Evolution of Volatile Aroma Compounds and Amino Acids in Cabernet Gernischt Grape Berries (Vitis vinifera L.): Comparison of Different Training Systems for Mechanical Soil Burial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Description and Berry Sampling
2.2. Measurement of Canopy Microenvironment
2.3. Measurement of Canopy Photosynthetic Efficiency
2.4. Measurement of Berry Quality
2.5. Extraction and Determination of Volatile Compounds
2.5.1. Isolation of Aroma Compounds
2.5.2. Headspace Solid-Phase Microextraction
2.5.3. GC-MS Analysis
2.5.4. Qualitative and Relative Quantitative Analysis
2.6. Determination of Amino Acid Content
2.6.1. Sample Preparation
2.6.2. Content Determination
2.7. Determination of Genes Involved in Flavour Formation in Grape Berries
2.8. Statistical Analysis
3. Results and Discussion
3.1. Canopy Microclimate and Photosynthesis Index under Four Training System
3.2. Basic Physicochemical Parameters of Berry Development
3.3. Aroma Components Analysis
3.4. Free Amino Acid Profiles of Grape Berries
3.5. The Correlation Analysis between Amino Acids in Grape Berries
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lombardo, V.A.; Osorio, S.; Borsani, J.; Lauxmann, M.A.; Bustamante, C.A.; Budde, C.O.; Andreo, C.S.; Lara, M.V.; Fernie, A.R.; Drincovich, M.F. Metabolic Profiling during Peach Fruit Development and Ripening Reveals the Metabolic Networks That Underpin Each Developmental Stage. Plant Physiol. 2011, 157, 1696–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alem, H.; Rigou, P.; Schneider, R.; Ojeda, H.; Torregrosa, L. Impact of Agronomic Practices on Grape Aroma Composition: A Review. J. Sci. Food Agric. 2019, 99, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Kiene, F.; Belda, I.; Fracassetti, D.; Marquina, D.; Navascués, E.; Calderón, F.; Benito, A.; Rauhut, D.; Santos, A.; et al. Effects on Varietal Aromas during Wine Making: A Review of the Impact of Varietal Aromas on the Flavor of Wine. Appl. Microbiol. Biotechnol. 2019, 103, 7425–7450. [Google Scholar] [CrossRef] [PubMed]
- Coelho, E.; Rocha, S.M.; Delgadillo, I.; Coimbra, M.A. Headspace-SPME Applied to Varietal Volatile Components Evolution during Vitis vinifera L. Cv. ‘Baga’ Ripening. Anal. Chim. Acta 2006, 563, 204–214. [Google Scholar] [CrossRef]
- Kalua, C.M.; Boss, P.K. Evolution of Volatile Compounds during the Development of Cabernet Sauvignon Grapes (Vitis vinifera L.). J. Agric. Food Chem. 2009, 57, 3818–3830. [Google Scholar] [CrossRef] [PubMed]
- González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Wine Aroma Compounds in Grapes: A Critical Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef]
- Antalick, G.; Tempère, S.; Šuklje, K.; Blackman, J.W.; Deloire, A.; De Revel, G.; Schmidtke, L.M. Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine. J. Agric. Food Chem. 2015, 63, 9103–9111. [Google Scholar] [CrossRef]
- Nagegowda, D.A. Plant Volatile Terpenoid Metabolism: Biosynthetic Genes, Transcriptional Regulation and Subcellular Compartmentation. FEBS Lett. 2010, 584, 2965–2973. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, A.G.; Heuvel, J.E. Vanden Influence of Grapevine Training Systems on Vine Growth and Fruit Composition: A Review. Am. J. Enol. Vitic. 2009, 60, 251–268. [Google Scholar]
- Etchebarne, F.; Terblanche, E.; Iacono, M.B.; Leclercq, L.; Angenieux, M.; Saurin, N.; Ojeda, H. Minimal Pruning Increases the Concentration of Aromatic Precursors in Viognier Grapes. In Proceedings of the 19èmes Journées Internationales de Viticulture GiESCO, Gruissan, France, 31 May–5 June 2015; p. 810. Available online: https://hal.inrae.fr/hal-02742436 (accessed on 1 May 2022).
- Nan, L.; Liu, L.; Zhao, X.; Qiu, S.; Wang, H.; Li, H. Effect of Alternative New Pruning System and Harvesting Times on Aroma Compounds of Young Wines from Ecolly (Vitis vinifera) in a New Grape Growing Region of the Weibei Plateau in China. Sci. Hortic. 2013, 162, 181–187. [Google Scholar] [CrossRef] [Green Version]
- Yuxia, L.; Yumei, G.; Zhenping, W. Phylogenetic Relationship Analysis of the Wine Grape Variety” Shelongzhu”. Sino-Overseas Grapevine Wine 2008, 3, 17–20. [Google Scholar]
- Mateo, J.; Jiménez, M. Monoterpenes in Grape Juice and Wines. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef]
- Vallee, B.L.; Auld, D.S. Zinc Coordination, Function, and Structure of Zinc Enzymes and Other Proteins. Biochemistry 1990, 29, 5647–5659. [Google Scholar] [CrossRef]
- Pourali, A.; Afrouziyeh, M.; Moghaddaszadeh-ahrabi, S. Extraction of Phenolic Compounds and Quantification of the Total Phenol of Grape Pomace. Eur. J. Exp. Biol. 2014, 4, 174–176. [Google Scholar]
- Picard, M.; De Revel, G.; Marchand, S. First Identification of Three P-Menthane Lactones and Their Potential Precursor, Menthofuran, in Red Wines. Food Chem. 2017, 217, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Knupp, G.; Kusch, P.; Neugebauer, M. Identification of Flavor Components in Perfumes by Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. J. Chem. Educ. 2002, 79, 98. [Google Scholar] [CrossRef]
- Velázquez, R.; Zamora, E.; Álvarez, M.L.; Hernández, L.M.; Ramírez, M. Effects of New Torulaspora Delbrueckii Killer Yeasts on the Must Fermentation Kinetics and Aroma Compounds of White Table Wine. Front. Microbiol. 2015, 6, 1222. [Google Scholar] [CrossRef] [Green Version]
- Shim, Y.-S.; Yoon, W.-J.; Ha, J.; Seo, D.; Lee, K.-W.; Lee, W.-Y.; Kwon, K.-I.; Kang, T.-S.; Lee, J.-H.; Kim, H.-J. Method Validation of 16 Types of Structural Amino Acids Using an Automated Amino Acid Analyzer. Food Sci. Biotechnol. 2013, 22, 1567–1571. [Google Scholar] [CrossRef]
- Hashimoto, K.; Eckert, C.; Anschütz, U.; Scholz, M.; Held, K.; Waadt, R.; Reyer, A.; Hippler, M.; Becker, D.; Kudla, J. Phosphorylation of Calcineurin B-like (CBL) Calcium Sensor Proteins by Their CBL-Interacting Protein Kinases (CIPKs) Is Required for Full Activity of CBL-CIPK Complexes toward Their Target Proteins. J. Biol. Chem. 2012, 287, 7956–7968. [Google Scholar] [CrossRef] [Green Version]
- Coletta, A.; Toci, A.T.; Pati, S.; Ferrara, G.; Grieco, F.; Tufariello, M.; Crupi, P. Effect of Soil Management and Training System on Negroamaro Wine Aroma. Foods 2021, 10, 454. [Google Scholar] [CrossRef]
- Dai, Z.W.; Ollat, N.; Gomès, E.; Decroocq, S.; Tandonnet, J.-P.; Bordenave, L.; Pieri, P.; Hilbert, G.; Kappel, C.; Van Leeuwen, C.; et al. Ecophysiological, Genetic, and Molecular Causes of Variation in Grape Berry Weight and Composition: A Review. Am. J. Enol. Vitic. 2011, 62, 413–425. [Google Scholar] [CrossRef] [Green Version]
- De Orduña, R.M. Climate Change Associated Effects on Grape and Wine Quality and Production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Kalua, C.M.; Boss, P.K. Comparison of Major Volatile Compounds from Riesling and Cabernet Sauvignon Grapes (Vitis vinifera L.) from Fruitset to Harvest. Aust. J. Grape Wine Res. 2010, 16, 337–348. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Bescansa, L.; Masa, A.; Oliveira, J.M. Changes in Free and Bound Fractions of Aroma Compounds of Four Vitis vinifera Cultivars at the Last Ripening Stages. Phytochemistry 2012, 74, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Zhang, W.; Song, S.; Xu, W.; Zhang, C.; Ma, C.; Wang, L.; Wang, S. Evolution of Volatile Compounds during the Development of Muscat Grape ‘Shine Muscat’ (Vitis labrusca × V. vinifera). Food Chem. 2020, 309, 125778. [Google Scholar] [CrossRef]
- Rahman, F.U.; Nawaz, M.A.; Liu, R.; Sun, L.; Jiang, J.; Fan, X.; Liu, C.; Zhang, Y. Evaluation of Volatile Aroma Compounds from Chinese Wild Grape Berries by Headspace-SPME with GC-MS. Food Sci. Technol. 2021, 2061. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Guardini, S.; Tedeschi, R.; Ugliano, M. Volatile Terpenoids, Norisoprenoids and Benzenoids as Markers of Fine Scale Vineyard Segmentation for Corvina Grapes and Wines. Food Res. Int. 2019, 125, 108507. [Google Scholar] [CrossRef]
- Drappier, J.; Thibon, C.; Rabot, A.; Geny-Denis, L. Relationship between Wine Composition and Temperature: Impact on Bordeaux Wine Typicity in the Context of Global Warming—Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 14–30. [Google Scholar] [CrossRef]
- Marais, J.; Hunter, J.J.; Haasbroek, P.D. Effect of Canopy Microclimate, Season and Region on Sauvignon Blanc Grape Composition and Wine Quality. S. Afr. J. Enol. Vitic. 2017, 20, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Seaweed Foliar Applications at Two Dosages to Tempranillo Blanco (Vitis vinifera L.) Grapevines in Two Seasons: Effects on Grape and Wine Volatile Composition. Food Res. Int. 2020, 130, 108918. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Kubota, N.; Yakushiji, H.; Nishiyama, N.; Mimura, H.; Shimamura, K. Phenolic Contents and L-Phenylalanine Ammonia-Lyase Activity in Peach Fruit as Affected by Rootstocks. Engei Gakkai Zasshi 2001, 70, 151–156. [Google Scholar] [CrossRef]
- Hernández-Orte, P.; Cacho, J.F.; Ferreira, V. Relationship between Varietal Amino Acid Profile of Grapes and Wine Aromatic Composition. Experiments with Model Solutions and Chemometric Study. J. Agric. Food Chem. 2002, 50, 2891–2899. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, Volume 2: The Chemistry of Wine Stabilization and Treatments; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 111958776X. [Google Scholar]
- Ardö, Y. Flavour Formation by Amino Acid Catabolism. Biotechnol. Adv. 2006, 24, 238–242. [Google Scholar] [CrossRef]
- Fan, W.; Xu, Y.; Jiang, W.; Li, J. Identification and Quantification of Impact Aroma Compounds in 4 Nonfloral Vitis vinifera Varieties Grapes. J. Food Sci. 2010, 75, S81–S88. [Google Scholar] [CrossRef]
- Zhu, Z.; Hu, K.; Chen, S.; Xiong, S.; Tao, Y. Increase in Fruity Ester Production during Spine Grape Wine Fermentation by Goal-Directed Amino Acid Supplementation. Fermentation 2021, 7, 231. [Google Scholar] [CrossRef]
Temperature (°C) | Humidity (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
50 | 65 | 70 | 90 | 120 | 50 | 65 | 70 | 90 | 120 | |
CK | 21.53 ± 1.27 d | 25.42 ± 2.12 d | 23.77 ± 1.48 d | 24.03 ± 1.46 d | 23.14 ± 1.63 c | 38.1 ± 0.8 a | 34.8 ± 1.6 a | 35.4 ± 1.2 a | 37.2 ± 1.6 a | 36.2 ± 2.1 a |
T1 | 22.18 ± 1.53 c | 25.77 ± 1.76 c | 23.89 ± 1.23 c | 24.71 ± 2.11 c | 22.07 ± 1.68 d | 36.4 ± 1.3 c | 33.2 ± 0.8 c | 32.4 ± 0.7 b | 36.5 ± 0.5 b | 34.1 ± 1.3 c |
T2 | 22.42 ± 2.05 a | 26.97 ± 2.83 b | 24.82 ± 2.14 a | 25.24 ± 1.35 a | 24.19 ± 1.43 b | 37.2 ± 0.9 b | 33.7 ± 1.4 b | 32.1 ± 1.7 b | 35.8 ± 1.0 c | 34.6 ± 1.8 b |
T3 | 22.37 ± 1.88 b | 27.15 ± 2.35 a | 24.18 ± 3.26 b | 25.12 ± 1.52 b | 24.34 ± 1.67 a | 33.8 ± 1.1 d | 31.3 ± 0.7 d | 30.7 ± 1.5 c | 34.7 ± 0.4 d | 33.6 ± 0.9 d |
Pn (μmol CO2·m−2·s−1) | Tr (mol H2O·m−2·s−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
50 | 65 | 70 | 90 | 120 | 50 | 65 | 70 | 90 | 120 | |
CK | 6.45 ± 0.58 c | 6.97 ± 0.83 d | 7.05 ± 0.43 d | 6.79 ± 0.82 d | 6.55 ± 0.46 d | 0.6 ± 0.11 a | 0.8 ± 0.13 a | 0.7 ± 0.12 a | 0.8 ± 0.17 a | 0.6 ± 0.05 a |
T1 | 7.11 ± 0.73 b | 7.74 ± 0.58 c | 7.57 ± 0.51 c | 7.98 ± 0.57 c | 7.19 ± 0.48 c | 0.3 ± 0.07 a | 0.4 ± 0.06 ab | 0.6 ± 0.14 a | 0.7 ± 0.07 a | 0.6 ± 0.03 a |
T2 | 7.52 ± 0.77 a | 8.21 ± 0.53 b | 8.06 ± 0.78 b | 8.43 ± 0.32 b | 8.31 ± 0.47 a | 0.4 ± 0.08 a | 0.4 ± 0.05 ab | 0.7 ± 0.11 a | 0.6 ± 0.15 a | 0.5 ± 0.03 a |
T3 | 7.49 ± 0.82 a | 8.34 ± 0.45 a | 8.13 ± 0.33 a | 8.72 ± 0.72 a | 7.56 ± 0.66 b | 0.3 ± 0.04 a | 0.3 ± 0.07 b | 0.4 ± 0.05 a | 0.6 ± 0.13 a | 0.5 ± 0.06 a |
Free Amino Acid | CK | T1 | T2 | T3 |
---|---|---|---|---|
Asp | 0.038 ± 0.003 b | 0.045 ± 0.014 b | 0.044 ± 0.003 b | 0.099 ± 0.002 a |
Glu | 0.1 ± 0.006 b | 0.094 ± 0.005 b | 0.1 ± 0.008 b | 0.289 ± 0.007 a |
Ser | 0.044 ± 0.002 b | 0.041 ± 0.003 b | 0.047 ± 0.002 b | 0.08 ± 0.001 a |
His | 0.037 ± 0.001 b | 0.038 ± 0.003 b | 0.037 ± 0.002 b | 0.058 ± 0.004 a |
Gly | 0.025 ± 0.004 b | 0.036 ± 0.007 b | 0.032 ± 0.003 b | 0.097 ± 0.003 a |
Thr | 0.04 ± 0.002 b | 0.035 ± 0.003 b | 0.039 ± 0.002 b | 0.061 ± 0.002 a |
Arg | 0.086 ± 0.002 a | 0.08 ± 0.001 b | 0.081 ± 0.001 b | 0.037 ± 0.003 c |
Ala | 0.225 ± 0.05 b | 0.207 ± 0.006 c | 0.261 ± 0.03 a | 0.212 ± 0.001 c |
Val | 0.09 ± 0.003 bc | 0.086 ± 0.004 c | 0.085 ± 0.002 c | 0.123 ± 0.001 a |
Met | 0 | 0 | 0.057 ± 0.005 a | 0 |
Lys | 0.048 ± 0.001 b | 0.045 ± 0.003 b | 0.046 ± 0.004 b | 0.072 ± 0.001 a |
Leu | 0.028 ± 0.002 b | 0.032 ± 0.005 b | 0.031 ± 0.004 b | 0.075 ± 0.001 a |
Pro | 0.128 ± 0.004 a | 0.169 ± 0.003 a | 0.04 ± 0.001 b | 0.188 ± 0.04 a |
Ile | 0.012 ± 0.003 b | 0.014 ± 0.002 b | 0.014 ± 0.001 b | 0.036 ± 0.001 a |
Phe | 0.299 ± 0.001 a | 0.266 ± 0.007 ab | 0.122 ± 0.006 c | 0.165 ± 0.07 bc |
Total free amino acid | 1.2 ± 0.06 b | 1.191 ± 0.01 b | 1.036 ± 0.03 b | 1.592 ± 0.14 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, K.; Li, D.; Zhang, J.; Zhang, Y.; Zhan, Z.; Wang, Z. Evolution of Volatile Aroma Compounds and Amino Acids in Cabernet Gernischt Grape Berries (Vitis vinifera L.): Comparison of Different Training Systems for Mechanical Soil Burial. Foods 2022, 11, 1568. https://doi.org/10.3390/foods11111568
Geng K, Li D, Zhang J, Zhang Y, Zhan Z, Wang Z. Evolution of Volatile Aroma Compounds and Amino Acids in Cabernet Gernischt Grape Berries (Vitis vinifera L.): Comparison of Different Training Systems for Mechanical Soil Burial. Foods. 2022; 11(11):1568. https://doi.org/10.3390/foods11111568
Chicago/Turabian StyleGeng, Kangqi, Dongmei Li, Jing Zhang, Yanxia Zhang, Zhennan Zhan, and Zhenping Wang. 2022. "Evolution of Volatile Aroma Compounds and Amino Acids in Cabernet Gernischt Grape Berries (Vitis vinifera L.): Comparison of Different Training Systems for Mechanical Soil Burial" Foods 11, no. 11: 1568. https://doi.org/10.3390/foods11111568
APA StyleGeng, K., Li, D., Zhang, J., Zhang, Y., Zhan, Z., & Wang, Z. (2022). Evolution of Volatile Aroma Compounds and Amino Acids in Cabernet Gernischt Grape Berries (Vitis vinifera L.): Comparison of Different Training Systems for Mechanical Soil Burial. Foods, 11(11), 1568. https://doi.org/10.3390/foods11111568