From the Raw Materials to the Bottled Product: Influence of the Entire Production Process on the Organoleptic Profile of Industrial Beers
Abstract
:1. Introduction
2. Barley, Malt and Malting
3. Mashing and Wort
4. Hops
5. Maturation, Storage, and Bottling
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Betancur, M.I.; Motoki, K.; Spence, C.; Velasco, C. Factors influencing the choice of beer: A review. Food Res. Int. 2020, 137, 109367. [Google Scholar] [CrossRef]
- Einfalt, D. Barley-sorghum craft beer production with Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima yeast strains. Eur. Food Res. Technol. 2021, 247, 385–393. [Google Scholar] [CrossRef]
- Postigo, V.; García, M.; Cabellos, J.M.; Arroyo, T. Wine Saccharomyces Yeasts for Beer Fermentation. Fermentation 2021, 7, 290. [Google Scholar] [CrossRef]
- van Donkelaar, L.H.G.; Mostert, J.; Zisopoulos, F.K.; Boom, R.M.; van der Goot, A.J. The use of enzymes for beer brewing: Thermodynamic comparison on resource use. Energy 2016, 115, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Humia, B.V.; Santos, K.S.; Schneider, J.K.; Leal, I.L.; de Abreu Barreto, G.; Batista, T.; Machado, B.A.S.; Druzian, J.I.; Krause, L.C.; da Costa Mendonça, M.; et al. Physicochemical and sensory profile of Beauregard sweet potato beer. Food Chem. 2020, 312, 126087. [Google Scholar] [CrossRef]
- Salanță, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Anjos, O.; Zhao, H. Functionality of Special Beer Processes and Potential Health Benefits. Processes 2020, 8, 1613. [Google Scholar] [CrossRef]
- Machado, J.C.; Faria, M.A.; Ferreira, I.M.P.L.V.O. Hops: New Perspectives for an Old Beer Ingredient. In Natural Beverages; Elsevier: Amsterdam, The Netherlands, 2019; pp. 267–301. [Google Scholar]
- Martins, C.; Brandão, T.; Almeida, A.; Rocha, S.M. Unveiling the lager beer volatile terpenic compounds. Food Res. Int. 2018, 114, 199–207. [Google Scholar] [CrossRef]
- Donadini, G.; Porretta, S. Uncovering patterns of consumers’ interest for beer: A case study with craft beers. Food Res. Int. 2017, 91, 183–198. [Google Scholar] [CrossRef]
- Li, F.; Shi, Y.; Boswell, M.; Rozelle, S. Craft beer in China. In Economic Perspectives on Craft Beer; Garavaglia, C., Swinnen, J., Eds.; Palgrave Macmillan: Cham, Switzerland, 2017. [Google Scholar]
- Derdelinckx, G.; Neven, H.; Demeyer, I.; Delvaux, F. Belgian special beers: Refermented beers, white and wheat beers, amber and dark beers, spiced and hoppy beers. Belgian J. Brew. Biotechnol. 1995, 20, 67–73. [Google Scholar]
- Nizet, S.; Gros, J.; Peeters, F.; Chaumont, S.; Robiette, R.; Collin, S. First evidence of the production of odorant polyfunctional thiols by bottle refermentation. J. Am. Soc. Brew. Chem. 2013, 71, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zeng, Z.; Xiong, B. Preparation of novel solid-phase microextraction fibers by sol–gel technology for headspace solid-phase microextraction-gas chromatographic analysis of aroma compounds in beer. J. Chromatogr. A 2005, 1065, 287–299. [Google Scholar] [CrossRef]
- Cortacero-Ramírez, S.; Hernáinz-Bermúdez De Castro, M.; Segura-Carretero, A.; Cruces-Blanco, C.; Fernández-Gutiérrez, A. Analysis of beer components by capillary electrophoretic methods. TrAC Trends Anal. Chem. 2003, 22, 440–455. [Google Scholar] [CrossRef]
- Romero-Medina, A.; Estarrón-Espinosa, M.; Verde-Calvo, J.R.; Lelièvre-Desmas, M.; Escalona-Buendía, H.B. Renewing Traditions: A Sensory and Chemical Characterisation of Mexican Pigmented Corn Beers. Foods 2020, 9, 886. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Bamforth, C.W. The Microbiology of Malting and Brewing. Microbiol. Mol. Biol. Rev. 2013, 77, 157–172. [Google Scholar] [CrossRef] [Green Version]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma—A review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [Green Version]
- Fontana, M.; Buiatti, S. Amino Acids in Beer. In Beer in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2009; pp. 273–284. [Google Scholar] [CrossRef]
- Poveda, J.M. Biogenic amines and free amino acids in craft beers from the Spanish market: A statistical approach. Food Control 2019, 96, 227–233. [Google Scholar] [CrossRef]
- He, Y.; Dong, J.; Yin, H.; Zhao, Y.; Chen, R.; Wan, X.; Chen, P.; Hou, X.; Liu, J.; Chen, L. Wort composition and its impact on the flavour-active higher alcohol and ester formation of beer—A review. J. Inst. Brew. 2014, 120, 157–163. [Google Scholar] [CrossRef]
- Deng, Y.; Lim, J.; Lee, G.H.; Hanh Nguyen, T.T.; Xiao, Y.; Piao, M.; Kim, D. Brewing rutin-enriched lager beer with buckwheat malt as adjuncts. J. Microbiol. Biotechnol. 2019, 29, 877–886. [Google Scholar] [CrossRef] [Green Version]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-active volatile compounds in beer: Production, regulation and control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Garcia, J.H.; Galán-Wong, L.J.; Pereyra-Alférez, B.; Damas-Buenrostro, L.C.; Pérez, E.; Carlos Cabada, J. Distribution of lactobacillus and pediococcus in a brewery environment. J. Am. Soc. Brew. Chem. 2017, 75, 312–317. [Google Scholar] [CrossRef]
- Romero-Rodríguez, R.; Durán-Guerrero, E.; Castro, R.; Díaz, A.B.; Lasanta, C. Evaluation of the influence of the microorganisms involved in the production of beers on their sensory characteristics. Food Bioprod. Process. 2022, 135, 33–47. [Google Scholar] [CrossRef]
- Briggs, D. Malts and Malting; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Briggs, D.E.; Boulton, C.A.; Brookes, P.A.; Stevens, R. Brewing: Science and Practice; CRC Press: Cambridge, UK, 2004. [Google Scholar]
- Gąsior, J.; Kawa-Rygielska, J.; Kucharska, A. Carbohydrates profile, polyphenols content and antioxidative properties of beer worts produced with different dark malts varieties or roasted barley grains. Molecules 2020, 25, 3882. [Google Scholar] [CrossRef] [PubMed]
- Phiarais, B.P.N.; Mauch, A.; Schehl, B.D.; Zarnkow, M.; Gastl, M.; Herrmann, M.; Zannini, E.; Arendt, E.K. Processing of a Top Fermented Beer Brewed from 100% Buckwheat Malt with Sensory and Analytical Characterisation. J. Inst. Brew. 2010, 116, 265–274. [Google Scholar] [CrossRef]
- Langos, D.; Granvogl, M.; Schieberle, P. Characterization of the key aroma compounds in two Bavarian wheat beers by means of the sensomics approach. J. Agric. Food Chem. 2013, 61, 11303–11311. [Google Scholar] [CrossRef]
- Yin, H.; Dong, J.; Yu, J.; Chang, Z.; Qian, Z.; Liu, M.; Huang, S.; Hu, X.; Liu, X.; Deng, Y.; et al. A preliminary study about the influence of high hydrostatic pressure processing on the physicochemical and sensorial properties of a cloudy wheat beer. J. Inst. Brew. 2016, 122, 462–467. [Google Scholar] [CrossRef]
- Coulibaly, W.H.; Florent N’guessan, K.; Coulibaly, I.; Cot, M.; Rigou, P.; Djè, K.M. Influence of Freeze-Dried Yeast Starter Cultures on Volatile Compounds of Tchapalo, a Traditional Sorghum Beer from Côte d’Ivoire. Beverages 2016, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Schnitzenbaumer, B.; Karl, C.A.; Jacob, F.; Arendt, E.K. Impact of Unmalted White Nigerian and Red Italian Sorghum (Sorghum bicolor) on the Quality of Worts and Beers Applying Optimized Enzyme Levels. J. Am. Soc. Brew. Chem. 2013, 71, 258–266. [Google Scholar] [CrossRef]
- Schnitzenbaumer, B.; Kerpes, R.; Titze, J.; Jacob, F.; Arendt, E.K. Impact of Various Levels of Unmalted Oats (Avena sativa L.) on the Quality and Processability of Mashes, Worts, and Beers. J. Am. Soc. Brew. Chem. 2012, 70, 142–149. [Google Scholar] [CrossRef]
- Yorke, J.; Cook, D.; Ford, R. Brewing with Unmalted Cereal Adjuncts: Sensory and Analytical Impacts on Beer Quality. Beverages 2021, 7, 4. [Google Scholar] [CrossRef]
- Bettenhausen, H.M.; Benson, A.; Fisk, S.; Herb, D.; Hernandez, J.; Lim, J.; Queisser, S.H.; Shellhammer, T.H.; Vega, V.; Yao, L.; et al. Variation in Sensory Attributes and Volatile Compounds in Beers Brewed from Genetically Distinct Malts: An Integrated Sensory and Non-Targeted Metabolomics Approach. J. Am. Soc. Brew. Chem. 2020, 78, 136–152. [Google Scholar] [CrossRef]
- Bettenhausen, H.M.; Barr, L.; Broeckling, C.D.; Chaparro, J.M.; Holbrook, C.; Sedin, D.; Heuberger, A.L. Influence of malt source on beer chemistry, flavor, and flavor stability. Food Res. Int. 2018, 113, 487–504. [Google Scholar] [CrossRef]
- Herb, D.; Filichkin, T.; Fisk, S.; Helgerson, L.; Hayes, P.; Meints, B.; Jennings, R.; Monsour, R.; Tynan, S.; Vinkemeier, K.; et al. Effects of barley (Hordeum vulgare L.) variety and growing environment on beer flavor. J. Am. Soc. Brew. Chem. 2017, 75, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Kyraleou, M.; Herb, D.; O’reilly, G.; Conway, N.; Bryan, T.; Kilcawley, K.N. The impact of terroir on the flavour of single malt whisk(E)y new make spirit. Foods 2021, 10, 443. [Google Scholar] [CrossRef]
- McMillan, T.; Tidemann, B.D.; O’Donovan, J.T.; Izydorczyk, M.S. Effects of plant growth regulator application on the malting quality of barley. J. Sci. Food Agric. 2020, 100, 2082–2089. [Google Scholar] [CrossRef]
- Casey, G.P. Primary Versus Secondary Gushing and Assay Procedures Used to Assess Malt/Beer Gushing Potential. MBAA Tech. Q. 1996, 33, 229–235. [Google Scholar]
- Sarlin, T. Detection and Characterisation of Fusarium hydrophobins Inducing Gushing in Beer; Aalto University School of Chemical Technology: Espoo, Finland, 2012. [Google Scholar]
- Deckers, S.M.; Vissers, L.; Khalesi, M.; Shokribousjein, Z.; Verachtert, H.; Gebruers, K.; Pirlot, X.; Rock, J.M.; Ilberg, V.; Titze, J.; et al. Thermodynamic view of primary gushing. J. Am. Soc. Brew. Chem. 2013, 71, 149–152. [Google Scholar] [CrossRef]
- Deckers, S.M.; Venken, T.; Khalesi, M.; Gebruers, K.; Baggerman, G.; Lorgouilloux, Y.; Shokribousjein, Z.; Lberg, V.; Schönberger, C.; Titze, J.; et al. Combined Modeling and Biophysical Characterisation of CO2 Interaction with Class II Hydrophobins: New Insight into the Mechanism Underpinning Primary Gushing Sylvie. J. Am. Soc. Brew. Chem. 2012, 70, 257–261. [Google Scholar] [CrossRef]
- Pascari, X.; Marin, S.; Ramos, A.J.; Sanchis, V. Relevant Fusarium Mycotoxins in Malt and Beer. Foods 2022, 11, 246. [Google Scholar] [CrossRef]
- Kyselová, L.; Brányik, T. Quality Improvement and Fermentation Control in Beer; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; ISBN 9781782420248. [Google Scholar]
- Hill, A.E. Microbiological stability of beer. In Handbook of Alcoholic Beverages: Beer, a Quality Perspective; Bamforth, C.W., Russell, I., Stewart, G., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: New York, NY, USA, 2009; pp. 163–183. ISBN 9780126692013. [Google Scholar]
- Back, W. Color atlas and handbook of beverage biology. In Color Atlas and Handbook of Beverage Biology; Fachverlag Hans Carl: Numberg, Germany, 2005. [Google Scholar]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Chandra, G.S.; Proudlove, M.O.; Baxter, E.D. The structure of barley endosperm—An important determinant of malt modification. J. Sci. Food Agric. 1999, 79, 37–46. [Google Scholar] [CrossRef]
- Iimure, T.; Sato, K. Beer proteomics analysis for beer quality control and malting barley breeding. Food Res. Int. 2013, 54, 1013–1020. [Google Scholar] [CrossRef]
- Justé, A.; Malfliet, S.; Lenaerts, M.; De Cooman, L.; Aerts, G.; Willems, K.A.; Lievens, B. Microflora during malting of barley: Overview and impact on malt quality. Brew. Sci. 2011, 64, 22–31. [Google Scholar]
- Mather, D.E.; Tinker, N.A.; LaBerge, D.E.; Edney, M.; Jones, B.L.; Rossnagel, B.G.; Legge, W.G.; Briggs, K.G.; Irvine, R.B.; Falk, D.E.; et al. Regions of the genome that affect grain and malt quality in a North American two-row Barley Cross. Crop Sci. 1997, 37, 544–554. [Google Scholar] [CrossRef]
- Heuberger, A.L.; Broeckling, C.D.; Kirkpatrick, K.R.; Prenni, J.E. Application of nontargeted metabolite profiling to discover novel markers of quality traits in an advanced population of malting barley. Plant Biotechnol. J. 2014, 12, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Fox, G.P.; Panozzo, J.F.; Li, C.D.; Lance, R.C.M.; Inkerman, P.A.; Henry, R.J. Molecular basis of barley quality. Aust. J. Agric. Res. 2003, 54, 1081–1101. [Google Scholar] [CrossRef] [Green Version]
- Kunze, W. Technology Brewing and Malting; VLB: Berlin, Germany, 2010. [Google Scholar]
- Coghe, S.; Martens, E.; D’Hollander, H.; Dirinck, P.J.; Delvaux, F.R. Sensory and Instrumental Flavour Analysis of Wort Brewed with Dark Specialty Malts. J. Inst. Brew. 2004, 110, 94–103. [Google Scholar] [CrossRef]
- Dack, R.E.; Black, G.W.; Koutsidis, G.; Usher, S.J. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations. Food Chem. 2017, 232, 595–601. [Google Scholar] [CrossRef]
- Rufián-Henares, J.A.; Morales, F.J. Antimicrobial activity of melanoidins. J. Food Qual. 2007, 30, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Inui, T.; Tsuchiya, F.; Ishimaru, M.; Oka, K.; Komura, H. Different Beers with Different Hops. Relevant Compounds for Their Aroma Characteristics. J. Agric. Food Chem. 2013, 61, 4758–4764. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, N.; Inui, T.; Fukami, H.; Komura, H. The science of beer elucidation of chemical structures of components responsible for beer aftertaste. J. Am. Soc. Brew. Chem. 2018, 69, 255–259. [Google Scholar] [CrossRef]
- Dugulin, C.A.; Acuña Muñoz, L.M.; Buyse, J.; De Rouck, G.; Bolat, I.; Cook, D.J. Brewing with 100% green malt-process development and key quality indicators. J. Inst. Brew. 2020, 126, 343–353. [Google Scholar] [CrossRef]
- Hornsey, I.S. Brewing; Royal Society of Chemistry: London, UK, 2013. [Google Scholar]
- Yahya, H.; Linforth, R.S.T.; Cook, D.J. Flavour generation during commercial barley and malt roasting operations: A time course study. Food Chem. 2014, 145, 378–387. [Google Scholar] [CrossRef]
- Coghe, S.; D’Hollander, H.; Verachtert, H.; Delvaux, F.R. Impact of dark specialty malts on extract composition and wort fermentation. J. Inst. Brew. 2005, 111, 51–60. [Google Scholar] [CrossRef]
- Perretti, G.; Floridi, S.; Turchetti, B.; Marconi, O.; Fantozzi, P. Quality Control of Malt: Turbidity Problems of Standard Worts Given by the Presence of Microbial Cells. J. Inst. Brew. 2011, 117, 212–216. [Google Scholar] [CrossRef]
- Lowe, D.P.; Arendt, E.K. The use and effects of lactic acid bacteria in malting and brewing with their relationships to antifungal activity, mycotoxins and gushing: A review. J. Inst. Brew 2004, 110, 163–180. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, J.; Kim, J.H.; Kim, W.J. Malt and wort bio-acidification by Pediococcus acidilactici HW01 as starter culture. Food Control 2021, 120, 107560. [Google Scholar] [CrossRef]
- Rozada-Sánchez, R.; Sattur, A.P.; Thomas, K.; Pandiella, S.S. Evaluation of Bifidobacterium spp. for the production of a potentially probiotic malt-based beverage. Process Biochem. 2008, 43, 848–854. [Google Scholar] [CrossRef]
- Salmeron, I.; Fuciños, P.; Charalampopoulos, D.; Pandiella, S.S. Volatile compounds produced by the probiotic strain Lactobacillus plantarum NCIMB 8826 in cereal-based substrates. Food Chem. 2009, 117, 265–271. [Google Scholar] [CrossRef]
- Salmerón, I.; Loeza-Serrano, S.; Pérez-Vega, S.; Pandiella, S.S. Headspace Gas Chromatography (HS-GC) Analysis of Imperative Flavor Compounds in Lactobacilli-fermented Barley and Malt Substrates. Food Sci. Biotechnol 2015, 24, 1363–1371. [Google Scholar] [CrossRef]
- Rübsam, H.; Gastl, M.; Becker, T. Determination of the influence of starch sources and mashing procedures on the range of the molecular weight distribution of beer using field-flow fractionation. J. Inst. Brew. 2013, 119, 139–148. [Google Scholar] [CrossRef]
- Anderson, H.E.; Santos, I.C.; Hildenbrand, Z.L.; Schug, K.A. A review of the analytical methods used for beer ingredient and finished product analysis and quality control. Anal. Chim. Acta 2019, 1085, 1–20. [Google Scholar] [CrossRef]
- Montanari, L.; Mayer, H.; Marconi, O.; Fantozzi, P. Minerals in Beer. In Beer in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2009; pp. 359–365. [Google Scholar]
- Sterczyńska, M.; Stachnik, M.; Poreda, A.; Pużyńska, K.; Piepiórka-Stepuk, J.; Fiutak, G.; Jakubowski, M. Ionic composition of beer worts produced with selected unmalted grains. LWT 2021, 137, 110348. [Google Scholar] [CrossRef]
- Schoenberger, C.; Krottenthaler, M.; Back, W. Sensory and Analytical Characterization of Nonvolatile Taste-Active Compounds in Bottom-Fermented Beers. MBAA Tech. Q. 2002, 39, 210–217. [Google Scholar]
- Poreda, A.; Bijak, M.; Zdaniewicz, M.; Jakubowski, M.; Makarewicz, M. Effect of wheat malt on the concentration of metal ions in wort and brewhouse by-products. J. Inst. Brew. 2015, 121, 224–230. [Google Scholar] [CrossRef]
- Punčochářová, L.; Pořízka, J.; Diviš, P.; Štursa, V. Study of the influence of brewing water on selected analytes in beer. Potravin. Slovak J. Food Sci. 2019, 13, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Webersinke, F.; Klein, H.; Flieher, M.; Urban, A.; Jäger, H.; Forster, C. Control of Fermentation By-Products and Aroma Features of Beer Produced with Scottish Ale Yeast by Variation of Fermentation Temperature and Wort Aeration Rate. J. Am. Soc. Brew. Chem. 2018, 76, 147–155. [Google Scholar] [CrossRef]
- Kucharczyk, K.; Tuszyński, T. The effect of temperature on fermentation and beer volatiles at an industrial scale. J. Inst. Brew. 2018, 124, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Verstrepen, K.J.; Derdelinckx, G.; Dufour, J.; Winderickx, J.; Thevelein, J.M.; Pretorius, I.S.; Delvaux, F.R.; Box, P.O.; Osmond, G.; Sa, A. Flavor active esters adding fruitiness to beer. J. Biosci. Bioeng. 2003, 96, 110–118. [Google Scholar] [CrossRef]
- Loviso, C.L.; Libkind, D. Synthesis and regulation of flavor compounds derived from brewing yeast: Esters. Rev. Argent. Microbiol. 2018, 50, 436–446. [Google Scholar] [CrossRef]
- Krogerus, K.; Gibson, B.R. 25 th Anniversary Review: Diacetyl and its control during brewery fermentation. J. Inst. Brew. 2013, 119, 86–97. [Google Scholar] [CrossRef]
- Hughes, P. Beer flavor. In Beer, A quality Perspective. Handbook of Alcoholic Beverages; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2009; pp. 61–83. [Google Scholar]
- Ferreira, I.; Guido, L. Impact of Wort Amino Acids on Beer Flavour: A Review. Fermentation 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Kok, Y.J.; Ye, L.; Muller, J.; Ow, D.S.-W.; Bi, X. Brewing with malted barley or raw barley: What makes the difference in the processes? Appl. Microbiol. Biotechnol. 2019, 103, 1059–1067. [Google Scholar] [CrossRef]
- Mehra, R.; Kumar, H.; Kumar, N.; Kaushik, R. Red rice conjugated with barley and rhododendron extracts for new variant of beer. J. Food Sci. Technol. 2020, 57, 4152–4159. [Google Scholar] [CrossRef]
- Bogdan, P.; Kordialik-Bogacka, E. Alternatives to malt in brewing. Trends Food Sci. Technol. 2017, 65, 1–9. [Google Scholar] [CrossRef]
- Kunz, T.; Müller, C.; Mato-Gonzales, D.; Methner, F.-J. The influence of unmalted barley on the oxidative stability of wort and beer. J. Inst. Brew. 2012, 118, 32–39. [Google Scholar] [CrossRef]
- Steiner, E.; Auer, A.; Becker, T.; Gastl, M. Comparison of beer quality attributes between beers brewed with 100% barley malt and 100% barley raw material †. J. Sci. Food Agric. 2012, 92, 803–812. [Google Scholar] [CrossRef]
- Ducruet, J.; Rébénaque, P.; Diserens, S.; Kosińska-Cagnazzo, A.; Héritier, I.; Andlauer, W. Amber ale beer enriched with goji berries—The effect on bioactive compound content and sensorial properties. Food Chem. 2017, 226, 109–118. [Google Scholar] [CrossRef]
- Baiano, A. Craft beer: An overview. Compr. Rev. Food Sci. Food Saf. 2020, 20, 1829–1856. [Google Scholar] [CrossRef]
- De Keukeleire, D. Fundamentals of beer and hop chemistry. Quim. Nova 2000, 23, 108–112. [Google Scholar] [CrossRef]
- Luo, Y.; Kong, L.; Xue, R.; Wang, W.; Xia, X. Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends Food Sci. Technol. 2020, 96, 222–232. [Google Scholar] [CrossRef]
- Oladokun, O.; Tarrega, A.; James, S.; Cowley, T.; Dehrmann, F.; Smart, K.; Cook, D.; Hort, J. Modification of perceived beer bitterness intensity, character and temporal profile by hop aroma extract. Food Res. Int. 2016, 86, 104–111. [Google Scholar] [CrossRef]
- Oladokun, O.; Tarrega, A.; James, S.; Smart, K.; Hort, J.; Cook, D.; Lafontaine, S.R.; Shellhammer, T.H.; Ceola, D.; Huelsmann, R.D.; et al. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer. Food Chem. 2016, 205, 212–220. [Google Scholar] [CrossRef]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A story that begs to be told. A review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Krofta, K. Comparison of quality parameters of Czech and foreign hop varieties. Plant Soil Environ. 2003, 49, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Buarque, B.S.; Davies, R.B.; Hynes, R.M.; Kogler, D.F. Hops, Skip & a Jump: The Regional Uniqueness of Beer Styles; UCD Centre for Economic Research Working Paper Series; WP2020/31; Geary Institute; University College Dublin: Dublin, Ireland, 2020. [Google Scholar]
- Verzele, M.; De Keukeleire, D. Chemistry and Analysis of Hop and Beer Bitter Acids. In Developments in Food Science; Verzele, M., De Keukeleire, D., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 27, ISBN 0444881654. [Google Scholar]
- Hahn, C.D.; Lafontaine, S.R.; Pereira, C.B.; Shellhammer, T.H. Evaluation of Nonvolatile Chemistry Affecting Sensory Bitterness Intensity of Highly Hopped Beers. J. Agric. Food Chem. 2018, 66, 3505–3513. [Google Scholar] [CrossRef]
- Rettberg, N.; Biendl, M.; Garbe, L.A. Hop aroma and hoppy beer flavor: Chemical backgrounds and analytical tools—A review. J. Am. Soc. Brew. Chem. 2018, 76, 1–20. [Google Scholar] [CrossRef]
- Lafontaine, S.R.; Shellhammer, T.H. Investigating the Factors Impacting Aroma, Flavor, and Stability in Dry-Hopped Beers. MBAA Tech. Q. 2019, 56, 13–23. [Google Scholar]
- Eyres, G.T.; Dufour, J.P. Hop Essential Oil: Analysis, Chemical Composition and Odor Characteristics. In Beer in Health and Disease Prevention; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2009; pp. 239–254. [Google Scholar]
- Castro, R.; Díaz, A.B.; Durán-Guerrero, E.; Lasanta, C. Influence of different fermentation conditions on the analytical and sensory properties of craft beers: Hopping, fermentation temperature and yeast strain. J. Food Compos. Anal. 2022, 106, 104278. [Google Scholar] [CrossRef]
- Caballero, I.; Blanco, C.A.; Porras, M. Iso-α-acids, bitterness and loss of beer quality during storage. Trends Food Sci. Technol. 2012, 26, 21–30. [Google Scholar] [CrossRef]
- Jelínek, L.; Müllerova, J.; Karavín, M.; Dostalek, P. The secret of dry hopped beers—Review. Kvas. Prum. 2018, 64, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Kirkpatrick, K.R.; Shellhammer, T.H. A Cultivar-Based Screening of Hops for Dextrin Degrading Enzymatic Potential. J. Am. Soc. Brew. Chem. 2018, 76, 247–256. [Google Scholar] [CrossRef]
- Stokholm, A.; Shellhammer, T.H. Hop Creep–Technical Brief; Brewers Association: Boulder, CO, USA, 2020. [Google Scholar]
- Bruner, J.; Williams, J.; Fox, G. Further Exploration of Hop Creep Variability with Humulus lupulus Cultivars and Proposed Method for Determination of Secondary Fermentation. MBAA Tech. Q. 2020, 57, 169–176. [Google Scholar] [CrossRef]
- Oladokun, O.; James, S.; Cowley, T.; Dehrmann, F.; Smart, K.; Hort, J.; Cook, D. Perceived bitterness character of beer in relation to hop variety and the impact of hop aroma. Food Chem. 2017, 230, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Van Opstaele, F.; Goiris, K.; De Rouck, G.; Aerts, G.; De Cooman, L. Production of novel varietal hop aromas by supercritical fluid extraction of hop pellets—Part 2: Preparation of single variety floral, citrus, and spicy hop oil essences by density programmed supercritical fluid extraction. J. Supercrit. Fluids 2012, 71, 147–161. [Google Scholar] [CrossRef]
- Sanz, V.; Torres, M.D.; López Vilariño, J.M.; Domínguez, H. What is new on the hop extraction? Trends Food Sci. Technol. 2019, 93, 12–22. [Google Scholar] [CrossRef]
- Schuina, G.L.; Quelhas, J.O.F.; de Castilhos, M.B.M.; de Carvalho, G.B.M.; Del Bianchi, V.L. Alternative production of craft lager beers using artichoke (Cynara scolymus L.) as a hops substitute. Food Sci. Technol. 2020, 40, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Ting, P.L.; Ryder, D.S. The bitter, twisted truth of the hop: 50 years of hop chemistry. J. Am. Soc. Brew. Chem. 2017, 75, 161–180. [Google Scholar] [CrossRef]
- Aron, P.M.; Shellhammer, T.H. A discussion of polyphenols in beer physical and flavour stability. J. Inst. Brew. 2010, 116, 369–380. [Google Scholar] [CrossRef]
- Ting, P.L.; Lusk, L.; Refling, J.; Kay, S.; Ryder, D. Identification of antiradical hop compounds. J. Am. Soc. Brew. Chem. 2008, 66, 116–126. [Google Scholar] [CrossRef]
- Machado, J.C.; Lehnhardt, F.; Martins, Z.E.; Kollmannsberger, H.; Gastl, M.; Becker, T.; Ferreira, I.M.P.L.V.O. Prediction of Fruity-Citrus Intensity of Beers Dry Hopped with Mandarina Bavaria Based on the Content of Selected Volatile Compounds. J. Agric. Food Chem. 2020, 68, 2155–2163. [Google Scholar] [CrossRef]
- Lafontaine, S.; Varnum, S.; Roland, A.; Delpech, S.; Dagan, L.; Vollmer, D.; Kishimoto, T.; Shellhammer, T. Impact of harvest maturity on the aroma characteristics and chemistry of Cascade hops used for dry-hopping. Food Chem. 2019, 278, 228–239. [Google Scholar] [CrossRef]
- Schnaitter, M.; Wimmer, A.; Kollmannsberger, H.; Gastl, M.; Becker, T. Influence of hop harvest date of the ‘Mandarina Bavaria’ hop variety on the sensory evaluation of dry-hopped top-fermented beer. J. Inst. Brew. 2016, 122, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Biendl, M.; Engelhard, B.; Forster, A.; Gahr, A.; Lutz, A.; Mitter, W.; Schmidt, R.; Schönberger, C. Hops: Their Cultivation, Composition and Usage; Fachverlag Hans Carl: Nuremberg, Germany, 2014. [Google Scholar]
- Forster, A.; Gahr, A. On the Fate of Certain Hop Substances during Dry Hopping. Brew. Sci. 2013, 66, 93–103. [Google Scholar]
- Richter, T.M.; Silcock, P.; Algarra, A.; Eyres, G.T.; Capozzi, V.; Bremer, P.J.; Biasioli, F. Evaluation of PTR-ToF-MS as a tool to track the behavior of hop-derived compounds during the fermentation of beer. Food Res. Int. 2018, 111, 582–589. [Google Scholar] [CrossRef]
- Machado, J.C.; Faria, M.A.; Melo, A.; Martins, Z.E.; Ferreira, I.M.P.L.V.O. Modeling of α-acids and xanthohumol extraction in dry-hopped beers. Food Chem. 2019, 278, 216–222. [Google Scholar] [CrossRef]
- Dysvik, A.; La Rosa, S.L.; De Rouck, G.; Rukke, E.-O.; Westereng, B.; Wicklund, T. Microbial Dynamics in Traditional and Modern Sour Beer Production. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef]
- Vaughan, A.; O’Sullivan, T.; Van Sinderen, D. Enhancing the microbiological stability of malt and beer—A review. J. Inst. Brew. 2005, 111, 355–371. [Google Scholar] [CrossRef]
- Sakamoto, K.; Konings, W.N. Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 2003, 89, 105–124. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Boudra, H.; Jouany, J.P.; Michalet-Doreau, T.F.B. Effect and stability of gliotoxin, an Aspergillus fumigatus toxin, on in vitro rumen fermentation. Food Addit. Contam. 2004, 21, 871–878. [Google Scholar] [CrossRef]
- Suiker, I.M.; Wösten, H.A. Spoilage yeasts in beer and beer products. Curr. Opin. Food Sci. 2022, 44, 100815. [Google Scholar] [CrossRef]
- Michel, M.; Meier-Dörnberg, T.; Jacob, F.; Methner, F.; Wagner, R.S.; Hutzler, M. Review: Pure non-Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications. J. Inst. Brew. 2016, 122, 569–587. [Google Scholar] [CrossRef]
- Kheir, J.; Salameh, D.; Strehaiano, P.; Brandam, C.; Lteif, R. Impact of volatile phenols and their precursors on wine quality and control measures of Brettanomyces/Dekkera yeasts. Eur. Food Res. Technol. 2013, 237, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Priest, F.; Campbell, I. Brewing Microbiology; Priest, F., Campbell, I., Eds.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Hutzler, M.; Riedl, R.; Koob, J.; Jacob, F. Fermentation and spoilage yeasts and their relevance for the beverage industry. Brew. Sci. 2012, 65, 33–52. [Google Scholar]
- Basso, R.F.; Alcarde, A.R.; Portugal, C.B. Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res. Int. 2016, 86, 112–120. [Google Scholar] [CrossRef]
- Stewart, G. Butyric Acid. In The Oxford Companion to Beer; Oliver, G., Ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Brožová, M.; Kubizniaková, P.; Matoulková, D. Brewing microbiology-bacteria of the genus Clostridium. Kvas. Prum. 2018, 64, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.H.; Liu, C.W.; Yang, D.J.; Wu, Y.H.S.; Chen, Y.C. Amino acid, mineral, and polyphenolic profiles of black vinegar, and its lipid lowering and antioxidant effects in vivo. Food Chem. 2015, 168, 63–69. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Peters, B.M.; Li, B.; Deng, Y.; Xu, Z.; Shirtliff, M.E. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria. FEMS Microbiol. Lett. 2016, 363, fnw201. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, L.; Li, B.; Peters, B.M.; Deng, Y.; Xu, Z.; Shirtliff, M.E. First study on the formation and resuscitation of viable but nonculturable state and beer spoilage capability of Lactobacillus lindneri. Microb. Pathog. 2017, 107, 219–224. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Peters, B.M.; Li, B.; Chen, L.; Deng, Y.; Xu, Z.; Shirtliff, M.E. The viable but nonculturable state induction and genomic analyses of Lactobacillus casei BM-LC14617, a beer-spoilage bacterium. Microbiologyopen 2017, 6, e00506. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Li, B.; Peters, B.M.; Deng, Y.; Xu, Z.; Shirtliff, M.E. Study on spoilage capability and VBNC state formation and recovery of Lactobacillus plantarum. Microb. Pathog. 2017, 110, 257–261. [Google Scholar] [CrossRef]
- Paradh, A.D. Gram-negative spoilage bacteria in brewing. In Brewing Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 5, pp. 175–194. ISBN 9781782423317. [Google Scholar]
- Bradfield, M.F.A.; Mohagheghi, A.; Salvachúa, D.; Smith, H.; Black, B.A.; Dowe, N.; Beckham, G.T.; Nicol, W. Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol. Biofuels 2015, 8, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lermusieau, G.; Noël, S.; Liégeois, C.; Collin, S. Nonoxidative mechanism for development of trans-2-nonenal in beer. J. Am. Soc. Brew. Chem. 1999, 57, 29–33. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Bodart, E.; Collin, S. Why craft brewers should be advised to use bottle refermentation to improve late-hopped beer stability. Beverages 2019, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Spedding, G.; Aiken, T. Sensory analysis as a tool for beer quality assessment with an emphasis on its use for microbial control in the brewery. In Brewing Microbiology. Managing Microbes, Ensuring Quality and Valorising Waste; Elsevier: Amsterdam, The Netherlands, 2015; pp. 375–404. [Google Scholar]
- Bongaerts, D.; De Roos, J.; De Vuyst, L. Technological and Environmental Features Determine the Uniqueness of the Lambic Beer Microbiota and Production Process. Appl. Environ. Microbiol. 2021, 87, e00612-21. [Google Scholar] [CrossRef]
- De Roos, J.; Verce, M.; Weckx, S.; De Vuyst, L. Temporal Shotgun Metagenomics Revealed the Potential Metabolic Capabilities of Specific Microorganisms during Lambic Beer Production. Front. Microbiol. 2020, 11, 1692. [Google Scholar] [CrossRef]
- Yu, Z.; Luo, Q.; Xiao, L.; Sun, Y.; Li, R.; Sun, Z.; Li, X. Beer-spoilage characteristics of Staphylococcus xylosus newly isolated from craft beer and its potential to influence beer quality. Food Sci. Nutr. 2019, 7, 3950–3957. [Google Scholar] [CrossRef]
- Nobis, A.; Kwasnicki, M.; Lehnhardt, F.; Hellwig, M.; Henle, T.; Becker, T.; Gastl, M. A Comprehensive Evaluation of Flavor Instability of Beer (Part 2): The Influence of De Novo Formation of Aging Aldehydes. Foods 2021, 10, 2668. [Google Scholar] [CrossRef]
- Mikyška, A.; Jurková, M.; Horák, T.; Slabý, M. Study of the influence of hop polyphenols on the sensory stability of lager beer. Eur. Food Res. Technol. 2022, 248, 533–542. [Google Scholar] [CrossRef]
- de Oliveira Gomes, F.; Guimaraes, B.P.; Ceola, D.; Ghesti, G.F. Advances in dry hopping for industrial brewing: A review. Food Sci. Technol. 2021, 2061. [Google Scholar] [CrossRef]
- McGarrity, M.J.; McRoberts, C.; Fitzpatrick, M. Identification, Cause, and Prevention of Musty Off-Flavors in Beer. MBAA Tech. Q. 2003, 40, 44–47. [Google Scholar]
- Štulíková, K.; Novák, J.; Vlček, J.; Šavel, J.; Košin, P.; Dostálek, P. Bottle Conditioning: Technology and Mechanisms Applied in Refermented Beers. Beverages 2020, 6, 56. [Google Scholar] [CrossRef]
- Sakamoto, K.; Van Veen, H.W.; Saito, H.; Kobayashi, H.; Konings, W.N. Membrane-bound ATPase contributes to hop resistance of Lactobacillus brevis. Appl. Environ. Microbiol. 2002, 68, 5374–5378. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.; Brennan, M.; Price, A. The control of microbial spoilage of beer. J. Inst. Brew. 1999, 105, 113–120. [Google Scholar] [CrossRef]
- de Francesco, G.; Bravi, E.; Sanarica, E.; Marconi, O.; Cappelletti, F.; Perretti, G. Effect of Addition of Different Phenolic-Rich Extracts on Beer Flavour Stability. Foods 2020, 9, 1638. [Google Scholar] [CrossRef]
- Chatonnet, P.; Bonnet, S.; Boutou, S.; Labadie, M.D. Identification and Responsibility of 2,4,6-Tribromoanisole in Musty, Corked Odors in Wine. J. Agric. Food Chem. 2004, 52, 1255–1262. [Google Scholar] [CrossRef]
Quality Indicator | Recommended Values |
---|---|
Protein content | <10.8% |
Kolbach index | 38–34% |
Extract content | >82% |
Extract difference | 1.2–1.8% |
Viscosity | <1.55 mPa·s |
β-glucan in wort | <300 mg/L |
Wort color | <3.4 EBC |
Microorganisms | Compounds Produced | Spoilage Effect | References | ||
---|---|---|---|---|---|
Mold | Aspergillus sp. | A. fumigatus | Mycotoxins | Rancid taste, roughness, stale and moldy flavor | [125,127] |
Fusarium sp. | F. graminearum F. culmorum | Mycotoxins, hydrophobins, and hydrophobic polypeptides | Gushing | [41,43,46,125] | |
Yeast | Brettanomyces sp. | B. bruxellensis | Acetic acid, highly volatile phenolic compounds | Sweat, smoke, and cheese flavors | [128] |
B. anomalus | Tetrahydropyridines | Mousy off-flavor | [129,130] | ||
Megasphaera sp. | M. cerevisiae | Butyric acid, acetic, caproic, isovaleric and valeric acids, acetoin and hydrogen sulphide | Turbidity and off flavors (hydrogen sulphide) | [125] | |
Saccharomyces sp. | S. cerevisiae var. diastaticus | Extracellular glucoamylase | Phenolic off-flavors, overcarbonation, and weakened body | [131,132] | |
Wickerhamomyces sp. | Wickerhamomyces anomalus | Phenyl ethanol, ethyl propanoate, 2-phenylethyl acetate, and ethyl acetate | Solvent-like aroma | [133] | |
Bacteria Gram + | Clostridium sp. | C. acetobutylicum, C. butyricum, C. pasteurianum, C.thermosaccharolyticum | Butyric, propionic, valeric, caproic acids, sulfur compounds | Cheesy, buttery, putrid, and rancid aroma | [16,47,134,135] |
Lactobacillus sp. | L. brevis, L. acetotolerans, L. casei, L. plantarum L. lindneri | Lactic acid, acetic acid, and diacetyl | Buttery’ taste and oily mouthfeel, Turbidity and super-attenuation problems | [136,137,138,139,140] | |
Pediococcus sp. | P. damnosus | Lactic acid, diacetyl | Sediments, reduced foam stability, sarcina sickness | [125] | |
Bacteria Gram − | Acetobacter sp. | A. aceti, A. hansenii, A. liquefaciens, A. pasteurianus | Acetic acid | Ropiness, sour and vinegary flavor | [126,141] |
Gluconobacter sp. | G. oxydans | Acetic acid | Cidery note, sour and vinegary flavor | [142] | |
Pectinatus sp. | P. frisingensis, P. cerevisiiphilus | Acetic acid, propionic acid, acetoin, hydrogen sulfide, and methyl mercaptan | Rotten egg, cooked vegetable aromas | [141] |
Stage | Effect | References |
---|---|---|
Maturation and storage | Extracting wood compounds derived from maturation in oak casks Reducing some off-flavor compounds from previous stages Generally, reducing bitterness and increasing sweetness Increasing volatile compounds Producing microbial compounds that alter beer taste, such as methyl mercaptan, dimethyl sulfoxide, hydrogen sulfide, etc., that promote carbonation, turbidity, superficial films, and excessive viscosity Generating compounds derived from oxidation, including higher alcohols, unsaturated fatty acids, amino acids, and proteins that modify beer flavor | [45,93,126,143,144,145,146,147,148] |
Bottling | Generating sensory-active aldehydes Producing “musty” off-odor derived from cork microbial spoilage or water and other raw materials Increasing the CO2 derived from the development of contaminants | [47,149,150,151,152] |
Bottle re-fermentation | Increasing carbonation Promoting effervescence Generating new flavors Reducing oxidation products | [11,17,153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, A.B.; Durán-Guerrero, E.; Lasanta, C.; Castro, R. From the Raw Materials to the Bottled Product: Influence of the Entire Production Process on the Organoleptic Profile of Industrial Beers. Foods 2022, 11, 3215. https://doi.org/10.3390/foods11203215
Díaz AB, Durán-Guerrero E, Lasanta C, Castro R. From the Raw Materials to the Bottled Product: Influence of the Entire Production Process on the Organoleptic Profile of Industrial Beers. Foods. 2022; 11(20):3215. https://doi.org/10.3390/foods11203215
Chicago/Turabian StyleDíaz, Ana Belén, Enrique Durán-Guerrero, Cristina Lasanta, and Remedios Castro. 2022. "From the Raw Materials to the Bottled Product: Influence of the Entire Production Process on the Organoleptic Profile of Industrial Beers" Foods 11, no. 20: 3215. https://doi.org/10.3390/foods11203215
APA StyleDíaz, A. B., Durán-Guerrero, E., Lasanta, C., & Castro, R. (2022). From the Raw Materials to the Bottled Product: Influence of the Entire Production Process on the Organoleptic Profile of Industrial Beers. Foods, 11(20), 3215. https://doi.org/10.3390/foods11203215