Role of Enzymatic Reactions in Meat Processing and Use of Emerging Technologies for Process Intensification
Abstract
:1. Introduction
2. Endogenous Enzyme during Meat Processing
2.1. Conversion of Muscle into Meat
2.2. Meat Products
2.2.1. Dry-Cured Meat Products
2.2.2. Fermented Sausages
3. Exogenous Enzymes in Meat Processing: The Addition of Exogenous Enzymes in Meat Processing
3.1. Restructured Meat Products
3.2. Bioactive Peptides
3.3. Tenderization
4. The Intensification of Enzymatic Reactions through the Use of Emerging Technologies
4.1. Ultrasound
4.2. High Pressure
4.3. Electrical Stimulation
4.3.1. Pulsed Electric Fields (PEF)
4.3.2. Moderate Electric Fields (MEF)
4.4. Supercritical Fluids
5. Conclusions and Future Trends in the Intensification of Enzymatic Reactions in Meat Processing
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lonergan, S.M.; Topel, D.G.; Marple, D.N. The Science of Animal Growth and Meat Technology; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Wang, D.; Cheng, F.; Wang, Y.; Han, J.; Gao, F.; Tian, J.; Zhang, K.; Jin, Y. The Changes Occurring in Proteins during Processing and Storage of Fermented Meat Products and Their Regulation by Lactic Acid Bacteria. Foods 2022, 11, 2427. [Google Scholar] [CrossRef]
- Tatiyaborworntham, N.; Oz, F.; Richards, M.P.; Wu, H. Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chem. 2022, 14, 100317. [Google Scholar] [CrossRef]
- Khan, M.I.; Jung, S.; Nam, K.C.; Jo, C. Postmortem aging of beef with a special reference to the dry aging. Korean J. Food Sci. Anim. Resour. 2016, 36, 159. [Google Scholar] [CrossRef]
- Toldrá, F.; Flores, M. The role of muscle proteases and lipases in flavor development during the processing of dry-cured ham. Crit. Rev. Food Sci. 1998, 38, 331–352. [Google Scholar] [CrossRef]
- Fernandez, M.; Ordóñez, J.A.; Bruna, J.M.; Herranz, B.; de la Hoz, L. Accelerated ripening of dry fermented sausages. Trends Food Sci. Technol. 2000, 11, 201–209. [Google Scholar] [CrossRef]
- Bekhit, A.A.; Hopkins, D.L.; Geesink, G.; Bekhit, A.A.; Franks, P. Exogenous proteases for meat tenderization. Crit. Rev. Food Sci. Nutr. 2014, 54, 1012–1031. [Google Scholar] [CrossRef]
- Chauhan, N.; Singh, J.; Chandra, S.; Chaudhary, V.; Kumar, V. Non-thermal techniques: Application in food industries: A review. J. Pharmacogn. Phytochem. 2018, 7, 1507–1518. [Google Scholar]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.S.; Abert-Vian, M. Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Sentandreu, M.A.; Coulis, G.; Ouali, A. Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends Food Sci. Technol. 2002, 13, 400–421. [Google Scholar] [CrossRef]
- Toldrá, F.; Aristoy, M.C.; Mora, L.; Reig, M. Innovations in value-addition of edible meat by-products. Meat Sci. 2012, 92, 290–296. [Google Scholar] [CrossRef]
- Toldrá, F. The role of muscle enzymes in dry-cured meat products with different drying conditions. Trends Food Sci. Technol. 2006, 17, 164–168. [Google Scholar] [CrossRef]
- Braden, K.W. Converting muscle to meat: The physiology of rigor. In The Science of Meat Quality; John Wiley Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 79–97. [Google Scholar] [CrossRef]
- Ouali, A.; Herrera-Mendez, C.H.; Coulis, G.; Becila, S.; Boudjellal, A.; Aubry, L.; Sentandreu, M.A. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Sci. 2006, 74, 44–58. [Google Scholar] [CrossRef]
- Nowak, D. Enzymes in tenderization of meat-the system of calpains and other systems—A review. Pol. J. Food Nutr. Sci. 2011, 61, 231–237. [Google Scholar] [CrossRef]
- Salmerón, C.; Navarro, I.; Johnston, I.A.; Gutiérrez, J.; Capilla, E. Characterisation and expression analysis of cathepsins and ubiquitin-proteasome genes in gilthead sea bream (Sparus aurata) skeletal muscle. BMC Res. Notes 2015, 8, 1–15. [Google Scholar] [CrossRef]
- Savell, J.W.; Mueller, S.L.; Baird, B.E. The chilling of carcasses. Meat Sci. 2005, 70, 449–459. [Google Scholar] [CrossRef]
- Chauhan, S.S.; England, E.M. Postmortem glycolysis and glycogenolysis: Insights from species comparisons. Meat Sci. 2018, 144, 118–126. [Google Scholar] [CrossRef]
- Koohmaraie, M. Biochemical factors regulating the toughening and tenderization processes of meat. Meat Sci. 1996, 43, 193–201. [Google Scholar] [CrossRef]
- Caballero, B.; Sierra, V.; Olivan, M.; Vega-Naredo, I.; Tomás-Zapico, C.; Alvarez-García, Ó.; Tolivia, D.; Hardeland, R.; Rodríguez-Colunga, M.J.; Coto-Montes, A. Activity of cathepsins during beef aging related to mutations in the myostatin gene. J. Sci. Food Agric. 2007, 87, 192–199. [Google Scholar] [CrossRef]
- Ouali, A.; Gagaoua, M.; Boudida, Y.; Becila, S.; Boudjellal, A.; Herrera-Mendez, C.H.; Sentandreu, M.A. Biomarkers of meat tenderness: Present knowledge and perspectives in regards to our current understanding of the mechanisms involved. Meat Sci. 2013, 95, 854–870. [Google Scholar] [CrossRef]
- Matarneh, S.K.; England, E.M.; Scheffler, T.L.; Gerrard, D.E. The conversion of muscle to meat. In Lawrie’s Meat Science; Woodhead Publishing: Sawston, UK, 2017; pp. 159–185. [Google Scholar] [CrossRef]
- Mancini, R.A.; Hunt, M. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Suman, S.P.; Nair, M.N. Current developments in fundamental and applied aspects of meat color. In New Aspects of Meat Quality; Woodhead Publishing: Sawston, UK, 2017; pp. 111–127. [Google Scholar] [CrossRef]
- Ledward, D.A. Post-slaughter influences on the formation of metyyoglobin in beef muscles. Meat Sci. 1985, 15, 149–171. [Google Scholar] [CrossRef]
- Dashdorj, D.; Tripathi, V.K.; Cho, S.; Kim, Y.; Hwang, I. Dry aging of beef; Review. J. Anim. Sci. Technol. 2016, 58, 1–11. [Google Scholar] [CrossRef]
- Zhang, L.; Barbut, S. Rheological characteristics of fresh and frozen PSE, normal and DFD chicken breast meat. Br. Poult. Sci. 2005, 46, 687–693. [Google Scholar] [CrossRef]
- Théron, L.; Sayd, T.; Chambon, C.; Vénien, A.; Viala, D.; Astruc, T.; Vautier, A.; Santé-Lhoutellier, V. Deciphering PSE-like muscle defect in cooked hams: A signature from the tissue to the molecular scale. Food Chem. 2019, 270, 359–366. [Google Scholar] [CrossRef]
- Rico, E.; Toldrá, F.; Flores, J. Assay of cathepsin D activity in fresh pork muscle and dry-cured ham. Meat Sci. 1991, 29, 287–293. [Google Scholar] [CrossRef]
- Toldrá, F.; Flores, M.; Sanz, Y. Dry-cured ham flavour: Enzymatic generation and process influence. Food Chem. 1997, 59, 523–530. [Google Scholar] [CrossRef]
- Flores, J. Mediterranean vs northern European meat products. Processing technologies and main differences. Food Chem. 1997, 59, 505–510. [Google Scholar] [CrossRef]
- Toldrá, F.; Aristoy, M.C.; Flores, M. Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Res. Int. 2000, 33, 181–185. [Google Scholar] [CrossRef]
- Motilva, M.J.; Toldrá, F.; Nieto, P.; Flores, J. Muscle lipolysis phenomena in the processing of dry-cured ham. Food Chem. 1993, 48, 121–125. [Google Scholar] [CrossRef]
- Arnau, J.; Guerrero, L.; Sárraga, C. The effect of green ham pH and NaCl concentration on cathepsin activities and the sensory characteristics of dry-cured hams. J. Sci. Food Agric. 1998, 77, 387–392. [Google Scholar] [CrossRef]
- García-Rey, R.M.; Garcıa-Garrido, J.A.; Quiles-Zafra, R.; Tapiador, J.; De Castro, M.L. Relationship between pH before salting and dry-cured ham quality. Meat Sci. 2004, 67, 625–632. [Google Scholar] [CrossRef]
- Ruiz-Ramírez, J.; Arnau, J.; Serra, X.; Gou, P. Relationship between water content, NaCl content, pH and texture parameters in dry-cured muscles. Meat Sci. 2005, 70, 579–587. [Google Scholar] [CrossRef]
- Sárraga, C.; Gil, M.; Arnau, J.; Monfort, J.M.; Cussó, R. Effect of curing salt and phosphate on the activity of porcine muscle proteases. Meat Sci. 1989, 25, 241–249. [Google Scholar] [CrossRef]
- Cordoba, J.J.; Antequera, T.; García, C.; Ventanas, J.; Lopez Bote, C.; Asensio, M.A. Evolution of free amino acids and amines during ripening of Iberian cured ham. J. Agric. Food Chem. 1994, 42, 2296–2301. [Google Scholar] [CrossRef]
- Wakamatsu, J.; Okui, J.; Ikeda, Y.; Nishimura, T.; Hattori, A. Establishment of a model experiment system to elucidate the mechanism by which Zn–protoporphyrin IX is formed in nitrite-free dry-cured ham. Meat Sci. 2004, 68, 313–317. [Google Scholar] [CrossRef]
- Wakamatsu, J.I. Evidence of the mechanism underlying zinc protoporphyrin IX formation in nitrite/nitrate-free dry-cured Parma ham. Meat Sci. 2022, 192, 108905. [Google Scholar] [CrossRef]
- Adamsen, C.E.; Møller, J.K.; Parolari, G.; Gabba, L.; Skibsted, L.H. Changes in Zn-porphyrin and proteinous pigments in Italian dry-cured ham during processing and maturation. Meat Sci. 2006, 74, 373–379. [Google Scholar] [CrossRef]
- Møller, J.K.; Adamsen, C.E.; Catharino, R.R.; Skibsted, L.H.; Eberlin, M.N. Mass spectrometric evidence for a zinc–porphyrin complex as the red pigment in dry-cured Iberian and Parma ham. Meat Sci. 2007, 75, 203–210. [Google Scholar] [CrossRef]
- Bou, R.; Llauger, M.; Arnau, J.; Olmos, A.; Fulladosa, E. Formation of Zn-protoporphyrin during the elaboration process of non-nitrified serrano dry-cured hams and its relationship with lipolysis. Food Chem. 2022, 374, 131730. [Google Scholar] [CrossRef]
- Grossi, A.B.; do Nascimento, E.S.; Cardoso, D.R.; Skibsted, L.H. Proteolysis involvement in zinc–protoporphyrin IX formation during Parma ham maturation. Food Res. Int. 2014, 56, 252–259. [Google Scholar] [CrossRef]
- Khozroughi, A.G.; Jander, E.; Schirrmann, M.; Rawel, H.; Kroh, L.W.; Schlüter, O. The role of myoglobin degradation in the formation of zinc protoporphyrin IX in the longissimus lumborum of pork. LWT Food Sci. Technol. 2017, 85, 22–27. [Google Scholar] [CrossRef]
- Demeyer, D.; Hoozee, J.; Mesdom, H. Specificity of lipolysis during dry sausage ripening. J. Food Sci. 1974, 39, 293–296. [Google Scholar] [CrossRef]
- Flores, M.; Toldra, F. Microbial enzymatic activities for improved fermented meats. Trends Food Sci. Technol. 2011, 22, 81–90. [Google Scholar] [CrossRef]
- Talon, R.; Leroy, S.; Lebert, I. Microbial ecosystems of traditional fermented meat products: The importance of indigenous starters. Meat Sci. 2007, 77, 55–62. [Google Scholar] [CrossRef]
- Andrade, M.J.; Córdoba, J.J.; Sánchez, B.; Casado, E.M.; Rodríguez, M. Evaluation and selection of yeasts isolated from dry-cured Iberian ham by their volatile compound production. Food Chem. 2009, 113, 457–463. [Google Scholar] [CrossRef]
- Molly, K.; Demeyer, D.; Johansson, G.; Raemaekers, M.; Ghistelinck, M.; Geenen, I. The importance of meat enzymes in ripening and flavour generation in dry fermented sausages. First results of a European project. Food Chem. 1997, 59, 539–545. [Google Scholar] [CrossRef]
- Trindade, M.A.; Rocha, Y.J.P.; Bekhit, A.E.D.A. Restructured Meat Products. In Advances in Meat Processing Technology; CRC Press: Boca Raton, FL, USA, 2017; pp. 487–504. [Google Scholar]
- Anzani, C.; Boukid, F.; Drummond, L.; Mullen, A.M.; Álvarez, C. Optimising the use of proteins from rich meat co-products and non-meat alternatives: Nutritional, technological and allergenicity challenges. Food Res. Int. 2020, 137, 109575. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Expression of recombinant transglutaminase gene in Pichia pastoris and its uses in restructured meat products. Food Chem. 2019, 291, 245–252. [Google Scholar] [CrossRef]
- Santhi, D.; Kalaikannan, A.; Malairaj, P.; Arun Prabhu, S. Application of microbial transglutaminase in meat foods: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2071–2076. [Google Scholar] [CrossRef]
- Tarté, R. (Ed.) Ingredients in Meat Products: Properties, Functionality and Applications; Springer Science Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Kaufmann, A.; Köppel, R.; Widmer, M. Determination of microbial transglutaminase in meat and meat products. Food Addit. Contam. 2012, 29, 1364–1373. [Google Scholar] [CrossRef]
- Baugreet, S.; Kerry, J.P.; Brodkorb, A.; Gomez, C.; Auty, M.; Allen, P.; Hamill, R.M. Optimisation of plant protein and transglutaminase content in novel beef restructured steaks for older adults by central composite design. Meat Sci. 2018, 142, 65–77. [Google Scholar] [CrossRef]
- Ahhmed, A.M.; Kawahara, S.; Ohta, K.; Nakade, K.; Soeda, T.; Muguruma, M. Differentiation in improvements of gel strength in chicken and beef sausages induced by transglutaminase. Meat Sci. 2007, 76, 455–462. [Google Scholar] [CrossRef]
- Fulladosa, E.; Serra, X.; Gou, P.; Arnau, J. Effects of potassium lactate and high pressure on transglutaminase restructured dry-cured hams with reduced salt content. Meat Sci. 2009, 82, 213–218. [Google Scholar] [CrossRef]
- Colmenero, F.J.; Ayo, M.J.; Carballo, J. Physicochemical properties of low sodium frankfurter with added walnut: Effect of transglutaminase combined with caseinate, KCl and dietary fibre as salt replacers. Meat Sci. 2005, 69, 781–788. [Google Scholar] [CrossRef]
- Askin, O.O.; Kilic, B. Effect of microbial transglutaminase, sodium caseinate and non-fat dry milk on quality of salt-free, low fat turkey döner kebab. LWT Food Sci. Technol. 2009, 42, 1590–1596. [Google Scholar] [CrossRef]
- Jakubczyk, A.; Karaś, M.; Rybczyńska-Tkaczyk, K.; Zielińska, E.; Zieliński, D. Current trends of bioactive peptides—New sources and therapeutic effect. Foods 2020, 9, 846. [Google Scholar] [CrossRef]
- Muguruma, M.; Ahhmed, A.M.; Katayama, K.; Kawahara, S.; Maruyama, M.; Nakamura, T. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: Evaluation of its antihypertensive effects in vivo. Food Chem. 2009, 114, 516–522. [Google Scholar] [CrossRef]
- Arihara, K.; Yokoyama, I.; Ohata, M. Bioactivities generated from meat proteins by enzymatic hydrolysis and the Maillard reaction. Meat Sci. 2021, 180, 108561. [Google Scholar] [CrossRef]
- Kim, S.K.; Byun, H.G.; Park, P.J.; Shahidi, F. Angiotensin I converting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. J. Agric. Food Chem. 2001, 49, 2992–2997. [Google Scholar] [CrossRef]
- Arrutia, F.; Puente, Á.; Riera, F.A.; Menéndez, C.; González, U.A. Influence of heat pre-treatment on BSA tryptic hydrolysis and peptide release. Food Chem. 2016, 202, 40–48. [Google Scholar] [CrossRef]
- Saiga, A.I.; Tanabe, S.; Nishimura, T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J. Agric. Food Chem. 2003, 51, 3661–3667. [Google Scholar] [CrossRef]
- Li, T.; Shi, C.; Zhou, C.; Sun, X.; Ang, Y.; Dong, X.; Huang, M.; Zhou, G. Purification and characterization of novel antioxidant peptides from duck breast protein hydrolysates. LWT 2020, 125, 109215. [Google Scholar] [CrossRef]
- Wang, J.; Lu, S.; Li, R.; Wang, Y.; Huang, L. Identification and characterization of antioxidant peptides from Chinese dry-cured mutton ham. J. Sci. Food Agric. 2020, 100, 1246–1255. [Google Scholar] [CrossRef]
- Kim, E.K.; Lee, S.J.; Jeon, B.T.; Moon, S.H.; Kim, B.; Park, T.K.; Han, J.-S.; Park, P.J. Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison protein. Food Chem. 2009, 114, 1365–1370. [Google Scholar] [CrossRef]
- Koohmaraie, M.; Geesink, G.H. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 2006, 74, 34–43. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Ramírez-Suarez, J.C.; Yada, R.Y. Plant proteases for bioactive peptides release: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2147–2163. [Google Scholar] [CrossRef]
- Troncoso, D.F.; Sánchez, A.D.; Ferreira, L.M. Production of plant proteases and new biotechnological applications: An updated review. ChemistryOpen 2022, 11, e202200017. [Google Scholar] [CrossRef]
- Konno, K.; Hirayama, C.; Nakamura, M.; Tateishi, K.; Tamura, Y.; Hattori, M.; Kohno, K. Papain protects papaya trees from herbivorous insects: Role of cysteine proteases in latex. Plant J. 2004, 37, 370–378. [Google Scholar] [CrossRef]
- Dransfield, E.; Etherington, D. Enzymes in the Tenderisation of Meat. In Enzymes and Food Processing; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Ashie, I.N.A.; Sorensen, T.L.; Nielsen, P.M. Effects of papain and a microbial enzyme on meat proteins and beef tenderness. J. Food Sci. 2002, 67, 2138–2142. [Google Scholar] [CrossRef]
- Istrati, D. The influence of enzymatic tenderization with papain on functional properties of adult beef. J. Agroaliment. Process. Technol. 2008, 14, 140–146. [Google Scholar]
- Kim, H.J.; Taub, I.A. Specific degradation of myosin in meat by bromelain. Food Chem. 1991, 40, 337–343. [Google Scholar] [CrossRef]
- Ionescu, A.; Aprodu, I.; Pascaru, G. Effect of papain and bromelin on muscle and collagen proteins in beef meat. Ann. Univ. Dunarea Galati. Fascicle VI-Food Technol. 2008, 32, 9–16. [Google Scholar]
- Ramezani, R.; Aminlari, M.; Fallahi, H. Effect of chemically modified soy proteins and ficin-tenderized meat on the quality attributes of sausage. J. Food Sci. 2003, 68, 85–88. [Google Scholar] [CrossRef]
- Naqvi, Z.B.; Campbell, M.A.; Latif, S.; Thomson, P.C.; McGill, D.M.; Warner, R.D.; Friend, M.A. Improving tenderness and quality of M. biceps femoris from older cows through concentrate feeding, zingibain protease and sous vide cooking. Meat Sci. 2021, 180, 108563. [Google Scholar] [CrossRef]
- Sullivan, G.A.; Calkins, C.R. Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat Sci. 2010, 85, 730–734. [Google Scholar] [CrossRef]
- Mali, A.M.; Chavan, N.S. In vitro rapid regeneration through direct organogenesis and ex-vitro establishment of Cucumis trigonus Roxb.—An underutilized pharmaceutically important cucurbit. Ind. Crops Prod. 2016, 83, 48–54. [Google Scholar] [CrossRef]
- Naveena, B.M.; Mendiratta, S.K.; Anjaneyulu, A.S.R. Tenderization of buffalo meat using plant proteases from Cucumis trigonus Roxb (Kachri) and Zingiber officinale roscoe (Ginger rhizome). Meat Sci. 2004, 68, 363–369. [Google Scholar] [CrossRef]
- Han, J.; Morton, J.D.; Bekhit, A.E.D.; Sedcole, J.R. Pre-rigor infusion with kiwifruit juice improves lamb tenderness. Meat Sci. 2009, 82, 324–330. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, Q.; Liu, H.J.; Li, S.Z.; Jiang, Z.Q. Characterization of actinidin from Chinese kiwifruit cultivars and its applications in meat tenderization and production of angiotensin I-converting enzyme (ACE) inhibitory peptides. LWT 2017, 78, 1–7. [Google Scholar] [CrossRef]
- Christensen, M.; Tørngren, M.A.; Gunvig, A.; Rozlosnik, N.; Lametsch, R.; Karlsson, A.H.; Ertbjerg, P. Injection of marinade with actinidin increases tenderness of porcine M. Biceps femoris and affects myofibrils and connective tissue. J. Sci. Food Agric. 2009, 89, 1607–1614. [Google Scholar] [CrossRef]
- Qihe, C.; Guoqing, H.; Yingchun, J.; Hui, N. Effects of elastase from a Bacillus strain on the tenderization of beef meat. Food Chem. 2006, 98, 624–629. [Google Scholar] [CrossRef]
- Mulet, A.; Cárcel, J.A.; Sanjuan, N.; Bon, J. New food drying technologies-Use of ultrasound. Food Sci. Technol. Int. 2003, 9, 215–221. [Google Scholar] [CrossRef]
- Soria, A.C.; Villamiel, M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 2010, 21, 323–331. [Google Scholar] [CrossRef]
- Şener, N.; Apar, D.K.; Özbek, B. A modelling study on milk lactose hydrolysis and β-galactosidase stability under sonication. Process Biochem. 2006, 41, 1493–1500. [Google Scholar] [CrossRef]
- de Souza Soares, A.; Augusto, P.E.D.; Júnior, B.R.D.C.L.; Nogueira, C.A.; Vieira, É.N.R.; de Barros, F.A.R.; Stringheta, P.C.; Ramos, A.M. Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase: Investigation on substrate, enzyme and kinetics parameters. LWT 2019, 107, 164–170. [Google Scholar] [CrossRef]
- Wang, D.; Ma, X.; Yan, L.; Chantapakul, T.; Wang, W.; Ding, T.; Ye, X.; Liu, D. Ultrasound assisted enzymatic hydrolysis of starch catalyzed by glucoamylase: Investigation on starch properties and degradation kinetics. Carbohydr. Polym. 2017, 175, 47–54. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, L.; Wang, W.; Zou, M.; Ding, T.; Ye, X.; Liu, D. Synergistic effect and mechanisms of combining ultrasound and pectinase on pectin hydrolysis. Food Bioprocess Technol. 2016, 9, 1249–1257. [Google Scholar] [CrossRef]
- Chen, X.; Luo, Y.; Qi, B.; Luo, J.; Wan, Y. Improving the hydrolysis efficiency of soy sauce residue using ultrasonic probe-assisted enzymolysis technology. Ultrason. Sonochemistry 2017, 35, 351–358. [Google Scholar] [CrossRef]
- Khan, M.K.; Imran, M.; Ahmad, M.H.; Hassan, S.; Sattar, S. Ultrasound for beverage processing. In Design and Optimization of Innovative Food Processing Techniques Assisted by Ultrasound; Academic Press: Cambridge, MA, USA, 2021; pp. 189–215. [Google Scholar] [CrossRef]
- Yao, Y.; Pan, Y.; Liu, S. Power ultrasound and its applications: A state-of-the-art review. Ultrason. Sonochem. 2020, 62, 104722. [Google Scholar] [CrossRef]
- Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Food Structure Development/Production Through Flexible Processes: The Use of Electric Fields to Enable Food Manufacturing. Handb. Food Struct. Dev. 2019, 18, 422. [Google Scholar]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of ultrasound in food science and technology: A perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef]
- Xiong, Y.L. Muscle proteins. In Proteins in Food Processing; Woodhead Publishing: Sawston, UK, 2018; pp. 127–148. [Google Scholar] [CrossRef]
- Jayasooriya, S.D.; Bhandari, B.R.; Torley, P.; D’arcy, B.R. Effect of high power ultrasound waves on properties of meat: A review. Int. J. Food Prop. 2004, 7, 301–319. [Google Scholar] [CrossRef]
- Got, F.; Culioli, J.; Berge, P.; Vignon, X.; Astruc, T.; Quideau, J.M.; Lethiecq, M. Effects of high-intensity high-frequency ultrasound on ageing rate, ultrastructure and some physico-chemical properties of beef. Meat Sci. 1999, 51, 35–42. [Google Scholar] [CrossRef]
- Xiong, G.Y.; Zhang, L.L.; ZhanG, W.; Wu, J. Influence of ultrasound and proteolytic enzyme inhibitors on muscle degradation, tenderness, and cooking loss of hens during aging. Czech J. Food Sci. 2012, 30, 195–205. [Google Scholar] [CrossRef]
- Lima, J.L.; Bezerra, T.K.; Carvalho, L.M.; Galvão, M.S.; Lucena, L.; Rocha, T.C.; Estevez, M.; Madruga, M.S. Improving the poor texture and technological properties of chicken wooden breast by enzymatic hydrolysis and low-frequency ultrasound. J. Food Sci. 2022, 87, 2364–2376. [Google Scholar] [CrossRef]
- Mehrabani, A.; Javan, A.J.; Hesarinejad, M.A.; Mahdavi, A.; Parsaeimehr, M. The combined effect of ultrasound treatment and leek (Allium ampeloprasum) extract on the quality properties of beef. Food Biosci. 2022, 47, 101622. [Google Scholar] [CrossRef]
- Bhatta, S.; Stevanovic Janezic, T.; Ratti, C. Freeze-drying of plant-based foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef]
- Gambuteanu, C.; Alexe, P. Comparison of thawing assisted by low-intensity ultrasound on technological properties of pork Longissimus dorsi muscle. J. Food Sci. Technol. 2015, 52, 2130–2138. [Google Scholar] [CrossRef]
- Contreras, M.; Benedito, J.; Bon, J.; García-Pérez, J.V. Intensification of heat transfer during mild thermal treatment of dry-cured ham by using airborne ultrasound. Ultrason. Sonochemistry 2018, 41, 206–212. [Google Scholar] [CrossRef]
- Abril, B.; Sánchez-Torres, E.A.; Bou, R.; García-Pérez, J.V.; Benedito, J. Ultrasound intensification of Ferrochelatase extraction from pork liver as a strategy to improve ZINC-protoporphyrin formation. Ultrason. Sonochem. 2021, 78, 105703. [Google Scholar] [CrossRef]
- Barekat, S.; Soltanizadeh, N. Effects of ultrasound on microstructure and enzyme penetration in beef longissimus lumborum muscle. Food Bioprocess Technol. 2018, 11, 680–693. [Google Scholar] [CrossRef]
- Ozuna, C.; Puig, A.; García-Pérez, J.V.; Mulet, A.; Cárcel, J.A. Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. J. Food Eng. 2013, 119, 84–93. [Google Scholar] [CrossRef]
- Ojha, K.S.; Keenan, D.F.; Bright, A.; Kerry, J.P.; Tiwari, B.K. Ultrasound assisted diffusion of sodium salt replacer and effect on physicochemical properties of pork meat. Int. J. Food Sci. Technol. 2016, 51, 37–45. [Google Scholar] [CrossRef]
- Aganovic, K.; Hertel, C.; Vogel, R.F.; Johne, R.; Schlüter, O.; Schwarzenbolz, U.; Jäger, H.; Holzhauser, T.; Bergmair, J.; Roth, A.; et al. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3225–3266. [Google Scholar] [CrossRef]
- Roobab, U.; Fidalgo, L.G.; Arshad, R.N.; Khan, A.W.; Zeng, X.; Bhat, Z.F.; Bekhit, A.E.A.; Batool, Z.; Aadil, R.M. High-pressure processing of fish and shellfish products: Safety, quality, and research prospects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3297–3325. [Google Scholar] [CrossRef]
- Torres Bello, E.F.; González Martínez, G.; Klotz Ceberio, B.F.; Rodrigo, D.; Martínez López, A. High pressure treatment in foods. Foods 2014, 3, 476–490. [Google Scholar] [CrossRef]
- Mañas, P.; Pagán, R. Microbial inactivation by new technologies of food preservation. J. Appl. Microbiol. 2005, 98, 1387–1399. [Google Scholar] [CrossRef]
- Saldo, J.; Sendra, E.; Guamis, B. High hydrostatic pressure for accelerating ripening of goat’s milk cheese: Proteolysis and texture. J. Food Sci. 2000, 65, 636–640. [Google Scholar] [CrossRef]
- Hayashi, R.; Kawamura, Y.; Kunugi, S. Introduction of high pressure to food processing: Preferential proteolysis of β-lactoglobulin in milk whey. J. Food Sci. 1987, 52, 1107–1108. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.W.; Yu, S.H.; Lee, J.; Cho, H.T.; Heo, W.; Park, S.J.; Lee, J.H.; Kim, Y.J. Utilization of Pectinase Cocktail and High Hydrostatic Pressure for the Production of Aged Black Garlic Juice with Improved Nutritional Value. Prev. Nutr. Food Sci. 2019, 24, 357. [Google Scholar] [CrossRef]
- Jung, S.; Ghoul, M.; de Lamballerie-Anton, M. Influence of high pressure on the color and microbial quality of beef meat. LWT Food Sci. Technol. 2003, 36, 625–631. [Google Scholar] [CrossRef]
- Rivas-Cañedo, A.; Martínez-Onandi, N.; Gaya, P.; Nuñez, M.; Picon, A. Effect of high-pressure processing and chemical composition on lipid oxidation, aminopeptidase activity and free amino acids of Serrano dry-cured ham. Meat Sci. 2021, 172, 108349. [Google Scholar] [CrossRef] [PubMed]
- Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K.H.; Guyon, C.; Stübler, A.; de Lamballerie, M.; Hertel, C.; Brüggemann, D.A. High-pressure processing of meat: Molecular impacts and industrial applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 332–368. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yuan, Y.; Bi, X.; Zhang, L.; Xing, Y.; Che, Z. Tenderization of yak meat by the combination of papain and high-pressure processing treatments. Food Bioprocess Technol. 2019, 12, 681–693. [Google Scholar] [CrossRef]
- Warner, R.; McDonnell, C.; Bekhit, A.; Claus, J.; Vaskoska, R.; Sikes, A.; Dunshea, F.; Ha, M. Systematic review of emerging and innovative technologies for meat tenderisation. Meat Sci. 2017, 132, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Sikes, A.; Tornberg, E.; Tume, R. A proposed mechanism of tenderising post-rigor beef using high pressure–heat treatment. Meat Sci. 2010, 84, 390–399. [Google Scholar] [CrossRef]
- Ma, H.J.; Ledward, D.A. High pressure/thermal treatment effects on the texture of beef muscle. Meat Sci. 2004, 268, 347–355. [Google Scholar] [CrossRef]
- Jung, S.; de Lamballerie-Anton, M.; Ghoul, M. Modifications of ultrastructure and myofibrillar proteins of post-rigor beef treated by high pressure. LWT Food Sci. Technol. 2000, 33, 313–319. [Google Scholar] [CrossRef]
- Jemai, A.B.; Vorobiev, E. Effect of moderate electric field pulses on the diffusion coefficient of soluble substances from apple slices. Int. J. Food Sci. Technol. 2002, 37, 73–86. [Google Scholar] [CrossRef]
- Martín Municio, E.; Raso Pueyo, J. Aplicaciones de los Pulsos Eléctricos de Alto Voltaje para el Procesado y Conservación de Alimentos. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2018. [Google Scholar]
- Martínez, J.M.; Delso, C.; Álvarez, I.; Raso, J. Pulsed electric field-assisted extraction of valuable compounds from microorganisms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 530–552. [Google Scholar] [CrossRef]
- Raso-Pueyo, J.; Heinz, V. (Eds.) Pulsed Electric Fields Technology for the Food Industry: Fundamentals And applications; Springer Science Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Soliva-Fortuny, R.; Balasa, A.; Knorr, D.; Martín-Belloso, O. Effects of pulsed electric fields on bioactive compounds in foods: A review. Trends Food Sci. Technol. 2009, 20, 544–556. [Google Scholar] [CrossRef]
- Yeom, H.W.; Zhang, Q.H.; Dunne, C.P. Inactivation of papain by pulsed electric fields in a continuous system. Food Chem. 1999, 67, 53–59. [Google Scholar] [CrossRef]
- Leong, S.Y.; Oey, I. Effect of pulsed electric field treatment on enzyme kinetics and thermostability of endogenous ascorbic acid oxidase in carrots (Daucus carota cv. Nantes). Food Chem. 2014, 146, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Giner, J.; Gimeno, V.; Espachs, A.; Elez, P.; Barbosa-Cánovas, G.V.; Martín, O. Inhibition of tomato (Licopersicon esculentum Mill.) pectin methylesterase by pulsed electric fields. Innov. Food Sci. Emerg. Technol. 2000, 1, 57–67. [Google Scholar] [CrossRef]
- Giner, J.; Gimeno, V.; Barbosa-Cánovas, G.V.; Martín, O. Effects of pulsed electric field processing on apple and pear polyphenoloxidases. Food Sci. Technol. Int. 2001, 7, 339–345. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Mungure, T.E.; Jayawardena, S.R.; Bekhit, A.E.D.A. Effect of pulsed electric field on calpain activity and proteolysis of venison. Innov. Food Sci. Emerg. Technol. 2019, 52, 131–135. [Google Scholar] [CrossRef]
- Carne, A.; van de Ven, R.; Bekhit, A.E.D.A.; Hopkins, D.L. Effect of pulsed electric field on the proteolysis of cold boned beef M. Longissimus lumborum and M. Semimembranosus. Meat Sci. 2015, 100, 222–226. [Google Scholar] [CrossRef]
- Bekhit, A.E.D.A.; Carne, A.; de Ven, R.; Hopkins, D.L. Effect of repeated pulsed electric field treatment on the quality of hot-boned beef loins and topsides. Meat Sci. 2016, 111, 139–146. [Google Scholar] [CrossRef]
- Faridnia, F.; Bekhit, A.E.D.A.; Niven, B.; Oey, I. Impact of pulsed electric fields and post-mortem vacuum ageing on beef longissimus thoracis muscles. Int. J. Food Sci. Technol. 2014, 49, 2339–2347. [Google Scholar] [CrossRef]
- Arroyo, C.; Eslami, S.; Brunton, N.P.; Arimi, J.M.; Noci, F.; Lyng, J.G. An assessment of the impact of pulsed electric fields processing factors on oxidation, color, texture, and sensory attributes of turkey breast meat. Poult. Sci. 2015, 94, 1088–1095. [Google Scholar] [CrossRef]
- Judge, M.D.; Reeves, E.S.; Aberle, E.D. Effect of electrical stimulation on thermal shrinkage of bovine muscle collagen. J. Anim. Sci. 1981, 52, 530–534. [Google Scholar] [CrossRef]
- Ma, Q.; Hamid, N.; Oey, I.; Kantono, K.; Faridnia, F.; Yoo, M.; Farouk, M. Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats. Innov. Food Sci. Emerg. Technol. 2016, 37, 359–374. [Google Scholar] [CrossRef]
- Kantono, K.; Hamid, N.; Ma, Q.; Oey, I.; Farouk, M. Changes in the physicochemical properties of chilled and frozen-thawed lamb cuts subjected to pulsed electric field processing. Food Res. Int. 2021, 141, 110092. [Google Scholar] [CrossRef]
- Gutiérrez, F.F.V. Calentador óhmico para extracción de aceites esenciales de plantas aromáticas. Sci. Tech. 2018, 23, 160–167. [Google Scholar]
- Bou, R.; Navarro-Vozmediano, P.; Domínguez, R.; López-Gómez, M.; Pinent, M.; Ribas-Agustí, A.; Benedito, J.J.; Lorenzo, J.M.; Terra, X.; García-Pérez, J.V.; et al. Application of emerging technologies to obtain legume protein isolates with improved techno-functional properties and health effects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2200–2232. [Google Scholar] [CrossRef]
- Pereira, R.N.; Rodrigues, R.M.; Genisheva, Z.; Oliveira, H.; de Freitas, V.; Teixeira, J.A.; Vicente, A.A. Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. LWT 2016, 74, 493–503. [Google Scholar] [CrossRef]
- Durham, E.K.; Sastry, S.K. Moderate Electric Field Treatment Enhances Enzymatic Hydrolysis of Cellulose at Below-Optimal Temperatures. Enzym. Microb. Technol. 2020, 142, 109678. [Google Scholar] [CrossRef]
- Li, D.; Wu, Z.; Wang, P.; Xu, E.; Cui, B.; Han, Y.; Tao, Y. Effect of moderate electric field on glucoamylase-catalyzed hydrolysis of corn starch: Roles of electrophoretic and polarization effects. Food Hydrocoll. 2022, 122, 107120. [Google Scholar] [CrossRef]
- Samaranayake, C.P.; Sastry, S.K. Effects of controlled-frequency moderate electric felds on pectin methylesterase and polygalacturonase activities in tomato homogenate. Food Chem. 2016, 199, 265–272. [Google Scholar] [CrossRef]
- Castro, I.; Macedo, B.; Teixeira, J.A.; Vicente, A.A. The effect of electric field on important food-processing enzymes: Comparison of inactivation kinetics under conventional and ohmic heating. J. Food Sci. 2004, 69, C696–C701. [Google Scholar] [CrossRef]
- Brochier, B.; Mercali, G.D.; Marczak, L.D.F. Influence of moderate electric field on inactivation kinetics of peroxidase and polyphenol oxidase and on phenolic compounds of sugarcane juice treated by ohmic heating. LWT 2016, 74, 396–403. [Google Scholar] [CrossRef]
- Icier, F.; Yildiz, H.; Baysal, T. Peroxidase inactivation and colour changes during ohmic blanching of pea puree. J. Food Eng. 2006, 74, 424–429. [Google Scholar] [CrossRef]
- Álvarez, C.; Koolman, L.; Whelan, M.; Moloney, A. Effect of Pre-Slaughter Practises and Early Post-Mortem Interventions on Sheep Meat Tenderness and Its Impact on Microbial Status. Foods 2022, 11, 181. [Google Scholar] [CrossRef]
- Chrystall, B.B.; Devine, C.E. Electrical stimulation, muscle tension and glycolysis in bovine sternomandibularis. Meat Sci. 1978, 2, 49–58. [Google Scholar] [CrossRef]
- Ducastaing, A.; Valin, C.; Schollmeyer, J.; Cross, R. Effects of electrical stimulation on post-mortem changes in the activities of two Ca dependent neutral proteinases and their inhibitor in beef muscle. Meat Sci. 1985, 15, 193–202. [Google Scholar] [CrossRef]
- Rinella, A. Effect of Moderate Electric Fields on Sodium Chloride Diffusion in Porcine Muscle. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2014. [Google Scholar]
- Hu, H.; Zhang, L.; Lu, L.; Huang, F.; Chen, W.; Zhang, C.; Zhang, H.; Goto, K. Effects of the combination of moderate electric field and high-oxygen modified atmosphere packaging on pork meat quality during chill storage. J. Food Process. Preserv. 2020, 44, e14299. [Google Scholar] [CrossRef]
- Turgay-İzzetoğlu, G.; Çokgezme, Ö.F.; Döner, D.; Ersoy, C.; Çabas, B.M.; İçier, F. Cooking the Chicken Meat with Moderate Electric Field: Rheological Properties and Image Processing of Microstructure. Food Bioprocess Technol. 2022, 15, 1082–1100. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, W.G.; Park, S.W.; Lee, H.; Chang, H.N. Starch hydrolysis using enzyme in supercritical carbon dioxide. Biotechnol. Tech. 1993, 7, 267–270. [Google Scholar] [CrossRef]
- Hojnik Podrepšek, G.; Knez, Ž.; Leitgeb, M. Activation of cellulase cross-linked enzyme aggregates (CLEAs) in SCCO2. J. Supercrit. Fluids 2019, 154, 104629. [Google Scholar] [CrossRef]
- King, J.W.; Nam, K.S. Coupling enzyme immunoassay with supercritical fluid extraction. In Immunoassays for Residue Analysis; American Chemical Society: Washington, DC, USA, 1996. [Google Scholar] [CrossRef]
- Nam, K.S.; King, J.W. Supercritical fluid extraction and enzyme immunoassay for pesticide detection in meat products. J. Agric. Food Chem. 1994, 42, 1469–1474. [Google Scholar] [CrossRef]
- Senyay-Oncel, D.; Yesil-Celiktas, O. Activity and stability enhancement of α-amylase treated with sub-and supercritical carbon dioxide. J. Biosci. Bioeng. 2011, 112, 435–440. [Google Scholar] [CrossRef]
- Choi, Y.; Ryu, Y.; Lee, S.; Go, G.; Shin, H.; Kim, K.; Rhee, M.; Kim, B. Effects of supercritical carbon dioxide treatment for sterilization purpose on meat quality of porcine longissimus dorsi muscle. LWT Food Sci. Technol. 2008, 41, 317–322. [Google Scholar] [CrossRef]
- Nain, K.B. Fat Extraction from Food Industry Waste. In Food Processing Waste and Utilization; CRC Press: Boca Raton, FL, USA, 2022; pp. 81–88. [Google Scholar]
- Din, N.; Bartle, K.D.; Clifford, A.A.; McCormack, A.; Castle, L. Supercritical fluid extraction of sulphamethazine and its metabolites from meat tissues. J. Chromatogr. Sci. 1997, 35, 31–37. [Google Scholar] [CrossRef]
- Castillo-Zamudio, R.I.; Paniagua-Martínez, I.; Ortuño-Cases, C.; García-Alvarado, M.A.; Larrea, V.; Benedito, J. Use of high-power ultrasound combined with supercritical fluids for microbial inactivation in dry-cured ham. Innov. Food Sci. Emerg. Technol. 2021, 67, 102557. [Google Scholar] [CrossRef]
- Morbiato, G.; Zambon, A.; Toffoletto, M.; Poloniato, G.; Dall’Acqua, S.; de Bernard, M.; Spilimbergo, S. Supercritical carbon dioxide combined with high power ultrasound as innovate drying process for chicken breast. J. Supercrit. Fluids 2019, 147, 24–32. [Google Scholar] [CrossRef]
Meat Products | |||
---|---|---|---|
Sample | US Parameters (Power, Frequency, Temperature, pH, Time) | US Effects | Reference |
Beef Semimembranosus muscles (lysosomal enzyme and β-glucuronidase) | 10 W/cm2, 2.6 MHz, 2 consecutive periods of 15 s allowing a rest period of 2 min | Acceleration in the release of the lysosomal enzyme, and β-glucuronidase and weakening of the muscle structure | Got et al. [102] |
Hen breast muscle (proteases) | 12 W/cm2, 24 Hz, for 15 s | Increase in the degradation of muscular proteases; improvement in tenderisation | Xiong et al. [103] |
Papain enzyme in chicken breast | 135 W, 40 kHz, 10 min | Reduction in the hardness, improvement in tenderness | Lima et al. [104] |
Leek extract proteases in beef | 100 W, 37 kHz, 20 min | Increase in the proteolytic activity in beef, improvement in tenderness | Mehrabani et al. [105] |
Non-Meat Products | |||
Sample | US Parameters (Power, Frequency, Temperature, pH, Time) | US Effects | Reference |
Milk (β-Galactosidase from Kluyveromyces marzianus) | 20 W and 20 kHz, 37 °C, pH 6.7, 30 min | Increase in the degree of lactose hydrolysis (14%) compared to the treatment without US | Şener et al. [91] |
Sugar (invertase) | 22 W/L, 25 Hz, 40 °C | Increase in the degree of carbohydrate hydrolysis (33%) with invertase compared to the treatment without US | de Souza Soares et al. [92] |
Starch (glucoamylase) | 7.2 W/mL, 22 kHz, 35 °C, 40 min | Acceleration in the degree of enzymatic hydrolysis, reducing the molecular weight of starch by 80.19% and increasing the solubility by 136.5%. | Wang et al. [93] |
Soy sauce (protein) | 126.4 W/cm2, 50 °C, for 20 min and 240 min | Acceleration in the degree of protein hydrolysis in 20 min by 4.98% and in 240 min by 8.48%. | Chen et al. [95] |
Pectinase from Aspergillus niger | 4.5 W/mL, 22 kHz, 20 °C for 10 min | Improvement in the reaction rate of the enzymatic hydrolysis process of citrus peel pectin (32.59%) to obtain galacturonic acid | Ma et al. [94] |
Meat Products | |||
---|---|---|---|
Sample | HPP Parameters (Pressure, Time, Temperature) | HPP Effects | Reference |
Beef Biceps femoris muscle (metmyoglobin reductase) | 130 MPa, 10 °C | Enhanced reduction of metmyoglobin to ferrous myoglobin | Jung et al. [120] |
Serrano dry-cured ham (lipid oxidation, aminopeptidase and free amino acid activities) | 600 MPa for 6 min | Increase in lipid peroxidation rates and decrease in the activity of all aminopeptidases studied | Rivas- Cañedo et al. [121] |
Non-Meat Products | |||
Sample | HPP Parameters (Pressure, Time, Temperature) | HPP Effects | Reference |
Goat cheese (casein) | 400 MPa for 5 min | Acceleration in proteolysis process. The maturation was completed in 14 d with HPP, while normal maturation took 28 d | Saldo et al. [117] |
β-lactoglobulin | 200 MPa for 180 min | Complete hydrolysis of β-lactoglobulin was carried out by the enzyme thermolysin, observing that this enzyme only partially hydrolysed β-lactoglobulin in cow whey concentrate at atmospheric pressure and 25 °C. | Hayashi et al. [118] |
Peptinase cocktail and black garlic juice | 50 MPa for 240 min at 55 °C | Increase in the enzymatic activity of peptinase compared to treatment without HPP. The concentration of galacturonic acid released was higher than in the untreated black garlic juice. | Kim et al. [119] |
Meat Products | |||
---|---|---|---|
Sample | PEF Parameters (Electric Field Strength, Pulse Width, Number of Pulses, Specific Energy, Time) | PEF Effects | Reference |
Venison (calpain) | 0.2 kV/cm, 1.93 kJ/kg, 20 μs and 0.5 kV/cm, 70.2 kJ/kg and 20 μs | Tendency towards increasing the calpain activity | Bhat et al. [137] |
Beef Semimembranosus | 10 kV, 90 Hz, 20 μs | Improvement in tenderness due to the phenomenon of electroporation; this allows Ca2+ release, which activates its dependent proteases, calpains | Carne et al. [138] Bekhit et al. [139] Warner et al. [124] |
Beef Longissimus thoracis | 0.2–0.6 kV/cm, 1–50 Hz, 20 μs | No influence on the activity of proteases; therefore, no improvement in meat tenderness | Faridnia et al. [140] |
Chicken meat | 3 kV/cm, 300 pulses of 20 μs | No influence on the activity of proteases; therefore, no improvement in meat tenderness | Arroyo et al. [141] |
Non-Meat Product | |||
Sample | PEF Parameters (Electric Field Strength, Pulse Width, Number of Pulses, Specific Energy, Time) | PEF Effects | Reference |
Papain | 50 kV/cm with 500 pulses for 2 ms | 70–10% Reduction in enzyme activity due to oxidation of cysteine amino acid residue located in the active site of papain | Yeom et al. [133] |
Carrots (Ascobic acid oxidase) | 0.2 to 1.2 kV/cm, 5 to 300 Hz, 20 μs | Carrots”, 3rd column “reduction in ascorbic acid oxidase activity up to 61% | Leong & Oey, [134] |
Tomatoes (pectin methylesterase) | 24 kV/cm,400 pulses of 0.02 ms pulse-width | Tomatoes”, 3rd column “reduction in tomato pectin methylesterase activity up to 94% | Giner et al. [135] |
Apples and pears (polyphenoloxidase) | Apple extract: 24 kV/cm, 6 ms Pear extract: 22.3 kV/cm, 6 ms | Apples and pears”, 3rd column “reduction in polyphenoloxidase activities up to 38% | Giner et al. [136] |
Meat Products | |||
---|---|---|---|
Sample | MEF Parameters (Electric Field Strength, Frequency, Temperature, Time) | MEF Effects | Reference |
Beef | 10–600 V, 50 Hz, 2–100 pulses/s, 5- 120 s | Acceleration in post mortem glycolysis, improving tenderization | Chrystall et al. [155] |
Beef | 550 V, 60 Hz, 1 s pulse and 0.5 s rest, during 120 s | Electroporation of the muscle cell membrane, affecting the release of Ca2+ and the activation of calpain | Ducastaing et al. [156] |
Non-Meat Products | |||
Sample | MEF Parameters (Electric Field Strength, Frequency, Temperature, Time) | MEF Effects | Reference |
Corn starch | 0–10 V/cm, 50 Hz, 30 min | Hydrolysis of corn starch, activating glucoamylase | Li et al. [149]. |
Tomato homogenate | 8 V/cm, 60 Hz sinusoidal wave, reaching 80 °C starting at 65 °C | Activation of the pectin methyl esterase (PME) | Samaranayake et al. [150] |
Sugarcane juice | 3.57 V/cm, 98 °C for 12 min | Inactivation of the enzymes peroxidase and polyphenol oxidase | Brochier et al. [152] |
Pea puree | 50 V/cm, 100 °C for 54 s | Inactivation of the enzyme peroxidase | Icier et al. [153] |
Non-Meat Products | |||
---|---|---|---|
Sample | SC-CO2 Parameters (Pressure, Temperature, Time, Flow) | SC-CO2 Effects | Reference |
Immobilization of cellulase in a system consisting of enzyme aggregates cross-linked (CLEA) with solvents and glutaraldehyde. | 10 MPa, 50 °C, 3 h | Increase in the enzyme activity by 57% compared to the enzyme not treated with CO2 | Hojnik Podrepšek et al. [161] |
α-amylase | 240 bar, 41 °C, 50 min, 4 g/min CO2 flow | Increase in the enzyme activity (67.7%) compared to the enzyme not treated with CO2 | Senyay-Oncel & Yesil-Celiktas [162] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abril, B.; Bou, R.; García-Pérez, J.V.; Benedito, J. Role of Enzymatic Reactions in Meat Processing and Use of Emerging Technologies for Process Intensification. Foods 2023, 12, 1940. https://doi.org/10.3390/foods12101940
Abril B, Bou R, García-Pérez JV, Benedito J. Role of Enzymatic Reactions in Meat Processing and Use of Emerging Technologies for Process Intensification. Foods. 2023; 12(10):1940. https://doi.org/10.3390/foods12101940
Chicago/Turabian StyleAbril, Blanca, Ricard Bou, Jose V. García-Pérez, and Jose Benedito. 2023. "Role of Enzymatic Reactions in Meat Processing and Use of Emerging Technologies for Process Intensification" Foods 12, no. 10: 1940. https://doi.org/10.3390/foods12101940