Preparation of Mesoporous Silica Nanosphere-Doped Color-Sensitive Materials and Application in Monitoring the TVB-N of Oysters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of MSNs
2.3. Color-Sensitive Materials Doped with MSNs
2.4. Colorimetric Sensor Array Data Acquisition
2.5. TVB-N Analysis
2.6. Multivariate Statistical Analysis
3. Results
3.1. Variation Trend of TVB-N during Oysters’ Storage
3.2. Characterization of MSNs
3.3. Image Characterization of Oysters Stored for Different Times by Colorimetric Sensor Array
3.4. PCA Analysis
3.5. Quantitative Analysis of Colorimetric Sensor Array for TVB-N Detection in Oysters
3.6. The Accuracy Test of Formaldehyde Quantitative Model Paired-Sample t-Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Liu, S.; Walton, W.C.; Wang, Y. Volatile organic compounds of Eastern oyster (Crassostrea virginica) cultured by two treatments and their changes during cold storage. Aquacult. Res. 2021, 52, 1442–1452. [Google Scholar] [CrossRef]
- Lee, K.M.; Son, M.; Kang, J.H.; Kim, D.; Hong, S.; Park, T.H.; Choi, S.S. A triangle study of human, instrument and bioelectronic nose for non-destructive sensing of seafood freshness. Sci. Rep. 2018, 8, 547. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, Z.; Yu, F.; Zhang, X.; Xue, Y.; Xue, C. Hyperspectral imaging and chemometrics for nondestructive quantification of total volatile basic nitrogen in pacific oysters (Crassostrea gigas). Food Anal. Methods 2019, 12, 799–810. [Google Scholar] [CrossRef]
- Aaraas, R.; Hernar, I.J.; Vorre, A.; Bergslien, H.; Lunestad, B.T.; Skeie, S.; Mortensen, S. Sensory, histological, and bacteriological changes in flat oysters, Ostrea edulis L.; during different storage conditions. J. Food Sci. 2004, 69, S205–S210. [Google Scholar] [CrossRef]
- Choi, M.S.; Jeon, E.B.; Kim, J.Y.; Choi, E.H.; Lim, J.S.; Choi, J.; Park, S.Y. Virucidal effects of dielectric barrier discharge plasma on human norovirus infectivity in fresh oysters (Crassostrea gigas). Foods 2020, 9, 1731. [Google Scholar] [CrossRef]
- Cai, J.; Chen, Q.; Wan, X.; Zhao, J. Determination of total volatile basic nitrogen (TVB-N) content and Warner–Bratzler shear force (WBSF) in pork using Fourier transform near infrared (FT-NIR) spectroscopy. Food Chem. 2011, 126, 1354–1360. [Google Scholar] [CrossRef]
- Tao, F.; Peng, Y.; Li, Y.; Chao, K.; Dhakal, S. Simultaneous determination of tenderness and Escherichia coli contamination of pork using hyperspectral scattering technique. Meat Sc. 2012, 90, 851–857. [Google Scholar] [CrossRef]
- Chen, H.; Wang, M.; Yang, C.; Wan, X.; Ding, H.H.; Shi, Y.; Zhao, C. Bacterial spoilage profiles in the gills of Pacific oysters (Crassostrea gigas) and Eastern oysters (C. virginica) during refrigerated storage. Food Microbiol. 2019, 82, 209–217. [Google Scholar] [CrossRef]
- Guan, B.; Kang, W.; Jiang, H.; Zhou, M.; Lin, H. Freshness Identification of Oysters Based on Colorimetric Sensor Array Combined with Image Processing and Visible Near-Infrared Spectroscopy. Sensor 2022, 22, 683. [Google Scholar] [CrossRef]
- Miao, L.; Walton, W.C.; Wang, L.; Li, L.; Wang, Y. Characterization of polylactic acids-polyhydroxybutyrate based packaging film with fennel oil, and its application on oysters. Food Packag. Shelf Life 2019, 22, 100388. [Google Scholar] [CrossRef]
- Lin, H.; Jiang, H.; Lin, J.; Chen, Q.; Ali, S.; Teng, S.W.; Zuo, M. Rice Freshness Identification Based on Visible Near-Infrared Spectroscopy and Colorimetric Sensor Array. Food Anal. Methods 2021, 14, 1305–1314. [Google Scholar] [CrossRef]
- Biller, P.; Ross, A.B. Pyrolysis GC-MS as a novel analysis technique to determine the biochemical composition of microalgae. Algal Res. 2014, 6, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Hou, C.; Huo, D.; Yang, M.; Fa, H.B.; Yang, P. Development of a colorimetric sensor Array for the discrimination of aldehydes. Sens. Actuators B 2014, 196, 10–17. [Google Scholar] [CrossRef]
- Valcárcel, M.; Ibáñez, G.; Martí, R.; Beltrán, J.; Cebolla-Cornejo, J.; Roselló, S. Optimization of electronic nose drift correction applied to tomato volatile profiling. Anal. Bioanal. Chem. 2021, 413, 3893–3907. [Google Scholar] [CrossRef]
- Han, F.; Huang, X.; Aheto, J.H.; Zhang, D.; Feng, F. Detection of beef adulterated with pork using a low-cost electronic nose based on colorimetric sensors. Foods 2020, 9, 193. [Google Scholar] [CrossRef] [Green Version]
- Rakow, N.A.; Suslick, K.S. A colorimetric sensor array for odour visualization. Nature 2000, 406, 710–713. [Google Scholar] [CrossRef]
- Li, Z.; Suslick, K.S. Colorimetric sensor array for monitoring CO and ethylene. Anal. Chem. 2018, 91, 797–802. [Google Scholar] [CrossRef]
- Magnaghi, L.R.; Capone, F.; Zanoni, C.; Alberti, G.; Quadrelli, P.; Biesuz, R. Colorimetric sensor array for monitoring, modelling and comparing spoilage processes of different meat and fish foods. Foods 2020, 9, 684. [Google Scholar] [CrossRef]
- Lv, R.; Huang, X.; Ye, W.; Aheto, J.H.; Xu, H.; Dai, C.; Tian, X. Research on the reaction mechanism of colorimetric sensor array with characteristic volatile gases-TMA during fish storage. J. Food Process Eng. 2019, 42, e12952. [Google Scholar] [CrossRef] [Green Version]
- Guan, B.; Xue, Z.; Chen, Q.; Lin, H.; Zhao, J. Preparation of zinc porphyrin nanoparticles and application in monitoring the ethanol content during the solid-state fermentation of Zhenjiang Aromatic vinegar. Microchem. J. 2020, 153, 104353. [Google Scholar] [CrossRef]
- Lin, H.; Man, Z.X.; Kang, W.C.; Guan, B.B.; Chen, Q.S.; Xue, Z.L. A novel colorimetric sensor array based on boron-dipyrromethene dyes for monitoring the storage time of rice. Food Chem. 2018, 268, 300–306. [Google Scholar] [CrossRef]
- Duan, Y.; Lin, H.; He, P.; Chen, Q. Detection of volatile marker in the wheat infected with Aspergillus flavus by porous silica nanospheres doped Bodipy dyes. Sens. Actuators B 2021, 330, 129407. [Google Scholar] [CrossRef]
- Duffin, R.; Tran, L.; Brown, D.; Stone, V.; Donaldson, K. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: Highlighting the role of particle surface area and surface reactivity. Inhal. Toxicol. 2007, 19, 849–856. [Google Scholar] [CrossRef]
- Qiao, X.; Peng, H.; You, C.; Liu, F.; Zheng, R.; Xu, D.; Liao, S. Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction. J. Power Sources 2015, 288, 253–260. [Google Scholar] [CrossRef]
- Xu, S.; Hartvickson, S.; Zhao, J.X. Increasing surface area of silica nanoparticles with a rough surface. ACS Appl. Mater. Interfaces 2011, 3, 1865–1872. [Google Scholar] [CrossRef]
- Kutsanedzie, F.Y.; Hao, L.; Yan, S.; Ouyang, Q.; Chen, Q. Near infrared chemo-responsive dye intermediaries spectra-based in-situ quantification of volatile organic compounds. Sens. Actuators B 2018, 254, 597–602. [Google Scholar] [CrossRef]
- National Health and Family Planning Commission of the People’s Republic of China. GB 5009.228-2016 National Food Safety Standard—Determination of Volatile Base Nitrogen in Food. 2016. Available online: http://down.foodmate.net/standard/yulan.php?itemid=49376 (accessed on 1 December 2021).
- Capone, S.; Epifani, M.; Quaranta, F.; Siciliano, P.; Taurino, A.; Vasanelli, L. Monitoring of rancidity of milk by means of an electronic nose and a dynamic PCA analysis. Sens. Actuators B 2001, 78, 174–179. [Google Scholar] [CrossRef]
- Yetilmezsoy, K.; Demirel, S. Artificial neural network (ANN) approach for modeling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. J. Hazard. Mater. 2008, 153, 1288–1300. [Google Scholar] [CrossRef]
PCs | Rc | Rp |
---|---|---|
6 | 0.9920 | 0.8932 |
7 | 0.9857 | 0.9076 |
8 | 0.9807 | 0.9156 |
9 | 0.9999 | 0.9420 |
10 | 0.9971 | 0.9628 |
11 | 1.0000 | 0.9504 |
12 | 0.9945 | 0.9526 |
Samples | Training Set | Prediction Set | |
---|---|---|---|
Pairwise difference | Mean | −0.00114 | −0.13443 |
Standard deviation | 0.27342 | 0.90393 | |
Standard error of the mean | 0.02882 | 0.11670 | |
t | −0.039 | −1.152 | |
df | 89 | 59 | |
Sig. | 0.969 | 0.254 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, B.; Wang, F.; Jiang, H.; Zhou, M.; Lin, H. Preparation of Mesoporous Silica Nanosphere-Doped Color-Sensitive Materials and Application in Monitoring the TVB-N of Oysters. Foods 2022, 11, 817. https://doi.org/10.3390/foods11060817
Guan B, Wang F, Jiang H, Zhou M, Lin H. Preparation of Mesoporous Silica Nanosphere-Doped Color-Sensitive Materials and Application in Monitoring the TVB-N of Oysters. Foods. 2022; 11(6):817. https://doi.org/10.3390/foods11060817
Chicago/Turabian StyleGuan, Binbin, Fuyun Wang, Hao Jiang, Mi Zhou, and Hao Lin. 2022. "Preparation of Mesoporous Silica Nanosphere-Doped Color-Sensitive Materials and Application in Monitoring the TVB-N of Oysters" Foods 11, no. 6: 817. https://doi.org/10.3390/foods11060817
APA StyleGuan, B., Wang, F., Jiang, H., Zhou, M., & Lin, H. (2022). Preparation of Mesoporous Silica Nanosphere-Doped Color-Sensitive Materials and Application in Monitoring the TVB-N of Oysters. Foods, 11(6), 817. https://doi.org/10.3390/foods11060817