Quality Attributes of Cold-Stored Khalal Barhi Dates Treated with Guava Leaf Extract and/or Lactic Acid as Natural Preservatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Guava Leaf Extract (GLE)
2.3. HPLC Analysis of GLE
2.4. Treatment of the Fresh Date Fruits
2.5. Shelf-Life Studies of the Treated Date Fruits
2.5.1. Physicochemical Qualities
2.5.2. Total Phenolic Content (TPC)
2.5.3. Antioxidant Activity
2.5.4. Color Parameters
2.5.5. Firmness
2.5.6. Sensory Properties
2.5.7. Microbiological Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. HPLC Analysis of GLE
3.2. Physicochemical Qualities
3.3. TPC and Antioxidant Activity
3.4. Color Parameters
3.5. Firmness
3.6. Sensory Evaluation
3.7. Microbiological Quality
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alqahtani, N.K.; Alnemr, T.M.; Ahmed, A.R.; Ali, S. Effect of Inclusion of Date Press Cake on Texture, Color, Sensory, Microstructure, and Functional Properties of Date Jam. Processes 2022, 10, 2442. [Google Scholar] [CrossRef]
- FAO. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 February 2023).
- Singh, V.; Aggarwal, P.; Kaur, S.; Kaur, N. Intermediate moisture date (Phoenix dactylifera L.) based dessert with natural sugars: Phytonutritional profile, characterization, sensory quality, and shelf-life studies. J. Food Process. Preserv. 2022, 46, e17237. [Google Scholar] [CrossRef]
- Alqahtani, N.K.; Alnemr, T.M.; Ali, S.A. Effects of Pomegranate Peel Extract and/or Lactic Acid as Natural Preservatives on Physicochemical, Microbiological Properties, Antioxidant Activity, and Storage Stability of Khalal Barhi Date Fruits. Foods 2023, 12, 1160. [Google Scholar] [CrossRef] [PubMed]
- Ghafoor, K.; Al-Juhaimi, F.Y.; Babiker, E.E.; Mohamed Ahmed, I.A.; Shahzad, S.A.; Alsawmahi, O.N. Quality Attributes of Refrigerated Barhi Dates Coated with Edible Chitosan Containing Natural Functional Ingredients. Foods 2022, 11, 1584. [Google Scholar] [CrossRef] [PubMed]
- Seddiek, A.S.; Hamad, G.M.; Zeitoun, A.; Zeitoun, M.; Ali, S. Antimicrobial and antioxidant activity of some plant extracts against different food spoilage and pathogenic microbes. Eur. J. Nutr. Food Saf. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Fernandes, M.R.V.; Dias, A.L.T.; Carvalho, R.R.; Souza, C.R.F.; Oliveira, W.P. Antioxidant and antimicrobial activities of Psidium guajava L. spray dried extracts. Ind. Crops Prod. 2014, 60, 39–44. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Amarowicz, R.; Saurabh, V.; Nair, M.S.; Maheshwari, C.; Sasi, M.; Prajapati, U.; Hasan, M.; Singh, S.; et al. Guava (Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Foods 2021, 10, 752. [Google Scholar] [CrossRef]
- Ruksiriwanich, W.; Khantham, C.; Muangsanguan, A.; Phimolsiripol, Y.; Barba, F.J.; Sringarm, K.; Rachtanapun, P.; Jantanasakulwong, K.; Jantrawut, P.; Chittasupho, C.; et al. Guava (Psidium guajava L.) Leaf Extract as Bioactive Substances for Anti-Androgen and Antioxidant Activities. Plants 2022, 11, 3514. [Google Scholar] [CrossRef]
- Raj, M.S.A.; Santhi, V.P.; Amalraj, S.; Murugan, R.; Gangapriya, P.; Pragadheesh, V.S.; Sundaresan, V.; Gurav, S.S.; Paramaguru, P.; Arulmozhian, R.; et al. A comparative analysis of leaf essential oil profile, in vitro biological properties and in silico studies of four Indian Guava (Psidium guajava L.) cultivars, a promising source of functional food. S. Afr. J. Bot. 2023, 153, 357–369. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Tan, S.L.D.; Shiekh, K.A.; Benjakul, S.; Nirmal, N.P. Ethanolic guava leaf extracts with different chlorophyll removal processes: Anti-melanosis, antibacterial properties and the impact on qualities of Pacific white shrimp during refrigerated storage. Food Chem. 2021, 341, 128251. [Google Scholar] [CrossRef]
- Khan, I.; Sangwan, P.L.; Abdullah, S.T.; Gupta, B.D.; Dhar, J.K.; Manickavasagar, R.; Koul, S. Ten marker compounds-based comparative study of green tea and guava leaf by HPTLC densitometry methods: Antioxidant activity profiling. J. Sep. Sci. 2011, 34, 749–760. [Google Scholar] [CrossRef] [PubMed]
- UNDP. United Nations Development Programme. 2015. Available online: https://www.undp.org/sustainable-development-goals?gclid=Cj0KCQjw0tKiBhC6ARIsAAOXutnNtDeznKonqRbo-oIzE1aA_avkRaUJG5i33DmkOHKofRaf3mTwfK8aAulREALw_wcB (accessed on 6 May 2023).
- Miller, C.; Fosmer, A.; Rush, B.; McMullin, T.; Beacom, D.; Suominen, P. 3.17—Industrial Production of Lactic Acid. In Comprehensive Biotechnology, 2nd ed.; Moo-Young, M., Ed.; Academic Press: Burlington, MA, USA, 2011; pp. 179–188. [Google Scholar] [CrossRef]
- Stanojević-Nikolić, S.; Dimić, G.; Mojović, L.; Pejin, J.; Djukić-Vuković, A.; Kocić-Tanackov, S. Antimicrobial Activity of Lactic Acid against Pathogen and Spoilage Microorganisms. J. Food Process. Preserv. 2016, 40, 990–998. [Google Scholar] [CrossRef]
- Seddiek, A.S.; Hamad, G.M.; Zeitoun, A.A.; Zeitoun, M.A.M.; Ali, S. The combined effect of lactic acid and natural plant extracts from guava leaves and pomegranate peel on the shelf life of fresh-cut apple slices during cold storage. Food Res. 2022, 6, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Venkitanarayanan, K.S.; Lin, C.-M.; Bailey, H.; Doyle, M.P. Inactivation of Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes on Apples, Oranges, and Tomatoes by Lactic Acid with Hydrogen Peroxide. J. Food Prot. 2002, 65, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, H.; Liu, Q.; Pang, X.; Zhao, X.; Yang, H. Sanitising efficacy of lactic acid combined with low-concentration sodium hypochlorite on Listeria innocua in organic broccoli sprouts. Int. J. Food Microbiol. 2019, 295, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Casillas, S.; Ibarra-Sánchez, S.; Rodríguez-García, O.; Martínez-Gonzáles, N.; Castillo, A. Comparison of Rinsing and Sanitizing Procedures for Reducing Bacterial Pathogens on Fresh Cantaloupes and Bell Peppers. J. Food Prot. 2007, 70, 655–660. [Google Scholar] [CrossRef]
- Park, S.-H.; Choi, M.-R.; Park, J.-W.; Park, K.-H.; Chung, M.-S.; Ryu, S.; Kang, D.-H. Use of Organic Acids to Inactivate Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on Organic Fresh Apples and Lettuce. J. Food Sci. 2011, 76, M293–M298. [Google Scholar] [CrossRef]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Nguyen, Q.-V.; Huyen, B.; Thi, B.; Tran, M.-Đ.; Nguyen, M.-T.; Doan, M.-D.; Nguyen, A.-D.; Minh Le, T.; Tran, V.-C.; Pham, T.-N. Impact of Different Drying Temperatures on In Vitro Antioxidant and Antidiabetic Activities and Phenolic Compounds of Wild Guava Leaves Collected in the Central Highland of Vietnam. Nat. Prod. Commun. 2022, 17, 1934578X221095349. [Google Scholar]
- Seo, J.; Lee, S.; Elam, M.L.; Johnson, S.A.; Kang, J.; Arjmandi, B.H. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy. Food Sci. Nutr. 2014, 2, 174–180. [Google Scholar] [CrossRef]
- Atia, A.; Abdelkarim, D.; Younis, M.; Alhamdan, A. Effects of pre-storage dipping in calcium chloride and salicylic acid on the quality attributes of stored Khalal Barhi dates. Int. J. Agric. Biol. Eng. 2020, 13, 206–212. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; Haminiuk, C.W.I.; Sora, G.T.S.; Bergamasco, R.; Vieira, A.M.S. Antioxidant and rheological properties of guava jam with added concentrated grape juice. J. Sci. Food Agric. 2014, 94, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Abdelkarim, D.O.; Mohamed Ahmed, I.A.; Ahmed, K.A.; Younis, M.; Yehia, H.M.; Zein El-Abedein, A.I.; Alhamdan, A. Extending the Shelf Life of Fresh Khalal Barhi Dates via an Optimized Postharvest Ultrasonic Treatment. Plants 2022, 11, 2029. [Google Scholar] [CrossRef]
- Alhamdan, A.M.; Fickak, A.; Atia, A.R. Evaluation of sensory and texture profile analysis properties of stored Khalal Barhi dates nondestructively using Vis/NIR spectroscopy. J. Food Process Eng. 2019, 42, e13215. [Google Scholar] [CrossRef]
- Voon, Y.Y.; Hamid, N.S.A.; Rusul, G.; Osman, A.; Quek, S.Y. Physicochemical, microbial and sensory changes of minimally processed durian (Durio zibethinus cv. D24) during storage at 4 and 28 °C. Postharvest Biol. Technol. 2006, 42, 168–175. [Google Scholar] [CrossRef]
- Sampath Kumar, N.S.; Sarbon, N.M.; Rana, S.S.; Chintagunta, A.D.; Prathibha, S.; Ingilala, S.K.; Jeevan Kumar, S.P.; Sai Anvesh, B.; Dirisala, V.R. Extraction of bioactive compounds from Psidium guajava leaves and its utilization in preparation of jellies. AMB Express 2021, 11, 36. [Google Scholar] [CrossRef]
- Kumar, N.; Pratibha; Neeraj; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT 2021, 138, 110435. [Google Scholar] [CrossRef]
- Abu-Shama, H.S.; Abou-Zaid, F.O.F.; El-Sayed, E.Z. Effect of using edible coatings on fruit quality of Barhi date cultivar. Sci. Hortic. 2020, 265, 109262. [Google Scholar] [CrossRef]
- Gull, A.; Bhat, N.; Wani, S.M.; Masoodi, F.A.; Amin, T.; Ganai, S.A. Shelf life extension of apricot fruit by application of nanochitosan emulsion coatings containing pomegranate peel extract. Food Chem. 2021, 349, 129149. [Google Scholar] [CrossRef]
- Abebe, Z.; Tola, Y.B.; Mohammed, A. Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon Esculentum Mill.) fruits. Afr. J. Agric. Res. 2017, 12, 550–565. [Google Scholar]
- Tabikha, M.M.M.; El-Shehawy, S.M.M.; Helal, D.M.A. Changes in Chemical and Nutritional Quality during Cold Storage of Some Fruit and Vegetable Juice Blends. J. Food Dairy Sci. 2010, 1, 181–191. [Google Scholar] [CrossRef]
- Mohammed, M.; Munir, M.; Aljabr, A. Prediction of Date Fruit Quality Attributes during Cold Storage Based on Their Electrical Properties Using Artificial Neural Networks Models. Foods 2022, 11, 1666. [Google Scholar] [CrossRef] [PubMed]
- Tappi, S.; Tylewicz, U.; Romani, S.; Dalla Rosa, M.; Rizzi, F.; Rocculi, P. Study on the quality and stability of minimally processed apples impregnated with green tea polyphenols during storage. Innov. Food Sci. Emerg. Technol. 2017, 39, 148–155. [Google Scholar] [CrossRef]
- Siddiq, M.; Aleid, S.M.; Kader, A.A. Dates: Postharvest Science, Processing Technology and Health Benefits; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Nair, M.S.; Saxena, A.; Kaur, C. Characterization and Antifungal Activity of Pomegranate Peel Extract and its Use in Polysaccharide-Based Edible Coatings to Extend the Shelf-Life of Capsicum (Capsicum annuum L.). Food Bioprocess Technol. 2018, 11, 1317–1327. [Google Scholar] [CrossRef]
- Zheng, W.-W.; Chun, I.-J.; Hong, S.-B.; Zang, Y.-X. Quality characteristics of fresh-cut ‘Fuji’ apple slices from 1-methylcyclopropene-, calcium chloride-, and rare earth-treated intact fruits. Sci. Hortic. 2014, 173, 100–105. [Google Scholar] [CrossRef]
- Yang, G.; Yue, J.; Gong, X.; Qian, B.; Wang, H.; Deng, Y.; Zhao, Y. Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biol. Technol. 2014, 92, 46–53. [Google Scholar] [CrossRef]
- Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2022, 2, 100122. [Google Scholar] [CrossRef]
- Dagnas, S.; Gauvry, E.; Onno, B.; Membré, J.-M. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoilesd Bakery Products. J. Food Prot. 2015, 78, 1689–1698. [Google Scholar] [CrossRef] [PubMed]
- León Peláez, A.M.; Serna Cataño, C.A.; Quintero Yepes, E.A.; Gamba Villarroel, R.R.; De Antoni, G.L.; Giannuzzi, L. Inhibitory activity of lactic and acetic acid on Aspergillus flavus growth for food preservation. Food Control 2012, 24, 177–183. [Google Scholar] [CrossRef]
Polyphenolic Compound | Conc. (mg/g) |
---|---|
Gallic acid | 14.856 ± 0.32 |
Chlorogenic acid | 0.507 ± 0.06 |
Catechin | 0.898 ± 0.07 |
Methyl gallate | 0.064 ± 0.01 |
Caffeic acid | 0.123 ± 0.02 |
Syringic acid | 0.087 ± 0.01 |
Pyrocatechol | 7.589 ± 0.25 |
Rutin | 0.096 ± 0.01 |
Ellagic acid | 18.403 ± 0.41 |
Coumaric acid | ND |
Vanillin | 0.360 ± 0.04 |
Ferulic acid | 1.083 ± 0.08 |
Naringenin | 2.477 ± 0.09 |
Daidzein | ND |
Quercetin | 0.110 ± 0.02 |
Cinnamic acid | 0.004 ± 0.001 |
Apigenin | ND |
Kaempferol | ND |
Hesperetin | ND |
Treatments | Storage Period (Week) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
Moisture content (%) | ||||||
Control | 68.39 ± 0.92 Aa | 67.11 ± 0.76 Aa | 65.30 ± 1.57 Ab | 62.21 ± 0.86 Bc | - | - |
LA | 68.42 ± 1.24 Aa | 67.40 ± 1.15 Aab | 65.64 ± 1.42 Abc | 64.19 ± 1.13 ABcd | 62.28 ± 1.05 Ad | - |
GLE | 68.44 ± 0.77 Aa | 67.53 ± 0.86 Aab | 66.32 ± 1.46 Abc | 64.72 ± 0.88 Ac | 62.54 ± 0.94 Ad | - |
LA + GLE | 68.38 ± 1.31 Aa | 67.58 ± 0.84 Aab | 66.43 ± 1.68 Aab | 65.21 ± 1.42 Abc | 63.73 ± 1.24 Ac | 63.04 ± 1.14 Ac |
Total soluble solids (%) | ||||||
Control | 27.15 ± 0.63 Ad | 29.39 ± 0.57 Ac | 32.65 ± 0.54 Ab | 33.77 ± 0.60 Aa | - | - |
LA | 27.16 ± 0.38 Ad | 29.17 ± 0.55 Ac | 31.76 ± 0.70 Ab | 32.60 ± 0.42 Ba | 33.14 ± 0.39 Aa | - |
GLE | 27.19 ± 0.64 Ad | 28.87 ± 0.68 Ac | 30.23 ± 0.72 Bb | 31.51 ± 0.47 Ca | 32.11 ± 0.62 Ba | - |
LA + GLE | 27.17 ± 0.83 Ad | 28.74 ± 0.60 Ac | 29.92 ± 0.86 Bb | 31.08 ± 0.56 Ca | 31.62 ± 0.61 Ba | 32.02 ± 0.24 Aa |
pH | ||||||
Control | 6.25 ± 0.19 Aa | 6.03 ± 0.54 Aab | 5.60 ± 0.14 Ab | 4.93 ± 0.23 Bc | - | - |
LA | 6.07 ± 0.34 Aa | 5.89 ± 0.35 Aa | 5.64 ± 0.42 Aab | 5.23 ± 0.20 ABbc | 5.07 ± 0.18 Ac | - |
GLE | 6.24 ± 0.47 Aa | 6.07 ± 0.27 Aa | 5.78 ± 0.33 Aab | 5.58 ± 0.56 ABab | 5.19 ± 0.22 Ab | - |
LA + GLE | 6.17 ± 0.33 Aa | 6.05 ± 0.51 Aa | 5.89 ± 0.09 Aab | 5.65 ± 0.32 Aabc | 5.38 ± 0.30 Abc | 5.21 ± 0.13 Ac |
Titratable acidity (%) | ||||||
Control | 0.13 ± 0.05 Ac | 0.17 ± 0.04 Abc | 0.22 ± 0.03 Ab | 0.28 ± 0.04 Aa | - | - |
LA | 0.15 ± 0.06 Ab | 0.17 ± 0.06 Ab | 0.20 ± 0.07 Aab | 0.24 ± 0.03 Aab | 0.27 ± 0.05 Aa | - |
GLE | 0.13 ± 0.04 Ac | 0.15 ± 0.04 Abc | 0.19 ± 0.06 Aabc | 0.22 ± 0.06 Aab | 0.25 ± 0.02 Aa | - |
LA + GLE | 0.14 ± 0.01 Ab | 0.15 ± 0.01 Ab | 0.18 ± 0.03 Aab | 0.21 ± 0.03 Aa | 0.23 ± 0.05 Aa | 0.24 ± 0.04 Aa |
Treatments | Storage Period (Week) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
Total phenolic content (mg GAE/g) | ||||||
Control | 8.18 ± 0.32 Ba | 6.21 ± 0.38 Bb | 4.58 ± 0.41 Bc | 3.27 ± 0.55 Cd | - | - |
LA | 8.19 ± 0.29 Ba | 6.58 ± 0.24 Bb | 5.15 ± 0.34 Bc | 4.54 ± 0.32 Bd | 4.07 ± 0.36 Bd | - |
GLE | 9.91 ± 0.29 Aa | 8.00 ± 0.32 Ab | 6.74 ± 0.42 Ac | 5.07 ± 0.28 ABd | 4.35 ± 0.29 Be | - |
LA + GLE | 9.62 ± 0.32 Aa | 8.61 ± 0.51 Ab | 7.33 ± 0.28 Ac | 5.62 ± 0.43 Ad | 5.04 ± 0.41 Ade | 4.42 ± 0.35 Ae |
DPPH scavenging (%) | ||||||
Control | 44.28 ± 0.82 Ba | 36.35 ± 0.64 Cb | 27.51 ± 0.87 Cc | 23.76 ± 0.62 Dd | - | - |
LA | 44.29 ± 0.77 Ba | 37.14 ± 0.92 Cb | 31.63 ± 0.90 Bc | 27.20 ± 0.75 Cd | 24.46 ± 0.88 Ce | - |
GLE | 48.18 ± 1.23 Aa | 40.38 ± 0.87 Bb | 33.64 ± 1.34 Ac | 29.92 ± 1.45 Bd | 26.13 ± 0.95 Be | - |
LA + GLE | 47.82 ± 1.13 Aa | 42.35 ± 0.93 Ab | 34.56 ± 0.82 Ac | 32.35 ± 1.22 Ad | 30.19 ± 1.19 Ae | 26.87 ± 1.22 Af |
Treatments | Storage Period (Week) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
L* | ||||||
Control | 55.21 ± 1.25 Aa | 50.17 ± 0.75 Bb | 44.61 ± 1.34 Bc | 41.56 ± 0.75 Cd | - | - |
LA | 55.83 ± 0.77 Aa | 51.35 ± 1.09 ABb | 47.94 ± 1.30 Ac | 43.23 ± 0.89 Bd | 41.72 ± 1.19 Bd | - |
GLE | 54.15 ± 1.06 Aa | 51.64 ± 1.30 ABb | 48.50 ± 1.25 Ac | 45.75 ± 1.09 Ad | 42.00 ± 1.36 Be | - |
LA + GLE | 55.00 ± 0.96 Aa | 52.90 ± 1.12 Ab | 50.14 ± 1.43 Ac | 47.13 ± 0.77 Ad | 44.65 ± 1.28 Ae | 42.88 ± 1.12 Ae |
a* | ||||||
Control | 1.43 ± 0.08 Ad | 1.64 ± 0.07 Ac | 1.92 ± 0.06 Ab | 2.13 ± 0.04 Aa | - | - |
LA | 1.44 ± 0.05 Ae | 1.55 ± 0.06 Ad | 1.83 ± 0.09 Ac | 2.00 ± 0.06 Bb | 2.12 ± 0.07 Aa | - |
GLE | 1.35 ± 0.08 Ad | 1.41 ± 0.05 Bd | 1.59 ± 0.04 Bc | 1.85 ± 0.07 Cb | 2.07 ± 0.04 Aa | - |
LA + GLE | 1.32 ± 0.06 Ae | 1.36 ± 0.04 Be | 1.51 ± 0.05 Bd | 1.73 ± 0.04 Dc | 1.84 ± 0.05 Bb | 2.00 ± 0.08 Aa |
b* | ||||||
Control | 36.34 ± 0.88 Aa | 31.08 ± 1.11 Ab | 26.52 ± 0.91 Bc | 22.05 ± 0.81 Cd | - | - |
LA | 36.71 ± 1.19 Aa | 32.15 ± 1.35 Ab | 29.13 ± 0.86 Ac | 25.22 ± 0.68 Bd | 22.34 ± 0.90 Be | - |
GLE | 35.76 ± 1.31 Aa | 32.62 ± 0.84 Ab | 30.07 ± 0.79 Ac | 26.36 ± 1.16 ABd | 23.70 ± 0.83 Be | - |
LA + GLE | 35.14 ± 1.13 Aa | 33.05 ± 0.87 Ab | 30.59 ± 1.05 Ac | 27.54 ± 0.82 Ad | 25.81 ± 0.77 Ae | 23.87 ± 0.58 Af |
Treatments | Storage Period (Week) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
Firmness | ||||||
Control | 1049 ± 6 Aa | 729 ± 5 Cb | 241 ± 7 Dc | 80 ± 5 Dd | - | - |
LA | 1050 ± 7 Aa | 738 ± 8 Cb | 285 ± 5 Cc | 97 ± 9 Cd | 82 ± 3 Ce | - |
GLE | 1046 ± 6 Aa | 753 ± 4 Bb | 322 ± 3 Bc | 139 ± 2 Bd | 86 ± 2 Be | - |
LA + GLE | 1057 ± 6 Aa | 765 ± 3 Ab | 347 ± 6 Ac | 161 ± 4 Ad | 103 ± 1 Ae | 87 ± 3 Af |
Treatments | Storage Period (Week) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
Appearance | ||||||
Control | 8.20 ± 0.59 Aa | 7.61 ± 0.55 Aab | 7.23 ± 0.48 Ab | 6.17 ± 0.77 Ac | - | - |
LA | 8.21 ± 0.62 Aa | 7.85 ± 0.74 Aa | 7.49 ± 0.57 Aab | 6.78 ± 0.36 Abc | 6.29 ± 0.41 Bc | - |
GLE | 8.19 ± 0.26 Aa | 8.00 ± 0.21 Aa | 7.74 ± 0.53 Aa | 7.33 ± 0.75 Aab | 6.75 ± 0.55 ABb | - |
LA + GLE | 8.14 ± 0.53 Aa | 8.06 ± 0.82 Aa | 7.82 ± 0.20 Aab | 7.54 ± 0.91 Aab | 7.12 ± 0.42 Aab | 6.84 ± 0.53 Ab |
Odor | ||||||
Control | 8.32 ± 0.35 Aa | 8.00 ± 0.51 Aab | 7.53 ± 0.35 Abc | 7.22 ± 0.30 Ac | - | - |
LA | 8.17 ± 0.42 Aa | 8.03 ± 0.36 Aab | 7.70 ± 0.47 Aab | 7.41 ± 0.54 Aab | 7.26 ± 0.52 Ab | - |
GLE | 8.38 ± 0.51 Aa | 8.16 ± 0.83 Aa | 7.85 ± 0.80 Aa | 7.56 ± 0.83 Aa | 7.29 ± 0.47 Aa | - |
LA + GLE | 8.26 ± 0.48 Aa | 8.18 ± 0.65 Aa | 8.09 ± 0.19 Aa | 7.73 ± 0.60 Aa | 7.57 ± 0.39 Aa | 7.32 ± 0.45 Aa |
Taste | ||||||
Control | 8.30 ± 0.18 Aa | 8.02 ± 0.20 Aa | 7.59 ± 0.85 Aab | 7.11 ± 0.36 Ab | - | - |
LA | 8.19 ± 0.59 Aa | 8.05 ± 0.36 Aab | 7.78 ± 0.54 Aab | 7.50 ± 0.45 Aab | 7.17 ± 0.61 Ab | - |
GLE | 8.33 ± 0.55 Aa | 8.20 ± 0.61 Aab | 8.01 ± 0.37 Aab | 7.69 ± 0.39 Aab | 7.23 ± 0.80 Ab | - |
LA + GLE | 8.24 ± 0.52 Aa | 8.19 ± 0.40 Aa | 8.08 ± 0.82 Aa | 7.94 ± 0.52 Aa | 7.62 ± 0.74 Aa | 7.32 ± 0.63 Aa |
Texture | ||||||
Control | 8.44 ± 0.31 Aa | 8.10 ± 0.29 Aab | 7.49 ± 0.85 Abc | 6.82 ± 0.77 Ac | - | - |
LA | 8.41 ± 0.52 Aa | 8.28 ± 0.30 Aa | 7.75 ± 0.51 Aab | 7.37 ± 0.65 Ab | 7.04 ± 0.28 Ab | - |
GLE | 8.42 ± 0.49 Aa | 8.34 ± 0.37 Aab | 8.03 ± 0.29 Aab | 7.69 ± 0.36 Abc | 7.10 ± 0.44 Ac | - |
LA + GLE | 8.45 ± 0.32 Aa | 8.39 ± 0.52 Aa | 8.14 ± 0.81 Aa | 7.85 ± 0.54 Aab | 7.51 ± 0.42 Aab | 7.13 ± 0.27 Ab |
Overall acceptability | ||||||
Control | 8.32 ± 0.61 Aa | 7.93 ± 0.57 Aab | 7.46 ± 0.34 Abc | 6.83 ± 0.47 Ac | - | - |
LA | 8.25 ± 0.58 Aa | 8.05 ± 0.64 Aab | 7.68 ± 0.60 Aabc | 7.27 ± 0.82 Abc | 6.94 ± 0.56 Ac | - |
GLE | 8.33 ± 0.91 Aa | 8.18 ± 0.38 Aa | 7.91 ± 0.71 Aab | 7.56 ± 0.91 Aab | 7.09 ± 0.39 Ab | - |
LA + GLE | 8.27 ± 0.28 Aa | 8.21 ± 0.55 Aa | 8.03 ± 0.55 Aab | 7.77 ± 0.72 Aab | 7.46 ± 0.41 Aab | 7.15 ± 0.62 Ab |
Treatments | Storage Period (Week) | |||||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | |
Control | 2.07 ± 0.23 Ad | 2.89 ± 0.30 Ac | 3.38 ± 0.19 Ab | 4.19 ± 0.25 Aa | - | - |
LA | n.d | n.d | 0.58 ± 0.24 Bc | 1.67 ± 0.26 Bb | 2.14 ± 0.23 Aa | - |
GLE | n.d | n.d | 0.55 ± 0.18 Bc | 1.62 ± 0.16 Bb | 2.11 ± 0.16 Aa | - |
LA + GLE | n.d | n.d | 0.46 ± 0.17 Bc | 1.25 ± 0.22 Bb | 1.82 ± 0.20 Aa | 2.00 ± 0.14 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, N.K.; Alnemr, T.M.; Al-Asmari, F.; Ali, S.A. Quality Attributes of Cold-Stored Khalal Barhi Dates Treated with Guava Leaf Extract and/or Lactic Acid as Natural Preservatives. Foods 2023, 12, 2115. https://doi.org/10.3390/foods12112115
Alqahtani NK, Alnemr TM, Al-Asmari F, Ali SA. Quality Attributes of Cold-Stored Khalal Barhi Dates Treated with Guava Leaf Extract and/or Lactic Acid as Natural Preservatives. Foods. 2023; 12(11):2115. https://doi.org/10.3390/foods12112115
Chicago/Turabian StyleAlqahtani, Nashi K., Tareq M. Alnemr, Fahad Al-Asmari, and Salim A. Ali. 2023. "Quality Attributes of Cold-Stored Khalal Barhi Dates Treated with Guava Leaf Extract and/or Lactic Acid as Natural Preservatives" Foods 12, no. 11: 2115. https://doi.org/10.3390/foods12112115
APA StyleAlqahtani, N. K., Alnemr, T. M., Al-Asmari, F., & Ali, S. A. (2023). Quality Attributes of Cold-Stored Khalal Barhi Dates Treated with Guava Leaf Extract and/or Lactic Acid as Natural Preservatives. Foods, 12(11), 2115. https://doi.org/10.3390/foods12112115