The Role of Alternative Crops in an Upcoming Global Food Crisis: A Concise Review
Abstract
:1. What Makes a Food Crisis?
2. Alternative Crops and Food Security
Common Name | Scientific Name | Family | Area of Origin | Nutritional Value | Referance |
---|---|---|---|---|---|
Amaranthus | Amaranthus retroflexus | Amaranthaceae | Americas | Seeds abundant in protein content (13–19%), high levels of oils rich in squalene, and high amounts of antioxidants | [31] |
Buckwheat | Fagopyrum esculentum | Polygonaceae | Asia | Protein content similar to that of wheat, aproximantely 3% fat content, and high crude fiber concentration | [32] |
Canihua | Chenopodium pallidicaule | Amaranthaceae | Andes | Exeptional protein, fat, ash, and carbohydrate content | [33] |
Einkorn | Triticum monococcum | Poaceae | Asia Minor | Rich in antioxidant compounds such ascarotenoids, tocols, conjugated polyphenols, alkylresorcinols, and phytosterols | [34] |
Emmer wheat | Triticum dicoccon | Poaceae | Eurasia | Rich in resistant starch, minerals, fibre, carotenoids, and antioxidant compounds | [35] |
Foxtail | Setaria italica | Poaceae | Southern Asia | Rich in protein, fatty acids, minerals, and amino acids | [36] |
Khorosan wheat | Triticum turgidum ssp. Turanicum | Poaceae | Mesopotamia | Higher protein, crude ash, and vitamine E content compared to wheat | [37] |
Pearl millet | Cenchrus americanus | Poaceae | West Africa | 360 calories, 12 g of protein, 5 g of fat, 1 g of fibres, and 67 g of carbohydrates per 100 g of seeds | [38] |
Quinoa | Chenopodium quinoa | Amaranthaceae | Andes | Gluten-free, with high protein concent, rich in unsaturated fatty acids, vitamins, and minerals | [39] |
Salicornia | Salicornia bigelovii | Amaranthaceae | North America | Rich in bioactive compounds, vitamin A, minerals and fatty acids. Seedoil rich in linoleic acid | [40] |
Spelt | Triticum spelta | Poaceae | Europe | Higher protein content, more non-essential amino acids, and less lysine | [41] |
Tef | Eragrostis tef | Poaceae | Somali Peninsula | Gluten-free, rich in protein, dietary fiber, polyphenols, and minerals | [42] |
Triticale | ×Triticosecale | Poaceae | Europe | High protein content and slightly higher levels of most of the nutritious compounds when compared to wheat | [43] |
Tritordeum | Tritordeum martinii | Poaceae | Europe | High total phenol content, antioxidant activity, dietary fiber content, and total free amino acids | [44] |
Cowpea | Vigna unguiculata | Fabaceae | Southern Africa | Rich in protein (<20%) and minerals (calcium, potassium, sodium, and more) | [45] |
Guar | Cyamopsis tetragonolobus | Fabaceae | Africa | High protein, ash, and polyphenol contents | [46] |
Lablab | Lablab purpureus | Fabaceae | South-east Asia | Rich in proteins, carbohydrates, minerals and vitamins | [47] |
White lupin | Lupinus albus | Fabaceae | Mediteranean Basin | Fair protein, fatty acid, and fibre content, as well as oligosaccharides, antioxidants, and non-starch carbohydrates | [48] |
Pigeon pea | Cajanus cajan | Fabaceae | South Asia | Rich in starch, protein, calcium, manganese, crude fibre, fat, and minerals | [49] |
Sesbania | Sesbania sp. | Fabaceae | North-East Africa | High protein content (can exced 40%), vitamin C, and calcium | [50] |
Indian mustard | Brassica juncea | Brassicaceae | West Asia | Seeds rich in glucosinolates, sterols, and phenols. Leafs rich in glucose, fructose, and minerals | [51,52] |
Purslane | Portulaca oleracea | Portulacaceae | Eurasia | Rich in omega-3, amino acids, and vitamins | [53] |
Chia | Salvia hispanica | Lamiaceae | Central America | Seeds with high protein content (>15%), rich in lipids, and minerals. On average, 100 g of seed contains aproximantely 500 kcal | [54] |
Nigella | Nigella sativa | Ranunculaceae | Eastern Europe | Rich in fatty acids, phytosterols, glycolipids, and phospholipids | [55] |
Sweet potato | Ipomoea batatas | Convolvulaceae | Americas | Protein content ranging from 4–27%, rich in β-carotene and anthocyanin | [56] |
Camelina | Camelina sativa | Brassicaceae | Europe | Excelent source of essential unsaturated fatty acids, particularly OMEGA-3 fatty acids | [57] |
3. Food for Thought
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Walford, C. The famines of the world: Past and present. J. Stat. Soc. Lond. 1878, 41, 433–535. [Google Scholar] [CrossRef]
- World Peace Foundation. Annual Report, Fiscal Year 2016–2017. Available online: https://sites.tufts.edu/wpf/files/2017/08/World-Peace-Foundation_Annual-Report-FY2017-Website.pdf (accessed on 14 October 2022).
- WFP-World Food Programme. The Global Report on Food Crises 2022. Available online: https://docs.wfp.org/api/documents/WFP-0000138913/download/?_ga=2.195833519.2005609609.1656526761-878536380.1651662482 (accessed on 14 October 2022).
- Timmer, C.P. Preventing food crises using a food policy approach. J. Nutr. 2010, 140, 224–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentley, A. Broken bread—avert global wheat crisis caused by invasion of Ukraine. Nature 2022, 603, 551. [Google Scholar] [CrossRef]
- Okolie, C.C.; Ogundeji, A.A. Effect of COVID-19 on agricultural production and food security: A scientometric analysis. Humanit. Soc. Sci. Commun. 2022, 9, 64. [Google Scholar] [CrossRef]
- Dasgupta, S.; Robinson, E.J. Attributing changes in food insecurity to a changing climate. Sci. Rep. 2022, 12, 4709. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, N.S.; Grillakis, M.; Gudmundsson, L.; et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 2021, 11, 226–233. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Chaloner, T.M.; Gurr, S.J.; Bebber, D.P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Chang. 2021, 11, 710–715. [Google Scholar] [CrossRef]
- Ma, C.S.; Zhang, W.; Peng, Y.; Zhao, F.; Chang, X.Q.; Xing, K.; Zhu, L.; Ma, G.; Yang, H.P.; Rudolf, V.H. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nat. Commun. 2021, 12, 5351. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Bodirsky, B.L.; Doelman, J.C.; Fellmann, T.; Kyle, P.; Koopman, J.F.L.; Lotze-Campen, H.; et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Chang. 2018, 8, 699–703. [Google Scholar] [CrossRef]
- Von Braun, J. The food crisis isn’t over. Nature 2008, 456, 701. [Google Scholar] [CrossRef] [PubMed]
- FAO. World Food Situation. Available online: https://www.fao.org/worldfoodsituation/foodpricesindex/en/ (accessed on 14 October 2022).
- Bioversity International. Agrobiodiversity Index Report 2019: Risk and Resilience. Available online: https://edepot.wur.nl/530472 (accessed on 14 October 2022).
- Osendarp, S.; Verburg, G.; Bhutta, Z.; Black, R.E.; de Pee, S.; Fabrizio, C.; Headey, D.; Heidkamp, R.; Laborde, D.; Ruel, M.T. Act now before Ukraine war plunges millions into malnutrition. Nature 2022, 604, 620–624. [Google Scholar] [CrossRef] [PubMed]
- FAO. The Importance of Ukraine and the Russian Federation for Global Agricultural Markets and the Risks Associated with the Current Conflict. Available online: https://www.fao.org/3/cb9236en/cb9236en.pdf (accessed on 14 October 2022).
- Barman, A.; Das, R.; De, P.K. Impact of COVID-19 in food supply chain: Disruptions and recovery strategy. CRBS 2021, 2, 100017. [Google Scholar] [CrossRef]
- Laborde, D.; Martin, W.; Swinnen, J.; Vos, R. COVID-19 risks to global food security. Science 2020, 369, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Russia’s war on Ukraine: Impact on Food Security and EU Response. Available online: https://www.europarl.europa.eu/RegData/etudes/ATAG/2022/729367/EPRS_ATA(2022)729367_EN.pdf (accessed on 14 October 2022).
- Hirich, A.; Choukr-Allah, R.; Ragab, R. Emerging Research in Alternative Crops, 1st ed.; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Wendin, K.; Mustafa, A.; Ortman, T.; Gerhardt, K. Consumer awareness, attitudes and preferences towards heritage cereals. Foods 2020, 9, 742. [Google Scholar] [CrossRef]
- Slama, A.; Mallek-Malej, E.; Mohamed, H.B.; Rhim, T.; Radhouane, L. A return to the genetic heritage of durum wheat to cope with drought heightened by climate change. PLoS ONE 2018, 13, e0196873. [Google Scholar] [CrossRef] [Green Version]
- Isleib, J. Exploring Alternative Field Crops, 1st ed.; Michigan State University Extension: East Lansing, MI, USA, 2012. [Google Scholar]
- Padulosi, S.; Phrang, R.; Rosado-May, F.J. Supporting Nutrition Sensitive Agriculture through Neglected and Underutilized Species: Operational Framework; IFAD: Rome, Italy, 2019. [Google Scholar]
- Padulosi, S.; King, E.I.O.; Hunter, D.; Swaminathan, M.S. Orphan Crops for Sustainable Food and Nutrition Security: Promoting Neglected and Underutilized Species, 1st ed.; Routledge: London, UK, 2021. [Google Scholar]
- Kakabouki, I.; Tataridas, A.; Mavroeidis, A.; Kousta, A.; Roussis, I.; Katsenios, N.; Efthimiadou, A.; Papastylianou, P. Introduction of alternative crops in the Mediterranean to satisfy EU Green Deal goals. A review. Agron. Sustain. Dev. 2021, 41, 71. [Google Scholar] [CrossRef]
- Girija, A.; Jifar, H.; Jones, C.; Yadav, R.; Doonan, J.; Mur, L.A. Tef: A tiny grain with enormous potential. Trends Plant Sci. 2022, 27, 220–223. [Google Scholar] [CrossRef]
- FAO. Policy Brief-Food security. Available online: https://www.fao.org/fileadmin/templates/faoitaly/documents/pdf/pdf_Food_Security_Cocept_Note.pdf (accessed on 14 October 2022).
- Gunaratne, M.S.; Radin Firdaus, R.B.; Rathnasooriya, S.I. Climate change and food security in Sri Lanka: Towards food sovereignty. Humanit. Soc. Sci. Commun. 2021, 8, 229. [Google Scholar] [CrossRef]
- Soriano-García, M.; Aguirre-Díaz, I.S. Nutritional functional value and therapeutic utilization of Amaranth. In Nutritional Value of Amaranth, 1st ed.; Waisundara, V.Y., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Eggum, B.O.; Kreft, I.; Javornik, B. Chemical composition and protein quality of buckwheat (Fagopyrum esculentum Moench). Plant Foods Hum. Nutr. 1980, 30, 175–179. [Google Scholar] [CrossRef]
- Repo-Carrasco, R.; Espinoza, C.; Jacobsen, S.E. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int. 2003, 19, 179–189. [Google Scholar] [CrossRef]
- Hidalgo, A.; Brandolini, A. Nutritional properties of einkorn wheat (Triticum monococcum L.). J. Sci. Food Agric. 2014, 94, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Čurná, V.; Lacko-Bartošová, M. Chemical composition and nutritional value of emmer wheat (Triticum dicoccon schrank): A review. J. Cent. Eur. Agric. 2017, 18, 117–134. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, J.; Cheng, L.; Zhang, Y.; Hou, S.; Sun, Z.; Li, H.; Han, Y. Carotenoid composition and expression of biosynthetic genes in yellow and white foxtail millet [Setaria italica (L.) Beauv]. J. Cereal Sci. 2019, 85, 84–90. [Google Scholar] [CrossRef]
- Van Boxstael, F.; Aerts, H.; Linssen, S.; Latré, J.; Christiaens, A.; Haesaert, G.; Dierickx, I.; Brusselle, J.; De Keyzer, W. A comparison of the nutritional value of Einkorn, Emmer, Khorasan and modern wheat: Whole grains, processed in bread, and population-level intake implications. J. Sci. Food Agric. 2020, 100, 4108–4118. [Google Scholar] [CrossRef]
- Malik, S. Pearl millet-nutritional value and medicinal uses. IJARIIE 2015, 1, 414–418. [Google Scholar]
- Bastidas, E.G.; Roura, R.; Rizzolo, D.A.D.; Massanés, T.; Gomis, R. Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: An integrative review. J. Nutr. Food Sci. 2016, 6, 1000497. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Pérez, S.; Piernik, A.; Chanona-Pérez, J.J.; Grigore, M.N.; Perea-Flores, M.J. An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environ. Exp. Bot. 2021, 191, 104606. [Google Scholar] [CrossRef]
- Chrenkova, M.; Čerešňáková, Z.; Sommer, A.; Galova, Z.; Král’ová, V. Assessment of nutritional value in spelt (Triticum spelta L.) and winter (Triticum aestivum L.) wheat by chemical and biological methods. Czech J. Anim. Sci. 2000, 45, 133–137. [Google Scholar]
- Zhu, F. Chemical composition and food uses of teff (Eragrostis tef). Food Chem. 2018, 239, 402–415. [Google Scholar] [CrossRef]
- Biel, W.; Kazimierska, K.; Bashutska, U. Nutritional value of wheat, triticale, barley and oat grains. Acta Sci. Pol. Zootech. 2020, 19, 19–28. [Google Scholar] [CrossRef]
- Arora, K.; Carafa, I.; Fava, F.; Tuohy, K.M.; Nikoloudaki, O.; Gobbetti, M.; Di Cagno, R. Sourdough performances of the golden cereal Tritordeum: Dynamics of microbial ecology, biochemical and nutritional features. Int. J. Food Microbiol. 2022, 374, 109725. [Google Scholar] [CrossRef] [PubMed]
- Khalid, I.I.; Elhardallou, S.B. Factors that compromise the nutritional value of cowpea fluor and its protein isolates. Food Nutr. Sci. 2016, 7, 112. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Kaur, A.; Kaur, S. Nutritional quality of flours from guar bean (Cyamopsis tetragonoloba) varieties as affected by different processing methods. J. Food Sci. Technol. 2017, 54, 1866–1872. [Google Scholar] [CrossRef]
- Khan, A.U.; Choudhury, M.A.R.; Talucder, M.S.A.; Hossain, M.; Ali, S.; Akter, T.; Ehsanullah, M. Constraints and solutions of country bean (Lablab purpureus L.) Production: A review. Acta Entomol. Zool. 2020, 1, 37–45. [Google Scholar] [CrossRef]
- Janusz, P. White lupin (Lupinus albus L.)–nutritional and health values in human nutrition–a review. Czech J. Food Sci. 2017, 35, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Agarwal, N.; Verma, P. Pigeon pea (Cajanus cajan L.): A hidden treasure of regime nutrition. J. Funct. Environ. Bot. 2011, 1, 91–101. [Google Scholar] [CrossRef]
- Bunma, S.; Balslev, H. A review of the economic botany of Sesbania (Leguminosae). Bot. Rev. 2019, 85, 185–251. [Google Scholar] [CrossRef]
- Vaštakaitė-Kairienė, V.; Brazaityte, A.; Virsile, A.; Samuoliene, G.; Miliauskiene, J.; Jankauskiene, J.; Novickovas, A.; Duchovskis, P. The nutritional value of brassica leafy greens in different growth stages. Acta Hortic. 2020, 1271, 455–464. [Google Scholar] [CrossRef]
- Szőllősi, R. Indian Mustard (Brassica juncea L.) Seeds in Health. In Nuts and Seeds in Health and Disease Prevention, 1st ed.; Preedy, V.R., Watson, R.R., Patel, V.B., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 357–364. [Google Scholar] [CrossRef]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem. 2020, 320, 126621. [Google Scholar] [CrossRef]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The chemical composition and nutritional value of chia seeds—Current state of knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramadan, M.F. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): An overview. Int. J. Food Sci. Technol. 2007, 42, 1208–1218. [Google Scholar] [CrossRef]
- Bovell-Benjamin, A.C. Sweet potato: A review of its past, present, and future role in human nutrition. Adv. Food Nutr. Res. 2007, 52, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Zubr, J. Oil-seed crop: Camelina sativa. Ind. Crop. Prod. 1997, 6, 113–119. [Google Scholar] [CrossRef]
- Maghrebi, M.; Noori, R.; Bhattarai, R.; Mundher Yaseen, Z.; Tang, Q.; Al-Ansari, N.; Mehr, A.D.; Karbassi, A.; Omidvar, J.; Farnoush, H.; et al. Iran’s Agriculture in the Anthropocene. Earths Future 2020, 8, e2020EF001547. [Google Scholar] [CrossRef]
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- Bai, Y.; Costlow, L.; Ebel, A.; Laves, S.; Ueda, Y.; Volin, N.; Zamek, M.; Masters, W.A. Retail prices of nutritious food rose more in countries with higher COVID-19 case counts. Nat. Food 2022, 3, 325–330. [Google Scholar] [CrossRef]
- Gruni, G. The EU, World Trade Law and the Right to Food: Rethinking Free Trade Agreements with Developing Countries, 1st ed.; Bloomsbury Publishing: London, UK, 2018. [Google Scholar]
- Narciso, J.O.; Nyström, L. Breathing New Life to Ancient Crops: Promoting the Ancient Philippine Grain “Kabog Millet” as an Alternative to Rice. Foods 2020, 9, 1727. [Google Scholar] [CrossRef]
- Kozicka, M.; Groot, J.C.; Gotor, E. Can crop diversity strengthen small-scale farmers’ resilience? In Agrobiodiversity Index Report 2019: Risk and Resilience, 1st ed.; Bailey, A., Ed.; Bioversity International: Rome, Italy, 2019. [Google Scholar]
- Hertel, T.; Elouafi, I.; Tanticharoen, M.; Ewert, F. Diversification for enhanced food systems resilience. Nat. Food 2021, 2, 832–834. [Google Scholar] [CrossRef]
- Bellon, M.R.; Kotu, B.H.; Azzarri, C.; Caracciolo, F. To diversify or not to diversify, that is the question. Pursuing agricultural development for smallholder farmers in marginal areas of Ghana. World Dev. 2020, 125, 104682. [Google Scholar] [CrossRef]
- Gil, J. Food trade and resilience. Nat. Food 2020, 1, 150. [Google Scholar] [CrossRef] [Green Version]
- Rivera, W.M.; Qamar, M.K. Food security. In Agricultural Extension, Rural Development and the Food Security Challenge, 1st ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Zanella, L.; Vianello, F. Functional food from endangered ecosystems: Atriplex portulacoides as a case study. Foods 2020, 9, 1533. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, G.; Schneider, R.G. The Role of Amaranth, Quinoa, and Millets for the Development of Healthy, Sustainable Food Products—A Concise Review. Foods 2022, 11, 2442. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, C.C.; Emery, B.F.; Niles, M.T. Global relationships between crop diversity and nutritional stability. Nat. Commun. 2021, 12, 5310. [Google Scholar] [CrossRef] [PubMed]
- Brander, M.; Bernauer, T.; Huss, M. Improved on-farm storage reduces seasonal food insecurity of smallholder farmer households–Evidence from a randomized control trial in Tanzania. Food Policy 2021, 98, 101891. [Google Scholar] [CrossRef]
- European Commission. Enhancing Agricultural Biodiversity. Available online: https://agriculture.ec.europa.eu/sustainability/environmental-sustainability/biodiversity_en (accessed on 14 October 2022).
- The Environmental Impacts of Agricultural Intensification. Available online: https://iaes.cgiar.org//sites/default/files/pdf/Environmental%20Impacts%20of%20Ag%20Intensification%20TN9_July2020.pdf (accessed on 14 October 2022).
- Mazac, R.; Meinilä, J.; Korkalo, L.; Järviö, N.; Jalava, M.; Tuomisto, H.L. Incorporation of novel foods in European diets can reduce global warming potential, water use and land use by over 80%. Nat. Food 2022, 3, 286–293. [Google Scholar] [CrossRef]
- Angeli, V.; Miguel Silva, P.; Crispim Massuela, D.; Khan, M.W.; Hamar, A.; Khajehei, F.; Graeff-Hönninger, S.; Piatti, C. Quinoa (Chenopodium quinoa Willd.): An overview of the potentials of the “golden grain” and socio-economic and environmental aspects of its cultivation and marketization. Foods 2020, 9, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreotti, F.; Bazile, D.; Biaggi, C.; Callo-Concha, D.; Jacquet, J.; Jemal, O.M.; King, O.I.; Mbosso, C.; Padulosi, S.; Speelman, E.N.; et al. When neglected species gain global interest: Lessons learned from quinoa’s boom and bust for teff and minor millet. Glob. Food Secur. 2022, 32, 100613. [Google Scholar] [CrossRef]
- EIP-AGRI. Non-Chemical Weed Management in Arable Cropping Systems-Final Report. Available online: https://ec.europa.eu/eip/agriculture/sites/default/files/eip-agri_fg_non-chemical_weed_management_final_report_2020_en.pdf (accessed on 14 October 2022).
- Lucchi, A.; Benelli, G. Towards Pesticide-Free Farming? Sharing Needs and Knowledge Promotes Integrated Pest Management. Environ. Sci. Pollut. Res. 2018, 25, 13439–13445. [Google Scholar] [CrossRef]
- World Obesity Atlas 2022. Available online: https://www.worldobesityday.org/assets/downloads/World_Obesity_Atlas_2022_WEB.pdf (accessed on 14 October 2022).
- WHO. European Regional Obesity Report 2022. Available online: https://apps.who.int/iris/bitstream/handle/10665/353747/9789289057738-eng.pdf (accessed on 14 October 2022).
- CDC. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/obesity/data/adult.html (accessed on 14 October 2022).
- Plourde, G.; Fournier-Ross, E.; Tessier-Grenier, H.; Mullie, L.A.; Chassé, M.; Carrier, F.M. Association between obesity and hospital mortality in critical COVID-19: A retrospective cohort study. Int. J. Obes. 2021, 45, 2617–2622. [Google Scholar] [CrossRef]
- World Bank. Food Finance Architecture-Financing a Healthy, Equitable and Sustainable Food System. Available online: https://documents1.worldbank.org/curated/en/879401632342154766/pdf/Food-Finance-Architecture-Financing-a-Healthy-Equitable-and-Sustainable-Food-System.pdf (accessed on 14 October 2022).
- Hutchins, S.H. Sustainable Agriculture in the US vs. the EU: A Comparative Look at Different Approaches to Similar Objectives. CSA News 2021, 66, 24–34. [Google Scholar] [CrossRef]
- USDA. U.S. Agriculture Innovation Strategy: A Directional Vision for Research. Available online: https://www.usda.gov/sites/default/files/documents/AIS.508-01.06.2021.pdf (accessed on 14 October 2022).
- African Union Commission Agenda 2063: The Africa We Want. Available online: https://www.afdb.org/fileadmin/uploads/afdb/Documents/Policy-Documents/Agenda2063_Popular_Version_English.pdf (accessed on 3 November 2022).
- Asian Development Bank. Strategy 2030. Available online: https://www.adb.org/sites/default/files/institutional-document/435391/strategy-2030-brochure.pdf (accessed on 3 November 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavroeidis, A.; Roussis, I.; Kakabouki, I. The Role of Alternative Crops in an Upcoming Global Food Crisis: A Concise Review. Foods 2022, 11, 3584. https://doi.org/10.3390/foods11223584
Mavroeidis A, Roussis I, Kakabouki I. The Role of Alternative Crops in an Upcoming Global Food Crisis: A Concise Review. Foods. 2022; 11(22):3584. https://doi.org/10.3390/foods11223584
Chicago/Turabian StyleMavroeidis, Antonios, Ioannis Roussis, and Ioanna Kakabouki. 2022. "The Role of Alternative Crops in an Upcoming Global Food Crisis: A Concise Review" Foods 11, no. 22: 3584. https://doi.org/10.3390/foods11223584
APA StyleMavroeidis, A., Roussis, I., & Kakabouki, I. (2022). The Role of Alternative Crops in an Upcoming Global Food Crisis: A Concise Review. Foods, 11(22), 3584. https://doi.org/10.3390/foods11223584