Dissipation and Residues of Pyraclostrobin in Rosa roxburghii and Soil under Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Field Experiment Design
2.3. Analytical Procedures
2.3.1. Samples Preparation
2.3.2. Samples Extraction and Purification
2.3.3. LC–MS/MS Analysis
2.4. Calculations
2.4.1. Method Validation
2.4.2. Degradation Kinetics
3. Results
3.1. Extraction and Purification
3.2. Method Validation
3.2.1. Precision and Accuracy
3.2.2. Linearity, Matrix Effect and Detection Limit
3.3. Effects of Spray Equipment and Formulations
3.4. Degradation of Pyraclostrobin in R. roxburghii and Soil
3.5. Terminal Residues of Pyraclostrobin in R. roxburghii and Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Guo, Z.; Luo, Y.; Wu, X.; An, H. Chitosan can induce Rosa Roxburghii Tratt. against Sphaerotheca sp. and enhance its resistance, photosynthesis, yield, and quality. Horticulturae 2021, 7, 289. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Zhang, C.; Guo, Z.; Wu, X.; An, H. Co-application of allicin and chitosan increases resistance of Rosa roxburghii against powdery mildew and enhances its growth and quality. Antibiotics 2021, 10, 1449. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, X.; He, L.; Li, B.; Liu, F. Effect of application rate and timing on residual efficacy of pyraclostrobin in the control of pepper anthracnose. Plant Dis. 2019, 104, 958–966. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Cui, K.; Ma, D.; Shen, R.; Huang, X.; Jiang, J.; Mu, W.; Liu, F. Activity, translocation, and persistence of isopyrazam for controlling cucumber powdery mildew. Plant Dis. 2017, 101, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.A.; Meinhardt, C.G. Foliar boron and pyraclostrobin effects on corn yield. Agron. J. 2011, 103, 1352. [Google Scholar] [CrossRef]
- Joshi, J.; Sharma, S.; Guruprasad, K.N. Foliar application of pyraclostrobin fungicide enhances the growth, rhizobial-nodule formation and nitrogenase activity in soybean (var. JS-335). Pestic. Biochem. Physiol. 2014, 114, 61–66. [Google Scholar] [CrossRef]
- Tsialtas, J.T.; Theologidou, G.S.; Karaoglanidis, G.S. Effect of pyraclostrobin on disease control, leaf physiology, seed yield and quality of sunflower. Crop Prot. 2017, 99, 151–159. [Google Scholar] [CrossRef]
- Islam, T.; Vera, C.; Slaski, J.; Mohr, R.; Kutcher, H.R. Fungicide management of pasmo of Flax and sensitivity of Septoria linicola to pyraclostrobin and fluxapyroxad. Plant Dis. 2020, 6, 1175. [Google Scholar] [CrossRef]
- Kim, C.; Choe, H.; Park, J.; Kim, G.; Kim, K.; Jeon, H.J.; Moon, J.K.; Kim, M.J.; Lee, S.E. Molecular mechanisms of developmental toxicities of azoxystrobin and pyraclostrobin toward zebrafish (Danio rerio) embryos: Visualization of abnormal development using two transgenic lines. Environ. Pollut. 2020, 270, 116087. [Google Scholar] [CrossRef]
- Li, H.; Yang, S.; Li, T.; Li, X.; Huang, X.; Gao, Y.; Li, B.; Lin, J.; Mu, W. Determination of pyraclostrobin dynamic residual distribution in tilapia tissues by UPLC-MS/MS under acute toxicity conditions. Ecotoxicol. Environ. Saf. 2020, 206, 111182–111188. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, Y.; Hu, J. Dissipation, residues and risk assessment of pyraclostrobin and picoxystrobin in cucumber under field conditions. J. Sci. Food Agric. 2020, 100, 5145–5151. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, R.; Su, Y.; Hu, J.; Liu, X. Fate, residues and dietary risk assessment of the fungicides epoxiconazole and pyraclostrobin in wheat in twelve different regions, China. Ecotoxicol. Environ. Saf. 2020, 20, 111236–111244. [Google Scholar] [CrossRef]
- Fu, J.; Li, Z.; Huang, R.; Wang, S.; Huang, C.; Cheng, D.; Zhang, Z. Dissipation, residue, and distribution of pyraclostrobin in banana and soil under field conditions in South China. Int. J. Environ. Anal. Chem. 2016, 96, 1367–1377. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Q.; Yu, Y.; Chen, Y.; Zeng, S.; Lu, P.; Hu, D. Residues, dissipation kinetics, and dietary intake risk assessment of two fungicides in grape and soil. Regul. Toxicol. Pharm. 2018, 100, 72–79. [Google Scholar] [CrossRef]
- Chen, X.; He, S.; Gao, Y.; Me, Y.; Hu, J.; Liu, X. Dissipation behavior, residue distribution and dietary risk assessment of field-incurred boscalid and pyraclostrobin in grape and grape field soil via MWCNTs-based QuEChERS using an RRLC-QqQ-MS/MS technique. Food Chem. 2019, 274, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yang, Y.; Chen, Y.; Zhang, Q.; Hu, D. Dissipation, residues and risk assessment of oxine-copper and pyraclostrobin in citrus. Food Addit. Contam. Part A 2019, 36, 1538–1550. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Jin, F.; Huang, Y.; Du, X.; Li, C.; Wng, M.; Shao, H.; Jin, M.; Wang, J. Simultaneous determination of five plant growth regulators in fruits by modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction and liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2012, 60, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Concha-Meyer, A.; Grandon, S.; Sepulveda, G.; Diaz, R.; Yuri, J.A.; Torres, C. Pesticide residues quantification in frozen fruit and vegetables in Chilean domestic market using QuEChERS extraction with ultra-high-performance liquid chromatography electrospray ionization Orbitrap mass spectrometry. Food Chem. 2019, 295, 64–71. [Google Scholar] [CrossRef]
- Collimore, W.A.; Bent, G.A. A newly modified QuEChERS method for the analysis of organochlorine and organophosphate pesticide residues in fruits and vegetables. Environ. Monit. Assess. 2020, 192, 128–141. [Google Scholar] [CrossRef]
- Qian, B.; He, Y.; Zhao, J.; Peng, L.; Han, B. Simultaneous determination of five organotin in tropical fruits using modified QuEChERS combined with ultra-high performance liquid chromatography—tandem mass spectrometry. J. Chromatogr. Sci. 2021, 59, 269–279. [Google Scholar] [CrossRef]
- NY/T 788-2018. Guideline for the testing of pesticide in crops. In Agricultural Industry Standard of the People’s Republic of China; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2018; pp. 1–6. [Google Scholar]
- SANTE/11813/2017. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesiticides_mrl_guidelines_wrkdoc_2017-11813,2021 (accessed on 1 December 2021).
- Rahman, M.M.; Abd El-Aty, A.M.; Choi, J.H.; Kim, S.W.; Shin, S.C.; Shim, J.H. Consequences of the matrix effect on recovery of dinotefuran and its metabolites in green tea during tandem mass spectrometry analysis. Food Chem. 2015, 168, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cang, T.; Qi, P.; Zhao, X.; Xu, H.; Wang, X.; Zhang, H.; Wang, X. Dissipation of four fungicides on greenhouse strawberries and an assessment of their risks. Food Control 2015, 55, 215–220. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and dispersive solid-phase extraction for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Ge, J.; Zhao, L.; Liu, C.; Jiang, S.; Lee, P.; Liu, F. Rapid determination of melamine in soil and strawberry by liquid chromatography-tandem mass spectrometry. Food Control 2011, 22, 1629–1633. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, J.; He, Y.; Han, Y.; Zou, N.; Li, Y.; Chen, R.; Li, X.; Pan, C. Automated multi-plug fifiltration cleanup for pesticide residue analyses in kiwi fruit (actinidia chinensis) and kiwi juice by gas chromatography-mass spectrometry. J. Agric. Food Chem. 2016, 64, 6082–6090. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kharb, V.; Saharan, V.A. Fast Dissolving/Disintegrating Dosage Forms of Natural Active Compounds and Alternative Medicines. Recent Pat. Drug. Deliv. Formul. 2020, 14, 21–39. [Google Scholar] [CrossRef]
- Alany, R. Oral dosage forms and drug delivery systems: Tablets, oral films, liquid dosage forms, oral bioavailability enhancement. Pharm. Dev. Technol. 2017, 22, 137. [Google Scholar] [CrossRef]
- Munitz, M.S.; Resnik, S.L.; Montti, M.I.T.; Visciglio, S. Validation of a SPME-GC method for azoxystrobin and pyraclostrobin in blueberries, and their degradation kinetics. Agric. Sci. 2014, 05, 964–974. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, S.; Chen, X.; Hu, J. Simultaneous Determination of Pyraclostrobin, Prochloraz, and its Metabolite in Apple and Soil Via RRLC-MS/MS. Food Anal. Methods 2018, 11, 1312–1320. [Google Scholar] [CrossRef]
- Khandelwal, A.; Gupta, S.; Gajbhiye, V.T.; Varghese, E. Degradation of kresoxim-methyl in soil: Impact of varying moisture, organic matter, soil sterilization, soil type, light and atmospheric CO2 level. Chemosphere 2014, 111, 209–217. [Google Scholar] [CrossRef]
- Chen, X.; Dong, B.; Zhong, M.; Hu, J. Dissipation kinetics and residues of amidosulfuron and MCPA in wheat ecosystems based on a modifified QuEChERS and low-temperature cleanup method using the RRLC-QqQ-MS/MS technique. Anal. Methods 2015, 7, 10299–10305. [Google Scholar] [CrossRef]
- GB 2763-2021; National Food Safety Standard—Maximum Residue Limits for Pesticides in Food, Ministry of Health and Ministry of Agriculture of the People’s Republic of China; Agriculture Publishing House: Beijing, China, 2021; pp. 34–36.
Compound | Ionizationmode | Precursor Ion (m/z) | Production (m/z) | Fragmentor (V) | Collision Energy (eV) | ||
---|---|---|---|---|---|---|---|
Pyraclostrobin | ESI+ | 388.11 | 163.0 * | 104 | 94 | 24 | 76 |
Matrix | Additive Concentration (mg/kg) | Recovery (%) | RSD (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | Average | |||
Soil | 5 | 97.33 | 99.07 | 97.64 | 97.56 | 98.00 | 97.59 | 97.86 | 0.64 |
1 | 99.01 | 98.79 | 98.07 | 99.66 | 97.15 | 98.76 | 98.57 | 0.88 | |
0.1 | 102.38 | 94.21 | 97.17 | 94.69 | 94.48 | 97.33 | 96.71 | 3.21 | |
R.roxburghii | 5 | 101.95 | 102.68 | 99.25 | 100.66 | 98.59 | 99.97 | 100.52 | 1.56 |
1 | 103.95 | 101.26 | 104.77 | 96.58 | 102.90 | 105.47 | 102.48 | 3.18 | |
0.1 | 93.66 | 96.39 | 92.84 | 96.23 | 91.13 | 90.63 | 93.48 | 2.62 |
Compound | Matrix | Regression Equation | R2 | LOD (µg/kg) | LOQ (µg/kg) | ME (%) |
---|---|---|---|---|---|---|
Pyraclostrobin | Solvent | y = 418305x + 8651 | 0.9969 | - | - | - |
Soil | y = 403431x + 14744 | 0.9948 | 0.15 | 0.21 | −1.17 | |
R.roxburghii | y = 413108x + 10481 | 0.9971 | 0.16 | 0.24 | −1.24 |
Compound | Spray Equipment | Equations | R2 | Half-Life (d) |
---|---|---|---|---|
30% Pyraclostrobin SC | GPAS | Ct = 2.03405e−0.12877t | 0.9416 | 5.38 |
MABS | Ct = 2.05576e−0.20545t | 0.9602 | 3.37 | |
KMES | Ct = 1.95042e−0.2383t | 0.9717 | 2.91 |
Compound | Active Ingredient Content | Spray Formulation | Equation | R2 | Half-Life (d) |
---|---|---|---|---|---|
Pyraclostrobin | 30% | Suspension concentrate | Ct = 1.71653e−0.1021t | 0.9356 | 6.78 |
20% | Wettable powder | Ct = 1.66517e−0.12278t | 0.9696 | 5.64 | |
50% | Water dispersible granule | Ct = 1.50204e−0.14755t | 0.9892 | 4.69 |
Compound | Time | Matrix | Equation | R2 | Half-Life (d) |
---|---|---|---|---|---|
30% Pyraclostrobin SC | 2019 | R. roxburghii | Ct = 2.0419e−0.08896t | 0.9866 | 7.79 |
Soil | Ct = 3.4721e−0.11651t | 0.9810 | 5.95 | ||
2020 | R. roxburghii | Ct = 1.7914e−0.11177t | 0.9449 | 6.20 | |
Soil | Ct = 3.4169e−0.17917t | 0.9290 | 3.86 |
Active Ingredient Concentration (g a.i./ha) | Spray | Interval (d) | Residue (mg/kg) | |||
---|---|---|---|---|---|---|
2019 | 2020 | |||||
R. roxburghii | Soil | R. roxburghii | Soil | |||
225 | 2 | 7 | 0.701 ± 0.02 | 1.794 ± 0.02 | 0.684 ± 0.03 | 1.928 ± 0.01 |
14 | 0.443 ± 0.04 | 1.021 ± 0.01 | 0.452 ± 0.01 | 0.902 ± 0.02 | ||
21 | 0.287 ± 0.01 | 0.544 ± 0.03 | 0.364 ± 0.04 | 0.336 ± 0.00 | ||
28 | 0.186 ± 0.05 | 0.185 ± 0.06 | 0.169 ± 0.03 | 0.105 ± 0.09 | ||
3 | 7 | 1.021 ± 0.00 | 1.981 ± 0.03 | 0.911 ± 0.02 | 2.155 ± 0.01 | |
14 | 0.754 ± 0.01 | 1.245 ± 0.05 | 0.584 ± 0.01 | 1.388 ± 0.00 | ||
21 | 0.406 ± 0.02 | 0.595 ± 0.01 | 0.334 ± 0.01 | 0.441 ± 0.03 | ||
28 | 0.289 ± 0.03 | 0.187 ± 0.03 | 0.201 ± 0.05 | 0.136 ± 0.05 | ||
337.5 | 2 | 7 | 1.176 ± 0.03 | 2.489 ± 0.00 | 0.836 ± 0.01 | 2.547 ± 0.00 |
14 | 0.954 ± 0.03 | 1.521 ± 0.01 | 0.708 ± 0.00 | 1.494 ± 0.01 | ||
21 | 0.667 ± 0.01 | 0.776 ± 0.03 | 0.601 ± 0.00 | 0.467 ± 0.02 | ||
28 | 0.291 ± 0.05 | 0.235 ± 0.03 | 0.266 ± 0.05 | 0.159 ± 0.07 | ||
3 | 7 | 1.236 ± 0.04 | 2.996 ± 0.03 | 1.065 ± 0.02 | 3.153 ± 0.00 | |
14 | 1.015 ± 0.01 | 2.031 ± 0.02 | 1.002 ± 0.01 | 1.876 ± 0.00 | ||
21 | 0.699 ± 0.02 | 0.965 ± 0.06 | 0.798 ± 0.01 | 0.679 ± 0.01 | ||
28 | 0.481 ± 0.05 | 0.442 ± 0.02 | 0.468 ± 0.02 | 0.383 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, L.; Wu, Q.; Wu, X. Dissipation and Residues of Pyraclostrobin in Rosa roxburghii and Soil under Field Conditions. Foods 2022, 11, 669. https://doi.org/10.3390/foods11050669
Han L, Wu Q, Wu X. Dissipation and Residues of Pyraclostrobin in Rosa roxburghii and Soil under Field Conditions. Foods. 2022; 11(5):669. https://doi.org/10.3390/foods11050669
Chicago/Turabian StyleHan, Lei, Qiong Wu, and Xiaomao Wu. 2022. "Dissipation and Residues of Pyraclostrobin in Rosa roxburghii and Soil under Field Conditions" Foods 11, no. 5: 669. https://doi.org/10.3390/foods11050669
APA StyleHan, L., Wu, Q., & Wu, X. (2022). Dissipation and Residues of Pyraclostrobin in Rosa roxburghii and Soil under Field Conditions. Foods, 11(5), 669. https://doi.org/10.3390/foods11050669