Process Development for the Instant Quantification of Lycopene from Agricultural Produces Using Supercritical Fluid Chromatography-Diode Array Detector (SFC-DAD)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instruments and Chromatographic Conditions
2.3. Preparation of Lycopene Stock and Working Solution
2.4. Scouting or Method Optimization
2.5. Computation of Chromatographic Parameters
2.6. Optimization
3. Results and Discussion
3.1. Method Development and Optimization
3.1.1. Influence of Stationary and Mobile Phase
3.1.2. Influence of Operating Parameters
3.2. Method Validation
3.2.1. Calibration Parameters, Limits of Detection (LOD), and Quantification (LOQ)
3.2.2. Intra- and Inter-Day Precision and Accuracy
3.2.3. Robustness
3.3. Analysis of Lycopene Extracted from Different Matrices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stahl, W.; Sies, H. Lycopene: A Biologically Important Carotenoid for Humans? Arch. Biochem. Biophys. 1996, 336, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Rao, A.V. Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J. 2000, 163, 739–744. [Google Scholar]
- Arab, L.; Steck, S. Lycopene and cardiovascular disease. Am. J. Clin. Nutr. 2000, 71, 1691S–1695S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannucci, E.; Rimm, E.B.; Liu, Y.; Stampfer, M.J.; Willett, W.C. A Prospective Study of Tomato Products, Lycopene, and Prostate Cancer Risk. JNCI J. Natl. Cancer Inst. 2002, 94, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef]
- Rao, A.; Agarwal, S. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr. Res. 1999, 19, 305–323. [Google Scholar] [CrossRef]
- Bramley, P.M. Is lycopene beneficial to human health? Phytochemistry 2000, 54, 233–236. [Google Scholar] [CrossRef]
- Rafi, M.M.; Kanakasabai, S.; Reyes, M.D.; Bright, J.J. Lycopene modulates growth and survival associated genes in prostate cancer. J. Nutr. Biochem. 2013, 24, 1724–1734. [Google Scholar] [CrossRef]
- Gann, P.H.; Ma, J.; Giovannucci, E.; Willett, W.; Sacks, F.M.; Hennekens, C.H.; Stampfer, M.J. Lower prostate cancer risk in men with elevated plasma lycopene levels: Results of a prospective analysis. Cancer Res. 1999, 59, 1225–1230. [Google Scholar]
- Kim, M.J.; Kim, H. Anticancer Effect of Lycopene in Gastric Carcinogenesis. J. Cancer Prev. 2015, 20, 92–96. [Google Scholar] [CrossRef]
- Dhakane, J.P.; Kar, A.; Patel, A.S.; Khan, I. Effect of soy proteins and emulsification-evaporation process on physical stability of lycopene emulsions. Int. J. Chem. Studies 2017, 5, 1354–1358. [Google Scholar]
- Patel, A.S.; Kar, A.; Khan, I. Process for development of β-carotene Nanocomposites with ɷ-fatty acids. In Proceedings of the International Conference on Nanomaterials and Nanotechnology, Allahabad, India, 1–3 March 2017. [Google Scholar]
- Kehili, M.; Sayadi, S.; Frikha, F.; Zammel, A.; Allouche, N. Optimization of lycopene extraction from tomato peels industrial by-product using maceration in refined olive oil. Food Bioprod. Process. 2019, 117, 321–328. [Google Scholar] [CrossRef]
- Patel, A.S.; Kar, A.; Dash, S.; Dash, S.K. Supercritical fluid extraction of β-carotene from ripe bitter melon pericarp. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Qu, Y.; Hopkins, D.L.; Liu, C.; Wang, B.; Gao, Y.; Luo, H. Dietary lycopene powder improves meat oxidative stability in Hu lambs. J. Sci. Food Agric. 2019, 99, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Sathish, T.; Udayakiran, D.; Himabindu, K.; Sridevi, P.L.D.; Kezia, D.; Bhojaraju, P. HPLC method for the deter-mination of lycopene in crude oleoresin extracts. Asian J. Chem. 2009, 21, 139. [Google Scholar]
- Nangude, S.; Vite, M. A Simple and Sensitive RP-HPLC Method for Estimation of Lycopene in Pharmaceutical Solid Dosage Forms. J. Pharm Sci. BioSci. Res. 2013, 3, 16–19. [Google Scholar]
- Bijttebier, S.; Hondt, E.D.; Notena, B.; Hermans, N.; Apers, S.; Voorspoels, S. Ultra high performance liquid chromatography versus high performance liquid chromatography: Stationary phase selectivity for generic ca-rotenoid screening. J. Chromatogr. A 2014, 1332, 46–56. [Google Scholar] [CrossRef]
- Ho, K.; Ferruzzi, M.; Liceaga, A.; Martín-González, M.S. Microwave-assisted extraction of lycopene in tomato peels: Effect of extraction conditions on all-trans and cis-isomer yields. LWT 2015, 62, 160–168. [Google Scholar] [CrossRef]
- Alexander, A.; Zhang, L.; Hooker, T.; Tomasella, F. Comparison of supercritical fluid chromatography and reverse phase liquid chromatography for the impurity profiling of the antiretroviral drugs lamivudine/BMS-986001/efavirenz in a combination tablet. J. Pharm. Biomed. Anal. 2013, 78–79, 243–251. [Google Scholar] [CrossRef]
- Bernal, J.L.; Martín, M.T.; Toribio, L. Supercritical fluid chromatography in food analysis. J. Chromatogr. A 2013, 1313, 24–36. [Google Scholar] [CrossRef]
- Nováková, L.; Perrenoud, A.G.-G.; Francois, I.; West, C.; Lesellier, E.; Guillarme, D. Modern analytical supercritical fluid chromatography using columns packed with sub-2μm particles: A tutorial. Anal. Chim. Acta 2014, 824, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Majewski, W.; Valéry, E.; Ludemann-Hombourger, O. Principle and Applications of Supercritical Fluid Chromatography. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1233–1252. [Google Scholar] [CrossRef]
- Guiochon, G.; Tarafder, A. Fundamental challenges and opportunities for preparative supercritical fluid chromatography. J. Chromatogr. A 2011, 1218, 1037–1114. [Google Scholar] [CrossRef] [PubMed]
- Gourmel, C.; Perrenoud, A.G.-G.; Waller, L.; Reginato, E.; Verne, J.; Dulery, B.; Veuthey, J.-L.; Rudaz, S.; Schappler, J.; Guillarme, D. Evaluation and comparison of various separation techniques for the analysis of closely-related compounds of pharmaceutical interest. J. Chromatogr. A 2013, 1282, 172–177. [Google Scholar] [CrossRef]
- West, C.; Bouet, A.; Routier, S.; Lesellier, E. Effects of mobile phase composition and temperature on the supercritical fluid chromatography enantioseparation of chiral fluoro-oxoindole-type compounds with chlorinated polysaccharide stationary phases. J. Chromatogr. A 2012, 1269, 325–335. [Google Scholar] [CrossRef]
- West, C.; Lesellier, E. Effects of mobile phase composition on retention and selectivity in achiral supercritical fluid chromatography. J. Chromatogr. A 2013, 1302, 152–162. [Google Scholar] [CrossRef]
- Huang, M.X.; Markides, K.E.; Lee, M.L. Evaluation of an ion mobility detector for supercritical fluid chromatog-raphy with solvent-modified carbon dioxide mobile phases. Chromatographia 1991, 31, 163–167. [Google Scholar] [CrossRef]
- Matthijs, N.; Maftouh, M.; Heyden, Y.V. Chiral separation strategy in polar organic solvent chromatography and performance comparison with normal-phase liquid and supercritical-fluid chromatography. J. Sep. Sci. 2006, 29, 1353–1362. [Google Scholar] [CrossRef]
- Abrahamsson, V.; Rodriguez-Meizoso, I.; Turner, C. Determination of carotenoids in microalgae using supercritical fluid extraction and chromatography. J. Chromatogr. A 2012, 1250, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zhao, H.; Liu, J.; Liu, W.; Fan, S.; Wu, G.; Zhao, R. Application of ultra-high performance supercritical fluid chromatography for the determination of carotenoids in dietary supplements. J. Chromatogr. A 2015, 1425, 287–292. [Google Scholar] [CrossRef]
- Matsubara, A.; Bamba, T.; Ishida, H.; Fukusaki, E.; Hirata, K. Highly sensitive and accurate profiling of carotenoids by supercritical fluid chromatography coupled with mass spectrometry. J. Sep. Sci. 2009, 32, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Guedes, L.D.S.; Jardim, I.C.S.F.; De Melo, L.V.; Beppu, M.M.; Breitkreitz, M.C.; Santana, C.C. Study of the effect of the operating parameters on the separation of bioactive compounds of palm oil by ultra-high performance supercritical fluid chromatography using a design of experiments approach. Can. J. Chem. Eng. 2017, 95, 2306–2314. [Google Scholar] [CrossRef]
- Ashraf-Khorassani, M.; Yang, J.; Rainville, P.; Jones, M.; Fountain, K.; Isaac, G.; Taylor, L. Ultrahigh performance supercritical fluid chromatography of lipophilic compounds with application to synthetic and commercial biodiesel. J. Chromatogr. B 2015, 983–984, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhao, B.; Xiao, R.; Yun, W.; Xiao, Z.; Tu, D.; Chen, S. Simultaneous determination of 14 oil-soluble synthetic dyes in chilli products by high performance liquid chromatography with a gel permeation chromatography clean-up procedure. Food Chem. 2014, 145, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Giddings, J.C. Statistical theory of component overlap in multicomponent chromatograms. Anal. Chem. 1983, 55, 418–424. [Google Scholar] [CrossRef]
- Van Deemter, J.J.; Zuiderweg, F.J.; Klinkenberg, A.V. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 1956, 5, 271–289. [Google Scholar] [CrossRef]
- Phinney, D.M.; Frelka, J.C.; Cooperstone, J.L.; Schwartz, S.J.; Heldman, D.R. Effect of solvent addition sequence on lycopene extraction efficiency from membrane neutralized caustic peeled tomato waste. Food Chem. 2017, 215, 354–361. [Google Scholar] [CrossRef]
- Liu, H.; Finch, J.W.; Lavallee, M.J.; Collamati, R.A.; Benevides, C.C.; Gebler, J.C. Effects of column length, particle size, gradient length and flow rate on peak capacity of nano-scale liquid chromatography for peptide separations. J. Chromatogr. A 2007, 1147, 30–36. [Google Scholar] [CrossRef]
- Nguyen, D.T.-T.; Guillarme, D.; Rudaz, S.; Veuthey, J.-L. Fast analysis in liquid chromatography using small particle size and high pressure. J. Sep. Sci. 2006, 29, 1836–1848. [Google Scholar] [CrossRef]
- Medina, A.; Magan, N. Comparison of three different C18 HPLC columns with different particle sizes for the optimization of aflatoxins analysis. J. Chromatogr. 2012, 889, 138–143. [Google Scholar] [CrossRef]
- Sivakumar, T.; Manavalan, R.; Valliappan, K. Development and validation of a reversed-phase HPLC method for simultaneous determination of domperidone and pantoprazole in pharmaceutical dosage forms. Acta Chromatogr. 2007, 18, 130. [Google Scholar]
- Lesellier, E. Retention mechanisms in super/subcritical fluid chromatography on packed columns. J. Chromatogr. A 2009, 1216, 1881–1890. [Google Scholar] [CrossRef] [PubMed]
- Geryk, R.; Kalíková, K.; Schmid, M.G.; Tesařová, E. Enantioselective separation of biologically active basic compounds in ultra-performance supercritical fluid chromatography. Anal. Chim. Acta 2016, 932, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Giddings, J. Reduced plate height equation: A common link between chromatographic methods. J. Chromatogr. A 1964, 13, 301–304. [Google Scholar] [CrossRef]
- Xia, B.; Feng, M.; Ding, L.; Zhou, Y. Fast Separation Method Development for Supercritical Fluid Chromatography Using an Autoblending Protocol. Chromatographia 2014, 77, 783–791. [Google Scholar] [CrossRef]
- Chen, X.; Dong, F.; Xu, J.; Liu, X.; Chen, Z.; Liu, N.; Zheng, Y. Enantioseparation and determination of isofenphos-methyl enantiomers in wheat, corn, peanut and soil with Supercritical fluid chromatography/tandem mass spectrometric method. J. Chromatogr. B 2016, 1015–1016, 13–21. [Google Scholar] [CrossRef]
- Schimpf, K.J.; Thompson, L.D.; Pan, S.-J. Determination of Carotenoids in Infant, Pediatric, and Adult Nutritionals by HPLC with UV-Visible Detection: Single-Laboratory Validation, First Action 2017.04. J. AOAC Int. 2018, 101, 264–276. [Google Scholar] [CrossRef]
- Figueira, J.A.; Pereira, J.A.; Porto-Figueira, P.; Câmara, J.S. Ultrasound-assisted liquid-liquid extraction followed by ultrahigh pressure liquid chromatography for the quantification of major carotenoids in tomato. J. Food Compost. Anal. 2017, 57, 87–93. [Google Scholar] [CrossRef]
- Berra, W.B. HPLC Method Optimization and Validation for Determination of Lycopene in Tomato (Lycopersi-con esculentum, Mill.) Fruits. Sci. Technol. Arts Res. J. 2012, 1, 14–26. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Liu, Y.-W.; Di, D.-L.; Liu, J.-X.; Li, C. An Improved LC-DAD Method for Simultaneous Determination of Lutein, β-Carotene and Lycopene in Tomato and Its Products. Chromatographia 2009, 71, 331–334. [Google Scholar] [CrossRef]
- Cucu, T.; Huvaere, K.; Bergh, M.-A.V.D.; Vinkx, C.; Van Loco, J. A Simple and Fast HPLC Method to Determine Lycopene in Foods. Food Anal. Methods 2012, 5, 1221–1228. [Google Scholar] [CrossRef]
- Hostetler, G.L.; Benét, S.; Buis, R.; Campos-Giménez, E.; Christiansen, S.; Daniel, A.; DeBorde, J.-L.; De Haan, E.; Eckes, J.; Gill, B.; et al. Determination of Lutein, β-Carotene, and Lycopene in Infant Formula and Adult Nutritionals by Ultra-High Performance Liquid Chromatography: Collaborative Study, Final Action 2016.13 for β-Carotene and Lycopene Only. J. AOAC Int. 2020, 103, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Vertzoni, M.; Reppas, C.; Archontaki, H. Optimized determination of lycopene in canine plasma using reversed-phase high-performance liquid chromatography. J. Chromatogr. B 2005, 819, 149–154. [Google Scholar] [CrossRef] [PubMed]
Column | Co-Solvent | CO2/Co-Solvent | tR (min) | T | k | N | HEPT | h |
---|---|---|---|---|---|---|---|---|
BEH 1.7 | 100:0 | 0.657 | 11.254 | 0.321 | 2045 | 48.90 | 17.57 | |
Ethanol | 90:10 | 0.578 | 10.863 | 0.425 | 3456 | 28.93 | 10.31 | |
85:15 | 0.547 | 10.547 | 0.357 | 3245 | 30.81 | 10.89 | ||
80:20 | 0.527 | 8.354 | 0.2401 | 3578 | 27.95 | 9.86 | ||
Methanol | 90:10 | 0.491 | 5.719 | 0.445 | 3012 | 33.20 | 11.74 | |
85:15 | 0.459 | 3.725 | 0.554 | 3756 | 26.62 | 9.43 | ||
80:20 | 0.320 | 4.154 | 0.521 | 3456 | 28.96 | 10.22 | ||
HSS C18 | 100:0 | 0.887 | 6.781 | 0.157 | 1837 | 54.44 | 19.37 | |
Ethanol | 90:10 | 0.794 | 6.254 | 0.424 | 2245 | 44.54 | 15.74 | |
85:15 | 0.775 | 5.724 | 0.456 | 2578 | 38.79 | 14.57 | ||
80:20 | 0.548 | 7.587 | 0.357 | 2012 | 49.70 | 17.68 | ||
Methanol | 90:10 | 0.654 | 5.457 | 0.162 | 3156 | 31.69 | 12.51 | |
85:15 | 0.524 | 5.024 | 0.181 | 3356 | 29.80 | 10.76 | ||
80:20 | 0.457 | 4.578 | 0.215 | 3358 | 29.78 | 11.27 | ||
BEH 2EP | 100:0 | 1.029 | 5.387 | 0.387 | 4198 | 35.73 | 12.63 | |
Ethanol | 90:10 | 1.014 | 4.124 | 0.524 | 4548 | 32.98 | 11.67 | |
85:15 | 0.937 | 3.475 | 0.451 | 4864 | 32.72 | 11.56 | ||
80:20 | 0.787 | 5.015 | 0.658 | 5257 | 28.53 | 10.14 | ||
Methanol | 90:10 | 0.974 | 3.875 | 0.571 | 8948 | 16.76 | 5.92 | |
85:15 | 0.722 | 2.271 | 0.672 | 13367 | 11.22 | 3.97 | ||
80:20 | 0.524 | 2.712 | 0.587 | 11078 | 13.54 | 4.78 |
Flow Rate (ml/min) | tR (min) | T | k | N | |
0.5 (A) | 0.957 | 3.473 | 0.527 | 12618 | |
1.0 (B) | 0.723 | 2.249 | 0.668 | 13418 | |
1.5 (C) | 0.520 | 2.189 | 0.685 | 12015 | |
Run time—2 min.; ABPR—1800 psi; sample temperature—20 °C; column temperature—45 °C; and detector wavelength—434 nm | |||||
ABPR (psi) | tR (min) | T | k | N | |
1600 (A) | 0.867 | 3.409 | 0.366 | 12701 | |
1800 (B) | 0.728 | 2.152 | 0.651 | 13618 | |
2000 (C) | 0.571 | 2.453 | 0.708 | 12603 | |
Run time—2 min.; sample temperature—20 °C; column temperature—45 °C; detector wavelength—434 nm; and mobile phase flow rate—1 mL/min. | |||||
Column temp (°C) | tR (min) | T | k | N | |
35 (A) | 0.767 | 2.911 | 0.745 | 11968 | |
45 (B) | 0.724 | 2.231 | 0.622 | 13574 | |
55 (C) | 0.738 | 4.895 | 0.525 | 12921 | |
Run time—2 min; sample temperature—20 °C; column temperature—45 °C; detector wavelength—434 nm; and mobile phase flow rate—1 mL/min. |
Concentration (%) | Recovery (%) | Mean | SD | %RSD |
---|---|---|---|---|
50 | 100.32 | 99.58 | 0.52 | 0.64 |
80 | 102.67 | 100.99 | 2.36 | 1.98 |
100 | 101.45 | 100.91 | 0.77 | 0.64 |
120 | 97.38 | 98.96 | 2.22 | 2.44 |
150 | 98.56 | 99.07 | 0.72 | 0.93 |
Concentration (µg/mL) | Intra-Day Recovery (%) | Inter-Day Recovery (%) | ||||
---|---|---|---|---|---|---|
Mean | SD | %RSD | Mean | SD | %RSD | |
10 | 100.02 | 1.27 | 1.57 | 99.23 | 1.27 | 2.87 |
20 | 99.18 | 0.27 | 1.85 | 98.75 | 0.61 | 1.57 |
30 | 98.78 | 0.84 | 2.12 | 100.00 | 2.08 | 3.87 |
40 | 99.27 | 0.85 | 1.27 | 98.82 | 0.87 | 2.82 |
50 | 100.7 | 3.18 | 2.28 | 99.51 | 0.55 | 4.18 |
100 | 99.98 | 1.22 | 3.28 | 100.28 | 1.32 | 2.84 |
Method | Run Time (minutes) | Compounds | Recovery (%) | LOD (µg/100 mL) | LOQ (µg/100 mL) | References |
---|---|---|---|---|---|---|
UPSFC-PDA | 2 | Lycopene | 100.32 | 0.14 | 0.37 | current method |
HPLC | 20 | Lycopene | - | 0.50 | 1.00 | [16] |
UHPLC | Lycopene | 92.8 | 0.24 | 0.80 | [49] | |
HPLC | 30 | Lycopene | 81.70 | 1.56 | 3.90 | [50] |
LC-DAD | 30 | Lycopene | 102.59 | 0.05 | NA | [51] |
HPLC | 10 | Lycopene | 77.00 | 0.10 | 0.30 | [52] |
UHPLC | 30 | Lycopene | 110.00 | 0.09 | 0.29 | [53] |
HPLC | 14 | Lycopene | >97.00 | 0.01 | 0.04 | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priyadarsani, S.; Patel, A.S.; Sharma, Y.; Kar, A. Process Development for the Instant Quantification of Lycopene from Agricultural Produces Using Supercritical Fluid Chromatography-Diode Array Detector (SFC-DAD). Foods 2022, 11, 522. https://doi.org/10.3390/foods11040522
Priyadarsani S, Patel AS, Sharma Y, Kar A. Process Development for the Instant Quantification of Lycopene from Agricultural Produces Using Supercritical Fluid Chromatography-Diode Array Detector (SFC-DAD). Foods. 2022; 11(4):522. https://doi.org/10.3390/foods11040522
Chicago/Turabian StylePriyadarsani, Supriya, Avinash Singh Patel, Yogesh Sharma, and Abhijit Kar. 2022. "Process Development for the Instant Quantification of Lycopene from Agricultural Produces Using Supercritical Fluid Chromatography-Diode Array Detector (SFC-DAD)" Foods 11, no. 4: 522. https://doi.org/10.3390/foods11040522
APA StylePriyadarsani, S., Patel, A. S., Sharma, Y., & Kar, A. (2022). Process Development for the Instant Quantification of Lycopene from Agricultural Produces Using Supercritical Fluid Chromatography-Diode Array Detector (SFC-DAD). Foods, 11(4), 522. https://doi.org/10.3390/foods11040522