealand, 23 September 2012. [Google Scholar]
- De Bakker, E.; Dagevos, H. Reducing Meat Consumption in Today’s Consumer Society: Questioning the Citizen-Consumer Gap. J. Agric. Environ. Ethics 2012, 25, 877–894. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 13 March 2023).
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Asgar, M.A.; Fazilah, A.; Huda, N.; Bhat, R.; Karim, A.A. Nonmeat Protein Alternatives as Meat Extenders and Meat Analogs. Compr. Rev. Food Sci. Food Saf. 2010, 9, 513–529. [Google Scholar] [CrossRef]
- Neville, M.; Tarrega, A.; Hewson, L.; Foster, T. Consumer-orientated Development of Hybrid Beef Burger and Sausage Analogues. Food Sci. Nutr. 2017, 5, 852–864. [Google Scholar] [CrossRef]
- Graça, J.; Calheiros, M.M.; Oliveira, A. Attached to Meat? (Un)Willingness and Intentions to Adopt a More Plant-Based Diet. Appetite 2015, 95, 113–125. [Google Scholar] [CrossRef]
- Baune, M.-C.; Jeske, A.-L.; Profeta, A.; Smetana, S.; Broucke, K.; Van Royen, G.; Gibis, M.; Weiss, J.; Terjung, N. Effect of Plant Protein Extrudates on Hybrid Meatballs—Changes in Nutritional Composition and Sustainability. Future Foods 2021, 4, 100081. [Google Scholar] [CrossRef]
- Lepetit, J.; Grajales, A.; Favier, R. Modelling the Effect of Sarcomere Length on Collagen Thermal Shortening in Cooked Meat: Consequence on Meat Toughness. Meat Sci. 2000, 54, 239–250. [Google Scholar] [CrossRef]
- Wang, Y.; Tuccillo, F.; Lampi, A.-M.; Knaapila, A.; Pulkkinen, M.; Kariluoto, S.; Coda, R.; Edelmann, M.; Jouppila, K.; Sandell, M.; et al. Flavor Challenges in Extruded Plant-Based Meat Alternatives: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2898–2929. [Google Scholar] [CrossRef]
- Modlinska, K.; Adamczyk, D.; Maison, D.; Pisula, W. Gender Differences in Attitudes to Vegans/Vegetarians and Their Food Preferences, and Their Implications for Promoting Sustainable Dietary Patterns—A Systematic Review. Sustainability 2020, 12, 6292. [Google Scholar] [CrossRef]
- Bush, S.S.; Clayton, A. Facing Change: Gender and Climate Change Attitudes Worldwide. Am. Political Sci. Rev. 2022, 117, 591–608. [Google Scholar] [CrossRef]
Ingredient | Percentage | |
---|---|---|
Hybrid | Beef | |
Minced beef (14–18% fat) | 41.5 | - |
Minced beef (12% fat) | - | 98.5 |
Water | 28.0 | - |
Smoked salted bacon | 8.5 | - |
Gluten (from wheat) | 6.2 | - |
TVP (1) | 4.0 | - |
Red beet juice | 2.5 | - |
Tomato paste | 1.2 | - |
Milled extruded pea starch | 1.2 | - |
Dried porcini mushroom | 0.3 | - |
Salt | 0.6 | 1.3 |
Monosodium glutamate | 0.4 | - |
Yeast flakes | 0.3 | - |
Garlic powder | 0.1 | - |
Ground black pepper | 0.1 | 0.2 |
Coconut oil | 1.5 | - |
Methylcellulose (E461) | <0.1 | - |
Texture | Taste | Appearance |
---|---|---|
Soft | Fat | Pink |
Dry | Salt | Well done |
Rubberlike | Meat flavour | Meat colour |
Tough | Metallic | Dark surface |
Grainy | Spicy | Brown surface |
Juicy | Off-flavour | |
Firm | Pepper | |
Crust |
Sample | ||||
---|---|---|---|---|
Attribute | Unit | Hybrid | Beef | Significance (a) |
Young’s modulus | kPa | 332 ± 34 | 679 ± 80 | *** |
Cohesiveness | Ratio | 00.48 ± 0.02 | 00.58 ± 0.01 | *** |
Springiness | Ratio | 00.77 ± 0.01 | 00.76 ± 0.01 | * |
Cooking loss | Percent | 17.2 ± 0.2 | 26.9 ± 0.1 | *** |
Expressible moisture | Percent | 33.5 ± 0.1 | 022.3 ± 0.03 | *** |
Ingredient | Amount (g) | CO2-eq per Burger (kg) |
---|---|---|
Bun | 50 | 0.04 |
Patty | 100 | 1.39 a/3.19 b |
Salad | 13 | 0.01 |
Tomato | 27 | 0.02 |
Pickled cucumber | 17 | 0.03 |
Cheese | 27 | 0.21 |
Mayonnaise | 17 | 0.02 |
Dressing | 17 | 0.08 |
Attribute | Hybrid | Beef | Ideal | Significance (a) |
---|---|---|---|---|
Soft | 51 | 6 | 30 | *** |
Dry | 11 | 62 | 0 | *** |
Rubberlike | 36 | 22 | 0 | *** |
Tough | 7 | 25 | 0 | *** |
Grainy | 18 | 13 | 1 | * |
Juicy | 53 | 12 | 82 | *** |
Firm | 15 | 44 | 21 | *** |
Crust | 11 | 17 | 67 | ** |
Fat | 11 | 5 | 15 | ** |
Salt | 20 | 11 | 53 | *** |
Meat flavour | 33 | 64 | 72 | *** |
Metallic | 4 | 6 | 0 | n.s. |
Spicy | 30 | 12 | 62 | *** |
Off-flavour | 29 | 3 | 1 | *** |
Pepper | 9 | 9 | 46 | n.s. |
Pink | 21 | 3 | 57 | *** |
Well done | 26 | 63 | 14 | *** |
Meat colour | 25 | 29 | 34 | n.s. |
Brown surface | 35 | 34 | 38 | n.s. |
Dark surface | 7 | 17 | 21 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrat-Melin, B.; Dam, S. Textural and Consumer-Aided Characterisation and Acceptability of a Hybrid Meat and Plant-Based Burger Patty. Foods 2023, 12, 2246. https://doi.org/10.3390/foods12112246
Petrat-Melin B, Dam S. Textural and Consumer-Aided Characterisation and Acceptability of a Hybrid Meat and Plant-Based Burger Patty. Foods. 2023; 12(11):2246. https://doi.org/10.3390/foods12112246
Chicago/Turabian StylePetrat-Melin, Bjørn, and Svend Dam. 2023. "Textural and Consumer-Aided Characterisation and Acceptability of a Hybrid Meat and Plant-Based Burger Patty" Foods 12, no. 11: 2246. https://doi.org/10.3390/foods12112246