Sugar Kelp (Saccharina latissima) Seaweed Added to a Growing-Finishing Lamb Diet Has a Positive Effect on Quality Traits and on Mineral Content of Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Management and Dietary Treatments
2.2. Feed Composition
2.3. Slaughtering and Muscle Sampling
2.4. Cooking Loss, Shear Force, and Color
2.5. Oxidative Stability
2.6. Fatty Acid and Nutrient Analyses
2.7. Statistics
3. Results
3.1. Weight Gain and Carcass Traits
3.2. Meat Quality
3.3. Nutritive Profile of Meat: Fatty Acids and Minerals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haug, A.; Vhile, S.G.; Berg, J.; Hove, K.; Egelandsdal, B. Feeding potentially health promoting nutrients to finishing bulls changes meat composition and allow for product health claims. Meat Sci. 2018, 145, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Oostindjer, M.; Alexander, J.; Amdam, G.V.; Andersen, G.; Bryan, N.S.; Chen, D.; Corpet, D.E.; De Smet, S.; Dragsted, L.O.; Haug, A.; et al. The role of red and processed meat in colorectal cancer development: A perspective. Meat Sci. 2014, 97, 583–596. [Google Scholar] [CrossRef]
- Lind, V.; Berg, J.; Eilertsen, S.M.; Hersleth, M.; Eik, L.O. Effect of gender on meat quality in lamb from extensive and intensive grazing systems when slaughtered at the end of the growing season. Meat Sci. 2011, 88, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.; Inácio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Seaweed potential in the animal feed: A Review. J. Mar. Sci. Eng. 2020, 8, 559. [Google Scholar] [CrossRef]
- Dahl, L.; Wik Markhus, M.; Sanchez, P.V.R.; Moe, V.; Smith, L.; Meltzer, H.M.; Kjellevold, M. Iodine deficiency in a study population of Norwegian pregnant women—Results from the little in Norway Study (LiN). Nutrients 2018, 10, 513. [Google Scholar] [CrossRef] [PubMed]
- Dierick, N.; Ovyn, A.; De Smet, S. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. J. Sci. Food Agric. 2009, 89, 584–594. [Google Scholar] [CrossRef]
- Grabež, V.; Coll-Brasas, E.; Fulladosa, E.; Hallenstvedt, E.; Håseth, T.T.; Øverland, M.; Berg, P.; Kidane, A.; Egelandsdal, B. Seaweed inclusion in finishing lamb diet promotes changes in micronutrient content and flavour-related compounds of raw meat and dry-cured leg (Fenalår). Foods 2022, 11, 1043. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Sánchez, N.; Avilés Ramírez, C.; Peña Blanco, F.; Gómez-Cortés, P.; de la Fuente, M.Á.; Vioque Amor, M.; Horcada Ibáñez, A.; Martínez Marín, A.L. Effects of algae meal supplementation in feedlot lambs with competent reticular groove reflex on growth performance, carcass traits and meat characteristics. Foods 2021, 10, 857. [Google Scholar] [CrossRef]
- Vahedi, V.; Hedayat-Evrigh, N.; Holman, B.W.B.; Ponnampalam, E.N. Supplementation of macro algae (Azolla pinnata) in a finishing ration alters feed efficiency, blood parameters, carcass traits and meat sensory properties in lambs. Small Rumin. Res. 2021, 203, 106498. [Google Scholar] [CrossRef]
- ISO 9831; Determination of Gross Caloric Value: Bomb Calorimeter Method (ISO 9831), 65.120 Animal Feeding Stuffs. International Organization for Standardization: Geneva, Switzerland, 1998.
- European Commission. Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. Off. J. Eur. Union 2009, 54, 15–19. [Google Scholar]
- AOAC 996.11; Starch (Total) in Cereal Products. Amyloglucosidase-Amylase Method. AOAC International: Rockville, MD, USA, 2005.
- Yingxin, Z.; Li, C.; Heather, B.L.; Zhenyu, W.; Bimol, R.C.; Xin, L.; Dequan, Z.; Wei, Y.; Chengli, H. The influence of vacuum packaging of hot-boned lamb at early postmortem time on meat quality during postmortem chilled storage. Food Sci. Anim. Res. 2022, 42, 816–832. [Google Scholar]
- Khatri, M.; Phung, V.T.; Isaksson, T.; Sørheim, O.; Slinde, E.; Egelandsdal, B. New procedure for improving precision and accuracy of instrumental color measurements of beef. Meat Sci. 2012, 91, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Yi, G.; Haug, A.; Nyquist, N.F.; Egelandsdal, B. Hydroperoxide formation in different lean meats. Food Chem. 2013, 141, 2656–2665. [Google Scholar] [CrossRef] [PubMed]
- R-Biopharm. VitaFast® Vitamin B12 (Cyanocobalamin). 2017. Available online: https://food.r-biopharm.com/products/aoac-ri-certified-vitafast-vitamin-b12-cyanocobalamin/ (accessed on 21 January 2019).
- Iannaccone, M.; Elgendy, R.; Ianni, A.; Martino, C.; Palazzo, F.; Giantin, M.; Grotta, L.; Dacasto, M.; Martino, G. Whole-transcriptome profiling of sheep fed with a high iodine-supplemented diet. Animal 2020, 14, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Kannan, G.; Saker, K.E.; Terrill, T.H.; Kouakou, B.; Galipalli, S.; Gelaye, S. Effect of seaweed extract supplementation in goats exposed to simulated preslaughter stress. Small Rumin. Res. 2007, 73, 221–227. [Google Scholar] [CrossRef]
- Oliveira, G.M.; Rocha, Y.J.P.; Gallo, S.B.; Trinidade, M.A.; Souza, G.M.; Delgado, E.F. Toughness in Santa Inês lamb meat has negative impact on consumer evaluation. Rev. Bras. Saude Prod. Anim. 2019, 20, e0372019. [Google Scholar] [CrossRef]
- Khliji, S.; van de Ven, R.; Lamb, T.A.; Lanza, M.; Hopkins, D.L. Relationship between consumer ranking of lamb colour and objective measures of colour. Meat Sci. 2010, 85, 224–229. [Google Scholar] [CrossRef]
- Corlett, M.T.; Pethick, D.W.; Kelman, K.R.; Jacob, R.H.; Gardner, G.E. Consumer perceptions of meat redness were strongly influenced by storage and display times. Foods 2021, 10, 540. [Google Scholar] [CrossRef]
- Galipalli, S.; Gadiyaram, K.M.; Kouakou, B.; Pringle, T.D.; Kannan, G. Oxidative stability of chevon as influenced by dietary Tasco supplementation in Boer goat bucks. S. Afr. J. Anim. Sci. 2004, 34, 201–203. [Google Scholar]
- Michalak, I.; Tiwari, R.; Dhawan, M.; Alagawany, M.; Farag, M.R.; Sharun, K.; Emran, T.B.; Dhama, K. Antioxidant effects of seaweeds and their active compounds on animal health and production—A review. Vet. Q. 2022, 42, 48–67. [Google Scholar] [CrossRef] [PubMed]
- Fike, J.H.; Allen, V.G.; Schmidt, R.E.; Zhang, X.; Fontenot, J.P.; Bagley, C.P.; Ivy, R.L.; Evans, R.R.; Coelho, R.W.; Wester, D.B. Tasco-Forage: I. Influence of a seaweed extract on antioxidant activity in tall fescue and in ruminants. J. Anim. Sci. 2001, 79, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Insausti, K.; Beriain, M.J.; Purroy, A.; Alberti, P.; Gorraiz, C.; Alzueta, M.J. Shelf life of beef from local Spanish cattle breeds stored under modified atmosphere. Meat Sci. 2001, 57, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Jacinto, V.; Navarro-Roldán, F.; Garbayo-Nores, I.; Vílchez-Lobato, C.; Arias Borrego, A.; García-Barrera, T. In vitro selenium bioaccessibility combined with in vivo bioavailability and bioactivity in Se-enriched microalga (Chlorella sorokiniana) to be used as functional food. J. Funct. Foods 2020, 66, 103817. [Google Scholar] [CrossRef]
- EFSA. Dietary reference values for nutrients. Summary report. EFSA Support. Publ. 2019, 14, e15121. [Google Scholar]
- European Commission. Council Directive of 24 September 1990 on nutrition labelling for foodstuffs (90/496/EEC). Off. J. Eur. Union 1990, L276, 40–44. [Google Scholar]
- EFSA. Scientific opinion on the substantiation of health claims related to iodine and thyroid function and production of thyroid hormones (ID 274), energy-yielding metabolism (ID 274), maintenance of vision (ID 356), maintenance of hair (ID 370), maintenance of nails (ID 370), and maintenance of skin (ID 370) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J. 2009, 7, 1214. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, L364, 5–24. [Google Scholar]
- European Commission. Commission Regulation (EU) 2015/1006 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Off. J. Eur. Union 2015, L161, 14–16. [Google Scholar]
Ingredients | CON a | SW1 2 | SW2 b |
---|---|---|---|
Early cut grass/clover silage | 822.0 | 822.0 | 822.0 |
Wilted seaweed 3 | - | 33.9 | 67.9 |
Compound feed (DRØV lam) 4 | 102.2 | 102.2 | 102.2 |
Rolled barley | 21.6 | 10.8 | - |
VitaMineral® Normal Sau 5 | 4.8 | 4.8 | 4.8 |
GrassAAT Korn 6 | 3.1 | 3.1 | 3.1 |
Added free water | 46.3 | 23.2 | - |
Analyzed content, g/kg DM | |||
Dry matter, g/kg fresh feed | 364.1 | 361.3 | 358.4 |
Crude protein | 190.3 | 189 | 186.4 |
Neutral detergent fiber, NDF | 453.5 | 451.0 | 433.4 |
Acid detergent fiber, ADF | 282 | 281.4 | 279.1 |
Ash | 91.9 | 99.5 | 105.6 |
Starch | 73.4 | 68.8 | 61.3 |
Gross energy (MJ/kg DM) | 19.2 | 19.0 | 18.9 |
Analyzed content of minerals, mg/kg DM feed | |||
Fe | 0.48 | 0.53 | 0.51 |
I | 5.40 | 105.50 | 204.60 |
Se | 0.40 | 0.37 | 0.35 |
Co | 6.77 | 6.70 | 6.73 |
As | 0.14 | 1.83 | 3.66 |
Cd | 0.03 | 0.06 | 0.09 |
Fatty acids, g/kg DM feed | |||
C16:0 | 5.45 | 4.55 | 5.37 |
C18:0 | 0.46 | 0.41 | 0.44 |
C18:1 n−9 | 3.29 | 3.01 | 3.87 |
C18:2 n−6 | 6.46 | 5.61 | 6.96 |
C18:3 n−3 | 9.98 | 7.89 | 9.44 |
Item | CON 1 | SW1 | SW2 | SEM 2 | p-Value |
---|---|---|---|---|---|
ADWG 3 (g/day) | 319.0 | 323.6 | 311.4 | 8.49 | 0.844 |
Dressing percentage | 41.8 | 40.7 | 41.3 | 0.35 | 0.483 |
CCW 4 (kg) | 20.30 | 19.85 | 19.91 | 0.28 | 0.782 |
EU conformation 5 | 9.25 (R+) | 8.88 (R) | 9.75 (R+) | 0.15 | 0.089 |
EU fatness 6 | 7.75 (3−) | 7.50 (3−) | 7.75 (3−) | 0.22 | 0.870 |
Items | Diet 1 | SEM 2 | Muscle 3 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
CON | SW1 | SW2 | LTL | SM | Diet | Muscle | |||
pH | 5.54 b | 5.63 a | 5.47 c | 0.01 | 5.55 | 5.54 | 0.01 | <0.001 | 0.668 |
Cooking losses (%) | 22.94 a | 23.37 a | 19.44 b | 0.25 | 22.59 a | 20.99 b | 0.36 | <0.001 | 0.001 |
SF (N/cm2) 4 | 33.12 a | 28.30 ab | 26.97 b | 1.03 | 32.29 a | 26.34 b | 0.99 | 0.006 | <0.001 |
Item 1 | Day | LTL 2 | SM | SEM 4 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON 3 | SW1 | SW2 | CON | SW1 | SW2 | Diet | Muscle | Diet × Muscle | |||
L* | 0 | 41.59 a | 40.47 b | 40.83 a | 40.86 a | 39.98 b | 41.03 a | 0.33 | 0.002 | 0.152 | 0.249 |
3 | 42.19 A | 42.50 A | 42.65 A | 41.46 B | 40.85 B | 41.77 B | 0.27 | 0.071 | <0.001 | 0.127 | |
6 | 43.20 A | 43.13 A | 42.98 A | 41.98 B | 41.25 B | 42.04 B | 0.34 | 0.179 | <0.001 | 0.506 | |
a* | 0 | 8.13 bB | 8.99 aB | 8.11 bB | 8.77 bA | 9.41 aA | 9.00 bA | 0.17 | <0.001 | <0.001 | 0.279 |
3 | 12.38 b | 13.00 a | 12.04 b | 12.19 b | 13.42 a | 12.48 b | 0.26 | <0.001 | 0.226 | 0.293 | |
6 | 15.51 B | 12.79 B | 12.53 B | 13.05 A | 12.89 A | 12.98 A | 0.24 | 0.917 | 0.034 | 0.526 | |
b* | 0 | 9.15 ab | 9.30 a | 8.68 b | 9.14 ab | 9.22 a | 9.01 b | 0.17 | 0.013 | 0.506 | 0.331 |
3 | 12.89 b | 13.35 a | 12.79 a | 12.45 b | 13.50 a | 13.47 a | 0.19 | <0.001 | 0.347 | 0.005 | |
6 | 13.57 a | 13.05 b | 13.48 a | 13.86 a | 12.55 b | 13.64 a | 0.19 | <0.001 | 0.904 | 0.042 | |
MMb (%) | 26.54 ab | 22.38 b | 30.96 a | 27.69 ab | 23.23 b | 29.88 a | 1.18 | <0.001 | 0.855 | 0.840 |
Items | Diet 1 | Muscle 2 | SEM 3 | p-Value | ||||
---|---|---|---|---|---|---|---|---|
CON | SW1 | SW2 | LTL | SM+ADD | Diet | Muscle | ||
C10:0 | 2.64 | 2.42 | 2.66 | 2.69 | 2.45 | 0.30 | 0.936 | 0.690 |
C12:0 | 3.78 | 4.75 | 4.52 | 3.84 | 4.86 | 0.55 | 0.756 | 0.360 |
C14:0 | 52.0 | 59.4 | 59.12 | 56.57 | 57.11 | 6.51 | 0.873 | 0.967 |
C15:0 | 7.92 | 8.85 | 8.60 | 7.79 | 9.13 | 0.94 | 0.916 | 0.480 |
C16:0 | 460.2 | 487.9 | 492.8 | 493.5 | 467.2 | 39.50 | 0.936 | 0.741 |
C17:0 | 20.82 | 19.62 | 19.83 | 19.63 | 20.55 | 1.90 | 0.963 | 0.809 |
C18:0 | 341.4 | 349.3 | 338.0 | 353.3 | 332.6 | 28.24 | 0.986 | 0.716 |
C20:0 | 1.64 | 1.66 | 2.11 | 1.96 | 1.64 | 0.24 | 0.671 | 0.511 |
C23:0 | 2.07 | 1.91 | 2.24 | 1.80 b | 2.35 a | 0.10 | 0.401 | 0.009 |
iso–C15:0 | 2.75 | 2.78 | 2.77 | 2.79 | 2.74 | 0.36 | 0.990 | 0.934 |
anteiso–C15:0 | 4.47 | 2.27 | 5.10 | 4.56 | 5.33 | 0.42 | 0.720 | 0.364 |
iso–C16:0 | 3.16 | 3.40 | 3.21 | 3.18 | 3.33 | 0.40 | 0.960 | 0.843 |
iso–C17:0 | 9.82 | 10.33 | 10.16 | 9.45 | 10.76 | 0.74 | 0.960 | 0.379 |
iso–C18:0 | 2.47 | 2.35 | 2.21 | 2.44 | 2.25 | 0.28 | 0.930 | 0.732 |
C14:1 n−5 | 1.50 | 1.76 | 1.86 | 1.55 | 1.87 | 0.23 | 0.817 | 0.494 |
C16:1 n−9 | 6.05 | 6.87 | 6.41 | 5.98 | 6.90 | 0.65 | 0.877 | 0.482 |
C16:1 n−7 | 218.58 | 215.5 | 219.24 | 220.66 | 214.9 | 5.33 | 0.955 | 0.592 |
C17:1 n−7 | 8.08 | 8.36 | 7.85 | 7.70 | 8.50 | 0.33 | 0.820 | 0.235 |
C18:1 n−9t | 1.80 | 1.88 | 2.0 | 1.82 | 1.97 | 0.17 | 0.890 | 0.651 |
C18:1 n−8t | 6.44 | 6.05 | 6.57 | 6.33 | 6.38 | 0.44 | 0.883 | 0.954 |
C18:1 n−7t | 32.02 | 32.89 | 31.47 | 31.55 | 32.71 | 3.69 | 0.988 | 0.876 |
C18:1 n−9 | 790 | 752 | 738.7 | 742.4 | 778.0 | 65.09 | 0.947 | 0.786 |
C18:1 n−7 | 20.89 | 20.60 | 21.49 | 19.72 | 22.27 | 1.50 | 0.970 | 0.400 |
C18:1 n−5 | 1.89 a | 1.15 b | 1.43 ab | 1.59 | 1.39 | 0.11 | 0.037 | 0.389 |
C18:2 n−6 t9,12 | 5.15 | 5.16 | 5.07 | 4.78 | 5.47 | 0.49 | 0.997 | 0.486 |
C18:2 n−6 (LA) | 78.95 | 82.45 | 84.88 | 73.86 b | 90.33 a | 2.80 | 0.687 | 0.005 |
C18:3 n−6 | 0.68 | 0.67 | 1.35 | 1.04 | 0.75 | 0.24 | 0.413 | 0.540 |
C18:3 n−3 (ALA) | 29.98 | 29.36 | 31.46 | 27.81 | 32.73 | 1.45 | 0.834 | 0.098 |
C18:2 c9,t11 (CLA) | 14.18 | 17.41 | 15.98 | 14.09 | 17.63 | 1.77 | 0.758 | 0.324 |
C20:2 n−6 | 0.42 | 0.41 | 0.70 | 0.57 | 0.45 | 0.10 | 0.408 | 0.565 |
C20:3 n−6 | 3.52 | 3.57 | 3.46 | 3.21 b | 3.82 a | 0.10 | 0.923 | 0.005 |
C20:4 n−6 | 28.77 | 32.58 | 29.59 | 26.74 b | 33.89 a | 0.82 | 0.151 | <0.001 |
C20:5 n−3 (EPA) | 21.24 | 20.90 | 22.16 | 19.88 b | 22.99 a | 0.58 | 0.658 | 0.010 |
C22:4 n−6 | 1.24 | 1.43 | 1.69 | 1.44 | 1.47 | 0.13 | 0.379 | 0.897 |
C22:5 n−3 (DPA) | 21.11 | 22.64 | 22.45 | 20.00 b | 24.14 a | 0.56 | 0.440 | <0.001 |
C22:6 n−3 (DHA) | 7.35 | 6.87 | 6.86 | 5.92 b | 8.13 a | 0.28 | 0.719 | <0.001 |
∑SFA | 893 | 936 | 929.9 | 941.0 | 898.0 | 77.49 | 0.970 | 0.782 |
∑BCFA | 22.66 | 24.12 | 23.44 | 22.42 | 24.40 | 2.13 | 0.961 | 0.643 |
∑MUFA | 1087 | 1047 | 1037 | 1039.3 | 1075 | 73.40 | 0.958 | 0.810 |
∑PUFA | 212.6 | 223.5 | 225.7 | 199.3 b | 241.8 a | 8.06 | 0.779 | 0.012 |
∑PUFA n−6 | 113.58 | 121.11 | 121.68 | 106.86 b | 130.72 a | 3.71 | 0.614 | 0.003 |
∑PUFA n−3 | 79.68 | 79.78 | 82.92 | 73.60 b | 87.99 a | 2.62 | 0.848 | 0.009 |
∑n−6/∑n−3 | 1.43 | 1.51 | 1.47 | 1.45 | 1.49 | 0.02 | 0.154 | 0.232 |
∑PUFA/∑SFA | 0.29 | 0.29 | 0.27 | 0.24 b | 0.33 a | 0.01 | 0.740 | 0.002 |
Item 1 | CON 2 | SW1 | SW2 | SEM 3 | p-Value |
---|---|---|---|---|---|
Fe (mg/100 g) | 2.61 | 2.66 | 2.75 | 0.13 | 0.430 |
(2.4–2.9) 4 | (2.3–3.1) | (2.4–3.1) | |||
Se | 13.86 b | 15.64 a | 15.64 a | 0.51 | 0.001 |
(12.0–15.4) | (14.3–17.1) | (14.9–16.0) | |||
Cu | 163.6 | 162.1 | 165.7 | 0.01 | 0.856 |
(142.9–188.6) | (148.6–171.4) | (148.6–182.9) | |||
I | 2.34 c | 61.4 b | 88.7 a | 5.02 | <0.001 |
(2.1–3.1) | (41.7–74.4) | (71.7–103.0) | |||
As | 0.23 c | 1.54 b | 3.09 a | 0.20 | <0.001 |
(0.1–1.1) | (1.1–2.0) | (2.6–3.7) | |||
Cd | 0.02 | 0.03 | 0.02 | 0.01 | 0.244 |
(0.01–0.04) | (0.02–0.05) | (0.015–0.02) | |||
Vitamin B12 | 0.90 | 0.85 | 0.92 | 0.09 | 0.668 |
(0.8–1.7) | (0.7–1.0) | (0.6–1.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabež, V.; Devle, H.; Kidane, A.; Mydland, L.T.; Øverland, M.; Ottestad, S.; Berg, P.; Kåsin, K.; Ruud, L.; Karlsen, V.; et al. Sugar Kelp (Saccharina latissima) Seaweed Added to a Growing-Finishing Lamb Diet Has a Positive Effect on Quality Traits and on Mineral Content of Meat. Foods 2023, 12, 2131. https://doi.org/10.3390/foods12112131
Grabež V, Devle H, Kidane A, Mydland LT, Øverland M, Ottestad S, Berg P, Kåsin K, Ruud L, Karlsen V, et al. Sugar Kelp (Saccharina latissima) Seaweed Added to a Growing-Finishing Lamb Diet Has a Positive Effect on Quality Traits and on Mineral Content of Meat. Foods. 2023; 12(11):2131. https://doi.org/10.3390/foods12112131
Chicago/Turabian StyleGrabež, Vladana, Hanne Devle, Alemayehu Kidane, Liv Torunn Mydland, Margareth Øverland, Silje Ottestad, Per Berg, Karoline Kåsin, Lene Ruud, Victoria Karlsen, and et al. 2023. "Sugar Kelp (Saccharina latissima) Seaweed Added to a Growing-Finishing Lamb Diet Has a Positive Effect on Quality Traits and on Mineral Content of Meat" Foods 12, no. 11: 2131. https://doi.org/10.3390/foods12112131
APA StyleGrabež, V., Devle, H., Kidane, A., Mydland, L. T., Øverland, M., Ottestad, S., Berg, P., Kåsin, K., Ruud, L., Karlsen, V., Živanović, V., & Egelandsdal, B. (2023). Sugar Kelp (Saccharina latissima) Seaweed Added to a Growing-Finishing Lamb Diet Has a Positive Effect on Quality Traits and on Mineral Content of Meat. Foods, 12(11), 2131. https://doi.org/10.3390/foods12112131