Chemical Characterization, Sensory Definition and Prediction Model of the Cider Dryness from New York State Apples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cider Samples
2.2. Chemical Analyses
2.2.1. Chemical Standard Parameters
2.2.2. Spectrophotometer Indices
2.2.3. Phenolic Analysis
2.3. Sensory Analysis
2.3.1. Dryness Evaluation
2.3.2. Descriptive Analysis
2.4. Statistics
3. Results and Discussion
3.1. Chemical and Sensory Characterization
3.2. Definition of the Dryness Rating by Marketable Scales and Sensory Evaluation
3.3. Dryness Prediction by Chemical Parameters: Set-Up of the Model and Validation
Selected-Variables Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thompson-Witrick, K.A.; Goodrich, K.M.; Neilson, A.P.; Hurley, E.K.; Peck, G.M.; Stewart, A.C. Characterization of the poly- phenol composition of 20 cultivars of cider, processing, and dessert apples (Malus × domestica Borkh.) grown in Virginia. J. Agric. Food Chem. 2014, 62, 10181–10191. [Google Scholar] [CrossRef] [PubMed]
- Valois, S.; Merwin, I.A.; Padilla-Zakour, O.I. Characterization of fermented cider apple cultivars grown in upstate New York. J. Am. Pomol. Soc. 2006, 60, 113–128. [Google Scholar]
- Ewing, B.L.; Peck, G.M.; Ma, S.; Neilson, A.P.; Stewart, A.C. Management of apple maturity and postharvest storage conditions to increase polyphenols in cider. Hort Science 2019, 54, 143–148. [Google Scholar] [CrossRef]
- Vinson, J.A.; Su, X.; Zubik, L.; Bose, P. Phenol antioxidant quantity and quality in foods: Fruits. J. Agric. Food Chem. 2001, 49, 5315–5321. [Google Scholar] [CrossRef]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Łata, B.; Tomala, K. Apple peel as a contributor to whole fruit quantity of potentially healthful bioactive compounds. Cultivar and year implication. J. Agric. Food Chem. 2007, 55, 10795–10802. [Google Scholar] [CrossRef] [PubMed]
- Mangas, J.J.; Rodríguez, R.; Suárez, B.; Picinelli, A.; Dapena, E. Study of the phenolic profile of cider apple cultivars at maturity by multivariate techniques. J. Agric. Food Chem. 1999, 47, 4046–4052. [Google Scholar] [CrossRef]
- Guyot, S.; Marnet, N.; Sanoner, P.; Drilleau, J.-F. Variability of the polyphenolic composition of cider apple (Malus domestica) fruits and juices. J. Agric. Food Chem. 2003, 51, 6240–6247. [Google Scholar] [CrossRef]
- Verdu, C.F.; Childebrand, N.; Marnet, N.; Lebail, G.; Dupuis, F.; Laurens, F.; Guilet, D.; Guyot, S. Polyphenol variability in the fruits and juices of a cider apple progeny. J. Sci. Food Agric. 2014, 94, 1305–1314. [Google Scholar] [CrossRef]
- Vidal, S.; Francis, L.; Guyot, S.; Marnet, N.; Kwiatkowski, M.; GaweL, R.; Cheynier, V.; Waters, E.J. The mouth-feel properties of grape and apple proanthocyanidins in a wine—Like medium. J. Sci. Food Agric. 2003, 83, 564–573. [Google Scholar] [CrossRef]
- Nicolas, J.J.; Richard-Forget, F.C.; Goupy, P.M.; Amiot, M.J.; Aubert, S.Y. Enzymatic browning reactions in apple and apple products. Crit. Rev. Food Sci. Nutr. 1994, 34, 109–157. [Google Scholar] [CrossRef]
- Guyot, S.; Marnet, N.; Laraba, D.; Sanoner, P.; Drilleau, J.F. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica var. Kermerrien). J. Agric. Food Chem. 1998, 46, 1698–1705. [Google Scholar] [CrossRef]
- Renard, C.M.G.C.; Dupont, N.; Guillermin, P. Concentrations and characteristics of procyanidins and other phenolics in apples during fruit growth. Phytochemistry 2007, 68, 1128–1138. [Google Scholar] [CrossRef]
- Sanoner, P.; Guyot, S.; Marnet, N.; Molle, D.; Drilleau, J.F. Polyphenol profiles of French cider apple varieties (Malus domestica sp.). J. Agric. Food Chem. 1999, 47, 4847–4853. [Google Scholar] [CrossRef]
- Ye, M.; Yue, T.; Yuan, Y. Evolution of polyphenols and organic acids during the fermentation of apple cider. J. Sci. Food Agric. 2014, 94, 2951–2957. [Google Scholar] [CrossRef] [PubMed]
- Lea, A.G.; Arnold, G.M. The phenolics of ciders: Bitterness and astringency. J. Sc. Food Agric. 1978, 29, 478–483. [Google Scholar] [CrossRef]
- Symoneaux, R.; Baron, A.; Marnet, N.; Bauduin, R.; Chollet, S. Impact of apple procyanidins on sensory perception in model cider (part 1): Polymerisation degree and concentration. LWT-Food Sci. Technol. 2014, 57, 22–27. [Google Scholar] [CrossRef]
- Symoneaux, R.; Chollet, S.; Bauduin, R.; Le Quéré, J.M.; Baron, A. Impact of apple procyanidins on sensory perception in model cider (part 2): Degree of polymerization and interactions with the matrix components. LWT-Food Sci. Technol. 2014, 57, 28–34. [Google Scholar] [CrossRef]
- Bedriñana, R.P.; Lobo, A.P.; Madrera, R.R.; Valles, B.S. Characteristics of ice juices and ciders made by cryo-extraction with different cider apple varieties and yeast strains. Food Chem. 2020, 310, 125831. [Google Scholar] [CrossRef]
- Riekstina-Dolge, R.; Kruma, Z.; Dimins, F.; Straumite, E.; Karklina, D. Phenolic composition and sensory properties of ciders produced from Latvian apples. Proc. Latv. Univ. Agr. 2014, 31, 39–45. [Google Scholar] [CrossRef]
- Martin, M.; Padilla-Zakour, O.I.; Gerling, C. Tannin additions to improve the quality of hard cider made from dessert apples. N. Y. State Hort. Soc. 2017, 25, 25–28. [Google Scholar]
- Noble, A.C.; Ebeler, S.E. Use of multivariate statistics in understanding wine flavor. Food Rev. Int. 2002, 18, 1–20. [Google Scholar] [CrossRef]
- Canuti, V.; Picchi, M.; Zanoni, B.; Fia, G.; Bertuccioli, M. A multivariate methodological approach to relate wine to characteristics of grape composition: The case of typicality. Am. J. Enol. Vitic. 2017, 68, 49–59. [Google Scholar] [CrossRef]
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Dambergs, R.G.; Smith, P.A. A brief introduction to multivariate methods in grape and wine analysis. Int. J. Wine Res. 2009, 1, 123–130. [Google Scholar] [CrossRef]
- Álvarez, M.G.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Relationships between Godello white wine sensory properties and its aromatic fingerprinting obtained by GC–MS. Food Chem. 2011, 129, 890–898. [Google Scholar] [CrossRef]
- Niimi, J.; Tomic, O.; Næs, T.; Jeffery, D.W.; Bastian, S.E.; Boss, P.K. Application of sequential and orthogonalised-partial least squares (SO-PLS) regression to predict sensory properties of Cabernet Sauvignon wines from grape chemical composition. Food Chem. 2018, 256, 195–202. [Google Scholar] [CrossRef]
- Aleixandre-Tudo, J.L.; Nieuwoudt, H.; Aleixandre, J.L.; Du Toit, W.J. Robust ultraviolet–visible (UV–Vis) partial least-squares (PLS) models for Tannin quantification in red wine. J. Agric. Food Chem. 2015, 63, 1088–1098. [Google Scholar] [CrossRef]
- Mangas, J.J.; Moreno, J.; Picinelli, A.; Blanco, D. Characterization of cider apple fruits according to their degree of ripening. A chemometric approach. J. Agric. Food Chem. 1998, 46, 4174–4178. [Google Scholar] [CrossRef]
- Lobo, A.P.; Valles, B.S.; Tascon, N.F.; Madrera, R.R.; García, O.F. Calibration models for routine analysis of cider by mid-infrared spectroscopy. LWT-Food Sci. Technol. 2006, 39, 1026–1032. [Google Scholar] [CrossRef]
- Peng, Z.; Iland, P.G.; Oberholster, A.; Sefton, M.A.; Waters, E.J. Analysis of pigmented polymers in red wine by reverse phase HPLC. Aust. J. Grape Wine Res. 2002, 8, 70–75. [Google Scholar] [CrossRef]
- Cozzolino, D.; Smyth, H.E.; Lattey, K.A.; Cynkar, W.; Janik, L.; Dambergs, R.G.; Gishen, M. Relationship between sensory analysis and near infrared spectroscopy in Australian Riesling and Chardonnay wines. Anal. Chim. Acta. 2005, 539, 341–348. [Google Scholar] [CrossRef]
- Zamora, M.C.; Goldner, M.C.; Galmarini, M.V. Sourness–sweetness interactions in different media: White wine, ethanol and water. J. Sens. Stud. 2006, 21, 601–611. [Google Scholar] [CrossRef]
- Corrigan Thomas, C.J.; Lawless, H.T. Astringent subquality in acids. Chem. Sens. 1995, 20, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Brannan, G.D.; Setser, C.S.; Kemp, K.E. Interaction of astringency and taste characteristics. J. Sens. St. 2001, 16, 179–197. [Google Scholar] [CrossRef]
- Symoneaux, R.; Le Quéré, J.M.; Baron, A.; Bauduin, R.; Chollet, S. Impact of CO2 and its interaction with the matrix components on sensory perception in model cider. LWT-Food Sci. Technol. 2015, 63, 886–891. [Google Scholar] [CrossRef]
- Lee, C.B.; Lawless, H.T. Time-course of astringent sensations. Chem. Senses 1991, 16, 225–238. [Google Scholar] [CrossRef]
- Pires, M.A.; Pastrana, L.M.; Fuciños, P.; Abreu, C.S.; Oliveira, S.M. Sensorial perception of astringency: Oral mechanisms and current analysis methods. Foods 2020, 9, 1124. [Google Scholar] [CrossRef]
- Lawless, H.T.; Horne, J.; Giasi, P. Astringency of organic acids is related to pH. Chem. Senses 1996, 21, 397–403. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Anatomy and Physiology and Functions of Taste. In Sensory Evaluation of Food: Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010; pp. 30–33. [Google Scholar]
- Green, B.G.; Lim, J.; Osterhoff, F.; Blacher, K.; Nachtigal, D. Taste mixture interactions: Suppression, additivity, and the predominance of sweetness. Physiol. Behav. 2010, 101, 731–737. [Google Scholar] [CrossRef]
- Frijters, J.E.; Schifferstein, H.N. Perceptual interactions in mixtures containing bitter tasting substances. Physiol. Behav. 1994, 56, 1243–1249. [Google Scholar] [CrossRef]
- Frank, R.A.; Archambo, G. Intensity and hedonic judgments of taste mixtures: An information integration analysis. Chem. Senses 1986, 11, 427–438. [Google Scholar] [CrossRef]
- Schifferstein, H.N.; Frijters, J.E. Sensory integration in citric acid/sucrose mixtures. Chem. Senses 1990, 15, 87–109. [Google Scholar] [CrossRef]
- Keast, R.S.; Breslin, P.A. An overview of binary taste–taste interactions. Food Qual. Prefer. 2003, 14, 111–124. [Google Scholar] [CrossRef]
- Stone, H.; Oliver, S.; Kloehn, J. Temperature and pH effects on the relative sweetness of suprathreshold mixtures of dextrose fructose. Percept. Psychophys. 1969, 5, 257–260. [Google Scholar] [CrossRef]
- Stevens, J.C. Detection of tastes in mixture with other tastes: Issues of masking and aging. Chem. Senses 1996, 21, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, S.S.; Sattely-Miller, E.A.; Graham, B.G.; Bennett, J.L.; Booth, B.J.; Desai, N.; Bishay, I. Effect of temperature, pH, and ions on sweet taste. Physiol. Behav. 2000, 68, 469–481. [Google Scholar] [CrossRef]
- Lyman, B.J.; Green, B.G. Oral astringency: Effects of repeated exposure and interactions with sweeteners. Chem. Senses 1990, 15, 151–164. [Google Scholar] [CrossRef]
- Guinard, J.X.; Pangborn, R.M.; Lewis, M.J. The time-course of astringency in wine upon repeated ingestion. Am. J. Enol. Viticul. 1986, 37, 184–189. [Google Scholar] [CrossRef]
- Brossaud, F.; Cheynier, V.; Noble, A.C. Bitterness and astringency of grape and wine polyphenols. Aust. J. Grape Wine Res 2001, 7, 33–39. [Google Scholar] [CrossRef]
- Fontoin, H.; Saucier, C.; Teissedre, P.L.; Glories, Y. Effect of pH, ethanol and acidity on astringency and bitterness of grape seed tannin oligomers in model wine solution. Food Qual. Pref. 2008, 19, 286–291. [Google Scholar] [CrossRef]
- Kallithra, S.; Bakker, J.; Clifford, M.N. Red wine and model wine astringency as affected by malic acid and lactic acid. J. Food Sci. 1997, 2, 416–442. [Google Scholar] [CrossRef]
- Sowalsky, R.A.; Noble, A.C. Comparison of the effects of concentration, pH and anion species on astringency and sourness of organic acids. Chem. Senses 1998, 23, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Salces, R.M.; Herrero, C.; Barranco, A.; López-Márquez, D.M.; Berrueta, L.A.; Gallo, B.; Vicente, F. Polyphenolic compositions of Basque natural ciders: A chemometric study. Food Chem. 2006, 97, 438–446. [Google Scholar] [CrossRef]
- Ibern-Gómez, M.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M.; Waterhouse, A.L. Rapid HPLC analysis of phenolic compounds in red wines. Am. J. Enol. Vitic. 2002, 53, 218–221. [Google Scholar] [CrossRef]
Cider Facility | Cider-Facility Code | Number of Samples |
---|---|---|
Angry Orchard | AO | 2 |
Applewood Winery | AW | 1 |
Bad Seed Cider Co. | BC | 1 |
Blackbird Cider Works | BB | 4 |
Blackman Homestead | BH | 1 |
Brooklyn Cider House | BK | 2 |
Leonard Oakes Estate Winery | LO | 3 |
Nine Pin | NP | 2 |
Orchard Hill | OH | 2 |
Phonograph Cellars | PC | 1 |
South Hill Cider | SH | 10 |
Wayside Cider | WC | 1 |
Wolffer Estate | WE | 3 |
Kite and String | KS | 7 |
Eve’s Cidery | EC | 4 |
Black Diamond | BD | 13 |
Merchants Daughter | MD | 3 |
Westwind Orchard | WW | 6 |
Treasury Cider | D23 | 4 |
Pennings Farm Cidery | PF | 2 |
Redbyrd Orchard Cider | RB | 3 |
Little Apple Cidery | LA | 1 |
Taste and Mouthfeel Standards Recipe | Compound | Dose (g/L) | Product |
---|---|---|---|
Acidity | citric acid | 7 | Toscolapi (Italy) enological use |
Sweetness | cane sugar | 12 | Italia Zuccheri (Italy) |
Bitterness | caffeine | 1 | Sigma & Aldrich (Saint Louis, MO, USA), food grade |
Astringency | alum | 7 | A.C.E.F. (Italy) |
Alcohol Content (% v/v) | pH | Malic Acid (g/L) | Titratable acidity (g/L Malic Acid) | Residual Sugar (mg/100 mL) | Polyphenols Content (mg/L) | Hydroxybenzoic Acids (mg/L) | Hydroxycinnamic Acids (mg/L) | Abs. 320 nm | Abs. 280 nm | |
---|---|---|---|---|---|---|---|---|---|---|
Calibration samples | ||||||||||
Max | 20.22 | 3.98 | 0.83 | 0.93 | 7689.00 | 5399.0 | 109.7 | 398.0 | 0.3758 | 4.5855 |
Min | 5.03 | 3.26 | 0.00 | 0.25 | 1.00 | 50.4 | 15.0 | 7.0 | 0.0120 | 0.0279 |
Median | 7.28 | 3.62 | 0.47 | 0.56 | 361.83 | 435.7 | 24.5 | 76.5 | 0.0760 | 0.2329 |
Lower quartile (Q1) | 6.69 | 3.50 | 0.22 | 0.43 | 8.08 | 210.5 | 20.8 | 27.0 | 0.0523 | 0.1207 |
Upper quartile (Q3) | 8.16 | 3.82 | 0.61 | 0.69 | 1738.67 | 702.1 | 28.8 | 139.3 | 0.1492 | 0.3858 |
Average | 7.73 | 3.64 | 0.40 | 0.56 | 1248.51 | 824.1 | 28.9 | 101.2 | 0.1117 | 0.5940 |
Validation samples | ||||||||||
Max | 19.03 | 3.99 | 1.45 | 1.62 | 17,059.00 | 5356.2 | 94.3 | 390.3 | 0.4266 | 3.2950 |
Min | 5.67 | 3.27 | 0.00 | 0.33 | 1.00 | 62.0 | 16.0 | 15.0 | 0.0248 | 0.0476 |
Median | 7.68 | 3.63 | 0.48 | 0.55 | 691.17 | 409.4 | 24.0 | 75.7 | 0.0812 | 0.2130 |
Lower quartile (Q1) | 6.79 | 3.54 | 0.37 | 0.48 | 11.67 | 258.0 | 20.0 | 30.3 | 0.0558 | 0.1028 |
Upper quartile (Q3) | 8.18 | 3.68 | 0.61 | 0.69 | 1953.25 | 744.4 | 31.3 | 126.3 | 0.1730 | 0.3730 |
Average | 7.98 | 3.61 | 0.50 | 0.61 | 1758.83 | 793.8 | 31.4 | 101.5 | 0.1313 | 0.4811 |
IRF Scale Scores (Residual Sugar/Malic Acid) | IRF Rating without pH Correction | IRF Rating with pH Correction | NYCA Scale Scores (without pH Correction) IRF with Tannin Correction | NYCA Rating Rating (No pH Correction-IRF with Tannin Correction) | Sensory Dryness Scores | Sensory Rating | |
---|---|---|---|---|---|---|---|
AO1 | 10.049 | sweet | sweet | 10.050 | sweet | 5.5 | semi-sweet |
AW1 | 9.259 | sweet | sweet | 8.510 | sweet | 4.5 | semi-sweet |
BB1 | 3.814 | semi-sweet | sweet | 3.060 | semi-sweet | 3.4 | semi-sweet |
BB3 | 9.534 | sweet | sweet | 8.780 | sweet | 5.6 | semi-sweet |
BH1 | 3.979 | semi-sweet | sweet | 3.980 | semi-sweet | 4.8 | semi-sweet |
BK2 | 1.213 | semi-dry | semi-sweet | 1.210 | semi-dry | 2.9 | semi-dry |
LO2 | 2.587 | semi-sweet | sweet | 1.837 | semi-dry | 1.2 | dry |
NP1 | 0.020 | dry | semi-sweet | 0.020 | dry | 2.3 | semi-dry |
OH1 | 0.034 | dry | semi-sweet | 0.100 | dry | 1.6 | dry |
SH1 | 0.009 | dry | semi-sweet | 0.002 | dry | 1.9 | dry |
WC1 | 0.002 | dry | semi-sweet | 0.002 | dry | 1.4 | dry |
WE2 | 3.211 | semi-sweet | semi-dry | 3.211 | semi-sweet | 5.1 | semi-sweet |
KS1 | 7.265 | sweet | sweet | 7.260 | sweet | 5.2 | semi-sweet |
EC1 | 0.920 | dry | semi-sweet | 0.920 | dry | 2.1 | semi-dry |
BD1 | 0.020 | dry | semi-dry | 0.020 | dry | 2.3 | semi-dry |
BD3 | 0.460 | dry | semi-sweet | 0.460 | dry | 2.0 | dry |
BD5 | 4.330 | sweet | sweet | 4.330 | sweet | 3.6 | semi-dry |
BD7 | 2.640 | semi-sweet | semi-sweet | 2.640 | semi-sweet | 3.1 | semi-dry |
MD1 | 4.069 | sweet | sweet | 3.320 | semi-sweet | 3.6 | semi-dry |
MD3 | 1.008 | semi-dry | semi-sweet | 0.258 | dry | 2.9 | semi-dry |
BD11 | 4.772 | sweet | sweet | 4.522 | sweet | 3.5 | semi-dry |
BD13 | 0.048 | dry | semi-dry | 0.047 | dry | 1.8 | dry |
WW1 | 11.000 | sweet | sweet | 11.000 | sweet | 2.6 | semi-dry |
WW3 | 1.000 | dry | semi-sweet | 1.000 | dry | 3.0 | semi-dry |
WW5 | 5.000 | sweet | sweet | 4.740 | sweet | 2.9 | semi-dry |
EC4 | 4.137 | sweet | sweet | 3.640 | semi-sweet | 3.0 | semi-dry |
SH3 | 9.000 | sweet | semi-sweet | 8.250 | sweet | 2.0 | dry |
SH6 | 0.622 | dry | semi-dry | 0.122 | dry | 2.2 | semi-dry |
SH8 | 0.521 | dry | semi-dry | 0.521 | dry | 2.6 | semi-dry |
SH12 | 1.657 | semi-dry | semi-sweet | 1.450 | semi-dry | 3.4 | semi-dry |
TC1 | 0.533 | dry | semi-dry | 0.533 | dry | 2.3 | semi-dry |
PF1 | 7.333 | sweet | sweet | 7.333 | sweet | 1.8 | dry |
KS3 | 0.022 | dry | semi-dry | 0.001 | dry | 2.5 | semi-dry |
KS5 | 0.622 | dry | semi-dry | 0.622 | dry | 2.8 | semi-dry |
KS8 | 20.449 | sweet | sweet | 20.450 | sweet | 6.3 | sweet |
TC4 | 0.037 | dry | semi-dry | 0.012 | dry | 2.8 | semi-dry |
RB2 | 0.140 | dry | semi-sweet | 0.140 | dry | 2.2 | semi-dry |
WW6 | 1.000 | dry | semi-sweet | 1.000 | dry | 2.3 | semi-dry |
AO2 | 0.002 | dry | semi-sweet | 0.002 | dry | 2.0 | dry |
BC1 | 0.002 | dry | semi-sweet | 0.002 | dry | 1.5 | dry |
BB2 | 6.700 | sweet | sweet | 5.950 | sweet | 5.2 | semi-sweet |
BB4 | 3.744 | semi-sweet | sweet | 2.990 | semi-sweet | 4.4 | semi-sweet |
BK1 | 3.994 | semi-sweet | sweet | 3.994 | semi-sweet | 3.5 | semi-dry |
LO1 | 1.335 | semi-dry | semi-sweet | 0.580 | dry | 2.3 | semi-dry |
LO3 | 5.827 | sweet | sweet | 5.080 | sweet | 4.4 | semi-sweet |
NP2 | 3.722 | semi-sweet | sweet | 2.970 | semi-sweet | 4.3 | semi-sweet |
OH2 | 4.617 | sweet | sweet | 3.870 | semi-sweet | 4.1 | semi-sweet |
PC1 | 3.934 | semi-sweet | sweet | 3.934 | semi-sweet | 3.8 | semi-dry |
WE1 | 3.080 | semi-sweet | sweet | 3.080 | semi-sweet | 3.9 | semi-dry |
WE3 | 3.353 | semi-sweet | sweet | 3.353 | semi-sweet | 4.4 | semi-sweet |
KS2 | 11.789 | sweet | sweet | 11.789 | sweet | 7.0 | semi-sweet |
EC2 | 1.850 | semi-dry | semi-sweet | 1.850 | semi-dry | 2.3 | semi-dry |
BD2 | 2.195 | semi-dry | semi-sweet | 2.195 | semi-dry | 2.2 | semi-dry |
BD4 | 0.004 | dry | semi-dry | 0.004 | dry | 1.8 | dry |
BD6 | 1.670 | semi-dry | semi-sweet | 1.670 | semi-dry | 3.8 | semi-dry |
BD8 | 0.019 | dry | semi-sweet | 0.019 | dry | 1.7 | dry |
MD2 | 8.261 | sweet | sweet | 7.510 | sweet | 5.8 | semi-sweet |
BD9 | 0.032 | dry | semi-sweet | 0.032 | dry | 1.8 | dry |
BD12 | 0.051 | dry | semi-sweet | 0.051 | dry | 2.4 | semi-dry |
BD14 | 4.949 | sweet | sweet | 4.949 | sweet | 3.2 | semi-dry |
WW2 | 1.000 | dry | semi-sweet | 1.000 | dry | 2.6 | semi-dry |
WW4 | 4.000 | semi-sweet | sweet | 4.000 | semi-sweet | 2.6 | semi-dry |
EC3 | 0.030 | dry | semi-sweet | 0.030 | dry | 2.0 | dry |
SH1 | 0.766 | dry | semi-sweet | 0.766 | dry | 3.7 | semi-dry |
SH5 | 178.000 | sweet | sweet | 178.000 | sweet | 2.7 | semi-dry |
SH7 | 0.011 | dry | semi-sweet | 0.011 | dry | 1.9 | dry |
SH11 | 9.554 | sweet | sweet | 9.554 | sweet | 1.8 | dry |
SH13 | 3.299 | semi-sweet | sweet | 3.299 | semi-sweet | 3.3 | semi-dry |
TC2 | 0.047 | dry | semi-sweet | 0.047 | dry | 2.0 | dry |
PF2 | 0.019 | dry | semi-sweet | 0.019 | dry | 2.0 | dry |
KS4 | 1.660 | semi-dry | semi-sweet | 1.660 | semi-dry | 3.7 | semi-dry |
KS7 | 1.724 | semi-dry | semi-dry | 1.724 | semi-dry | 2.9 | semi-dry |
TC3 | 11.931 | sweet | sweet | 11.931 | sweet | 3.1 | semi-dry |
RB1 | 0.179 | dry | semi-dry | 0.179 | dry | 2.4 | semi-dry |
RB3 | 0.193 | dry | semi-sweet | 0.193 | dry | 2.1 | semi-dry |
LA1 | 0.011 | dry | semi-sweet | 0.011 | dry | 3.1 | semi-dry |
IRF Scale—Technical Guideline | |||||
---|---|---|---|---|---|
Sugar-to-Acid Ratio | pH | pH | Shift Due to pH | ||
DRY | <1.0 | 3.1 to 3.2 | if | = or >3.3 | Medium Dry |
3.5 or > | Medium Sweet | ||||
MEDIUM DRY | 1.0 to 2.0 | = or >3.3 | Medium Sweet | ||
< or =2.9 | Dry | ||||
MEDIUM SWEET | 2.1 to 4.0 | = or >3.3 | Sweet | ||
< or =2.9 | Medium Dry | ||||
< or =2.8 | Dry | ||||
SWEET | >4.0 | < or =2.9 | Medium Sweet | ||
< or =2.8 | Medium Dry |
TANNIN CORRECTION | |
---|---|
<500 ppm | The numerical RS/MA remains unadjusted |
501 to 750 | The RS/MA is reduced by ¼ of the unit |
751 to 1000 | The RS/MA is reduced by ½ of the unit |
>1000 ppm | The RS/MA is reduced by ¾ of the unit |
Cider Samples Validation Set | NYCA Scale | Sensory Dryness by QDA | Predicted Dryness Rating by All Chemical Variables (Model #1) | Predicted Dryness Rating by Important Chemical Variables (Model #2) | Predicted Dryness Rating by Selected Chemical Variables (Model #3) |
---|---|---|---|---|---|
AO2 | dry | dry | semi-dry | semi-dry | semi-dry |
BC1 | dry | dry | semi-dry | semi-dry | semi-dry |
BB2 | sweet | semi-sweet | semi-sweet | semi-sweet | semi-sweet |
BB4 | semi-sweet | semi-sweet | semi-dry | semi-dry | semi-sweet |
BK1 | semi-sweet | semi-dry | semi-sweet | semi-dry | semi-dry |
LO1 | dry | semi-dry | dry | dry | dry |
LO3 | sweet | semi-sweet | semi-dry | semi-sweet | semi-sweet |
NP2 | semi-sweet | semi-sweet | semi-dry | semi-dry | semi-sweet |
OH2 | semi-sweet | semi-sweet | semi-dry | semi-dry | semi-dry |
PC1 | semi-sweet | semi-dry | semi-sweet | semi-sweet | semi-sweet |
WE1 | semi-sweet | semi-dry | semi-dry | semi-dry | semi-dry |
WE3 | semi-sweet | semi-sweet | semi-sweet | semi-dry | semi-sweet |
KS2 | sweet | semi-sweet | sweet | sweet | sweet |
EC2 | semi-dry | semi-dry | semi-dry | semi-dry | semi-dry |
BD2 | semi-dry | semi-dry | semi-dry | semi-dry | semi-dry |
BD4 | dry | dry | semidry | dry | dry |
BD6 | semi-dry | semi-dry | semi-dry | semi-dry | semi-dry |
BD8 | dry | dry | dry | dry | dry |
MD2 | sweet | semi-sweet | semi-sweet | semi-sweet | semi-sweet |
BD9 | dry | dry | semi-dry | semi-dry | semidry |
BD12 | dry | semi-dry | semi-dry | semi-dry | semi-dry |
BD14 | sweet | semi-dry | semi-dry | semi-dry | semi-dry |
WW2 | dry | semi-dry | semi-dry | semi-dry | semi-dry |
WW4 | semi-sweet | semi-dry | semi-dry | semi-dry | semi-dry |
EC3 | dry | dry | semi-dry | semi-dry | semi-dry |
SH1 | dry | semi-dry | semi-dry | semi-dry | semi-dry |
SH5 | sweet | semi-dry | dry | semi-dry | semi-dry |
SH7 | dry | dry | semi-dry | semi-dry | semi-dry |
SH11 | sweet | dry | sweet | dry | dry |
SH13 | semi-sweet | semi-dry | semi-dry | semi-dry | semi-dry |
TC2 | dry | dry | semi-dry | semi-dry | semi-dry |
PF2 | dry | dry | semi-dry | semi-dry | semi-dry |
KS4 | semi-dry | semi-dry | semi-dry | semi-dry | semi-dry |
KS7 | semi-dry | semi-dry | semi-dry | semi-dry | semi-sweet |
TC3 | sweet | semi-dry | semi-dry | semi-dry | semi-dry |
RB1 | dry | semi-dry | semi-dry | semi-dry | semi-dry |
RB3 | dry | semi-dry | semi-dry | semi-dry | semi-dry |
LA1 | dry | semi-dry | semi-dry | semi-dry | semi-dry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picchi, M.; Domizio, P.; Wilson, M.; Santos, J.; Orrin, F.; Zanoni, B.; Canuti, V. Chemical Characterization, Sensory Definition and Prediction Model of the Cider Dryness from New York State Apples. Foods 2023, 12, 2191. https://doi.org/10.3390/foods12112191
Picchi M, Domizio P, Wilson M, Santos J, Orrin F, Zanoni B, Canuti V. Chemical Characterization, Sensory Definition and Prediction Model of the Cider Dryness from New York State Apples. Foods. 2023; 12(11):2191. https://doi.org/10.3390/foods12112191
Chicago/Turabian StylePicchi, Monica, Paola Domizio, Matt Wilson, Josè Santos, Frederick Orrin, Bruno Zanoni, and Valentina Canuti. 2023. "Chemical Characterization, Sensory Definition and Prediction Model of the Cider Dryness from New York State Apples" Foods 12, no. 11: 2191. https://doi.org/10.3390/foods12112191
APA StylePicchi, M., Domizio, P., Wilson, M., Santos, J., Orrin, F., Zanoni, B., & Canuti, V. (2023). Chemical Characterization, Sensory Definition and Prediction Model of the Cider Dryness from New York State Apples. Foods, 12(11), 2191. https://doi.org/10.3390/foods12112191