Effects of Tartary Buckwheat Bran Flour on Dough Properties and Quality of Steamed Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of TBF, TBBF and TBCF
2.3. Routine Composition Determination
2.4. Determination of Rutin Content
2.5. Determination of Fatty Acid Composition
2.6. Determination of Amino Acid Composition
2.7. Evaluation of Antioxidant Activity
2.8. Determination of Water Absorption Index and Water Solubility Index
2.9. Determination of Dough Rheological Properties
2.10. Preparation of Steamed Bread
2.11. Quality Evaluation of Steamed Bread
2.12. In Vitro Digestion Method
2.13. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Antioxidant Activities
3.3. Dough Properties
3.4. Steamed Bread
3.5. pGI
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fabjan, N.; Rode, J.; Košir, I.J.; Wang, Z.; Zhang, Z.; Kreft, I. Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. J. Agric. Food Chem. 2003, 51, 6452–6455. [Google Scholar] [CrossRef] [PubMed]
- Luthar, Z.; Golob, A.; Germ, M.; Vombergar, B.; Kreft, I. Tartary buckwheat in human nutrition. Plants 2021, 10, 700. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Chemical composition and health effects of Tartary buckwheat. Food Chem. 2016, 203, 231–245. [Google Scholar] [CrossRef]
- Ruan, J.; Zhou, Y.; Yan, J.; Zhou, M.; Woo, S.H.; Weng, W.; Cheng, J.; Zhang, K. Tartary buckwheat: An under-utilized edible and medicinal herb for food and nutritional security. Food Rev. Int. 2020, 1–15. [Google Scholar] [CrossRef]
- Glavac, N.K.; Stojilkovski, K.; Kreft, S.; Park, C.H.; Kreft, I. Determination of fagopyrins, rutin, and quercetin in Tartary buckwheat products. LWT Food Sci. Technol. 2017, 79, 423–427. [Google Scholar] [CrossRef]
- Lee, C.C.; Shen, S.R.; Lai, Y.J.; Wu, S.C. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food Funct. 2013, 4, 794–802. [Google Scholar] [CrossRef]
- Yang, X.; Lv, Y.P. Purification, characterization, and DNA damage protection of active components from tartary buckwheat (Fagopyrum tataricum) hull. Food Sci. Biotechnol. 2015, 24, 1959–1966. [Google Scholar] [CrossRef]
- Cho, Y.J.; Bae, I.Y.; Inglett, G.E.; Lee, S. Utilization of tartary buckwheat bran as a source of rutin and its effect on the rheological and antioxidant properties of wheat-based products. Ind. Crop. Prod. 2014, 61, 211–216. [Google Scholar] [CrossRef]
- Ge, R.H.; Wang, H. Nutrient components and bioactive compounds in tartary buckwheat bran and flour as affected by thermal processing. Int. J. Food Prop. 2020, 23, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.J.; Yang, X.S.; Qin, P.Y.; Shan, F.; Ren, G.X. Flavonoid composition, antibacterial and antioxidant properties of tartary buckwheat bran extract. Ind. Crop. Prod. 2013, 49, 312–317. [Google Scholar] [CrossRef]
- Li, B.C.; Li, Y.Q.; Hu, Q.B. Antioxidant activity of flavonoids from tartary buckwheat bran. Toxicol. Environ. Chem. 2016, 98, 429–438. [Google Scholar] [CrossRef]
- Liu, B.; Zhu, Y. Extraction of flavonoids from flavonoid-rich parts in tartary buckwheat and identification of the main flavonoids. J. Food Eng. 2007, 78, 584–587. [Google Scholar] [CrossRef]
- Li, X.N.; Wang, C.Y.; Krishnan, P.G. Effects of corn distillers dried grains on dough properties and quality of Chinese steamed bread. Food Sci. Nutr. 2020, 8, 3999–4008. [Google Scholar] [CrossRef]
- Rose, D.J.; Inglett, G.E.; Liu, S.X. Utilization of corn (Zea mays) bran and corn fiber in the production of food components. J. Sci. Food Agric. 2010, 90, 915–924. [Google Scholar] [CrossRef]
- Liu, S.X.; Singh, M.; Inglett, G. Effect of incorporation of distillers’ dried grain with solubles (DDGS) on quality of cornbread. LWT Food Sci. Technol. 2011, 44, 713–718. [Google Scholar] [CrossRef]
- Germ, M.; Árvay, J.; Vollmannová, A.; Tóth, T.; Golob, A.; Luthar, Z.; Kreft, I. The temperature threshold for the transformation of rutin to quercetin in Tartary buckwheat dough. Food Chem. 2019, 283, 28–31. [Google Scholar] [CrossRef]
- Ji, J.M.; Liu, Y.L.; Shi, L.K.; Wang, N.N.; Wang, X.D. Effect of roasting treatment on the chemical composition of sesame oil. LWT Food Sci. Technol. 2019, 101, 191–200. [Google Scholar] [CrossRef]
- Ngamsuk, S.; Huang, T.C.; Hsu, J.L. Determination of phenolic compounds, procyanidins, and antioxidant activity in processed Coffea arabica L. Leaves. Foods 2019, 8, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogarasi, A.L.; Kun, S.; Tanko, G.; Stefanovits-Banyai, E.; Hegyesne-Vecseri, B. A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts. Food Chem. 2015, 167, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Lee, S.M.; Shim, J.H.; Yoo, S.H.; Lee, S. Effect of dry- and wet-milled rice flours on the quality attributes of gluten-free dough and noodles. J. Food Eng. 2013, 116, 213–217. [Google Scholar] [CrossRef]
- Chandel, G.; Premi, V.; Vishwakarma, A.K.; Kaliyari, A.; Shrivastava, P.; Sahu, V.K.; Sahu, G.R. In vitro identification of low glycemic index (GI) white rice using nutriscan GI analyzer. Adv. Life Sci. 2016, 5, 11090–11098. [Google Scholar]
- Imani, A.; Maleki, N.; Bohlouli, S.; Kouhsoltani, M.; Sharifi, S.; Dizaj, S.M. Molecular mechanisms of anticancer effect of rutin. Phytother. Res. 2021, 35, 2500–2513. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi. Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.L.; Kim, S.K.; Park, C.H. Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Res. Int. 2004, 37, 319–327. [Google Scholar] [CrossRef]
- Kowaltowski, A.J.; de Souza-Pinto, N.C.; Castilho, R.F.; Vercesi, A.E. Mitochondria and reactive oxygen species. Free Radical. Biol. Med. 2009, 47, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Kovacic, P.; Somanathan, R. Cell signaling and receptors with resorcinols and flavonoids: Redox, reactive oxygen species, and physiological effects. J. Recept. Sig. Transd. 2013, 18, 1789–1796. [Google Scholar] [CrossRef]
- Shokoohinia, Y.; Rashidi, M.; Hosseinzadeh, L.; Jelodarian, Z. Quercetin-3-O-beta-D-glucopyranoside, a dietary flavonoid, protects PC12 cells from H2O2-induced cytotoxicity through inhibition of reactive oxygen species. Food Chem. 2015, 167, 162–167. [Google Scholar] [CrossRef]
- Oikonomou, N.A.; Krokida, M.K. Water absorption index and water solubility index prediction for extruded food products. Int. J. Food Prop. 2012, 15, 157–168. [Google Scholar] [CrossRef]
- Pourafshar, S.; Rosentrater, K.A.; Krishnan, P.G. Changes in chemical and physical properties of Latin American wheat flour based tortillas substituted with different levels of distillers dried grains with solubles (DDGS). J. Food. Sci. Technol. 2015, 52, 5243–5249. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, N.; Rossle, C.; Arendt, E.; Gallagher, E. Modelling the effects of orange pomace using response surface design for gluten-free bread baking. Food Chem. 2015, 166, 223–230. [Google Scholar] [CrossRef]
- Reshmi, S.K.; Sudha, M.L.; Shashirekha, M.N. Starch digestibility and predicted glycemic index in the bread fortified with pomelo (Citrus maxima) fruit segments. Food Chem. 2017, 237, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.H.; Chen, J.C.; Ye, X.Q.; Chen, S.G. Health benefits of the potato affected by domestic cooking: A review. Food Chem. 2016, 202, 165–175. [Google Scholar] [CrossRef] [PubMed]
TBF | TBCF | TBBF | |
---|---|---|---|
Water (%) | 9.96 ± 0.02 b | 10.78 ± 0.03 a | 9.55 ± 0.03 c |
Mineral (%) | 1.79 ± 0.01 b | 0.93 ± 0.01 c | 2.96 ± 0.01 a |
Lipid (%) | 2.62 ± 0.02 b | 1.15 ± 0.01 c | 4.76 ± 0.02 a |
Starch (%) | 68.28 ± 0.11 b | 81.94 ± 0.15 a | 49.32 ± 0.10 c |
Protein (%) | 14.64 ± 0.27 b | 8.07 ± 0.06 c | 23.33 ± 0.14 a |
Rutin (%) | 1.33 ± 0.01 b | 0.04 ± 0.01 c | 3.27 ± 0.36 a |
TBF | TBCF | TBBF | |
---|---|---|---|
C16:0 | 21.29 ± 7.46 a | 13.92 ± 0.06 a | 14.11 ± 0.18 a |
C16:1 | 0.13 ± 0.03 b | 0.09 ± 0.01 c | 0.18 ± 0.00 a |
C18:0 | 2.04 ± 0.20 b | 2.47 ± 0.03 a | 2.11 ± 0.04 b |
C18:1 | 35.68 ± 3.39 b | 40.83 ± 0.85 a | 38.53 ± 0.03 ab |
C18:2 | 34.73 ± 3.27 a | 36.25 ± 0.84 a | 38.34 ± 0.19 a |
C18:3 | 3.60 ± 0.37 a | 3.68 ± 0.06 a | 3.98 ± 0.02 a |
C20:0 | 1.30 ± 0.13 a | 1.42 ± 0.01 a | 1.42 ± 0.01 a |
C22:0 | 1.23 ± 0.13 a | 1.36 ± 0.03 a | 1.33 ± 0.01 a |
TBF | TBCF | TBBF | |
---|---|---|---|
Asp | 0.95 ± 0.28 b | 0.55 ± 0.10 c | 1.82 ± 0.14 a |
Thr | 0.38 ± 0.12 b | 0.23 ± 0.04 b | 0.70 ± 0.07 a |
Ser | 0.52 ± 0.16 b | 0.30 ± 0.06 c | 0.99 ± 0.06 a |
Glu | 1.88 ± 0.60 b | 0.96 ± 0.15 c | 3.71 ± 0.29 a |
Gly | 0.61 ± 0.18 b | 0.34 ± 0.06 c | 1.14 ± 0.11 a |
Ala | 0.45 ± 0.14 b | 0.28 ± 0.06 b | 0.80 ± 0.08 a |
Cys | 0.09 ± 0.03 a | 0.03 ± 0.01 b | 0.11 ± 0.01 a |
Val | 0.55 ± 0.16 b | 0.33 ± 0.05 c | 0.99 ± 0.09 a |
Met | 0.17 ± 0.04 b | 0.10 ± 0.01 b | 0.33 ± 0.05 a |
Ile | 0.40 ± 0.11 b | 0.25 ± 0.05 b | 0.71 ± 0.09 a |
Leu | 0.64 ± 0.20 b | 0.41 ± 0.08 b | 1.17 ± 0.08 a |
Tyr | 0.38 ± 0.12 b | 0.17 ± 0.04 c | 0.63 ± 0.07 a |
Phe | 0.52 ± 0.17 b | 0.30 ± 0.03 b | 0.90 ± 0.08 a |
His | 0.40 ± 0.10 b | 0.22 ± 0.04 c | 0.77 ± 0.07 a |
Lys | 0.57 ± 0.18 b | 0.34 ± 0.05 b | 1.04 ± 0.10 a |
Arg | 1.01 ± 0.31 b | 0.46 ± 0.08 c | 2.00 ± 0.15 a |
Pro | 0.37 ± 0.09 b | 0.26 ± 0.02 b | 0.77 ± 0.10 a |
TBF | TBCF | TBBF | |
---|---|---|---|
Water absorption (%) | 56.9 ± 0.3 b | 64.0 ± 0.1 a | 55.0 ± 0.1 c |
Development time (min) | 2.843 ± 0.090 b | 6.807 ± 0.552 a | 0.920 ± 0.053 c |
Thermal stability (min) | 2.300 ± 0.100 b | 5.500 ± 0.100 a | 2.433 ± 0.153 b |
C1 (Nm) | 1.102 ± 0.033 a | 1.094 ± 0.022 a | 1.099 ± 0.035 a |
C2 (Nm) | 0.000 ± 0.000 b | 0.000 ± 0.000 b | 0.200 ± 0.001 a |
C3 (Nm) | 1.838 ± 0.055 b | 2.069 ± 0.132 a | 1.482 ± 0.033 c |
C4 (Nm) | 1.711 ± 0.036 b | 1.891 ± 0.124 a | 1.389 ± 0.007 c |
C5 (Nm) | 2.531 ± 0.072 b | 2.832 ± 0.045 a | 2.070 ± 0.036 c |
C3-C2 (Nm) | 1.838 ± 0.055 b | 2.069 ± 0.132 a | 1.282 ± 0.034 c |
C3-C4 (Nm) | 0.127 ± 0.064 a | 0.178 ± 0.071 a | 0.089 ± 0.033 a |
C5-C4 (Nm) | 0.821 ± 0.075 a | 0.941 ± 0.086 a | 0.677 ± 0.036 b |
α (Nm/min) | −0.007 ± 0.002 a | −0.110 ± 0.010 c | −0.039 ± 0.006 b |
β (Nm/min) | 0.005 ± 0.001 c | 0.008 ± 0.002 b | 0.603 ± 0.082 a |
γ (Nm/min) | 0.017 ± 0.021 a | 0.395 ± 0.482 a | −0.020 ± 0.010 a |
Wbran (%) | 0 | 10 | 30 | 50 | 70 | 90 |
---|---|---|---|---|---|---|
Water absorption (%) | 59.3 ± 0.2 a | 58.7 ± 0.1b | 57.3 ± 0.3 c | 54.8 ± 0.2 f | 55.4 ± 0.1 e | 55.9 ± 0.2 d |
Development time (min) | 3.290 ± 0.082 c | 3.550 ± 0.130 b | 6.990 ± 0.225 a | 0.833 ± 0.015 d | 0.860 ± 0.026 d | 0.967 ± 0.015 d |
Thermal stability (min) | 6.567 ± 0.289 c | 7.933 ± 0.321 b | 10.067 ± 0.513 a | 1.467 ± 0.058 de | 1.067 ± 0.058 e | 1.900 ± 0.346 d |
C1 (N·m) | 1.091 ± 0.011 b | 1.097 ± 0.021 ab | 1.064 ± 0.029 b | 1.100 ± 0.032 ab | 1.098 ± 0.009 ab | 1.138 ± 0.017 a |
C2 (N·m) | 0.465 ± 0.010 a | 0.423 ± 0.006 b | 0.388 ± 0.010 c | 0.325 ± 0.005 d | 0.192 ± 0.002 f | 0.210 ± 0.002 e |
C3 (N·m) | 1.758 ± 0.023 a | 1.787 ± 0.019 a | 1.767 ± 0.009 a | 1.683 ± 0.005 b | 1.635 ± 0.009 c | 1.525 ± 0.035 d |
C4 (N·m) | 1.670 ± 0.060 a | 1.617 ± 0.034 a | 1.491 ± 0.012 b | 1.485 ± 0.010 b | 1.502 ± 0.007 b | 1.447 ± 0.022 b |
C5 (N·m) | 2.937 ± 0.089 a | 2.532 ± 0.061 b | 2.379 ± 0.056 c | 2.513 ± 0.006 b | 2.401 ± 0.027 c | 2.158 ± 0.040 d |
C3-C2 (N·m) | 1.293 ± 0.014 c | 1.364 ± 0.013 b | 1.379 ± 0.004 b | 1.358 ± 0.001 b | 1.443 ± 0.011 a | 1.315 ± 0.034 c |
C3-C4 (N·m) | 0.089 ± 0.038 d | 0.170 ± 0.018 bc | 0.275 ± 0.012 a | 0.198 ± 0.014 b | 0.133 ± 0.014 c | 0.078 ± 0.015 d |
C5-C4 (N·m) | 1.268 ± 0.053 a | 0.915 ± 0.027 c | 0.888 ± 0.048 c | 1.029 ± 0.015 b | 0.899 ± 0.021 c | 0.711 ± 0.019 d |
α (N·m/min) | −0.070 ± 0.007 b | −0.099 ± 0.002 c | −0.126 ± 0.011 d | −0.100 ± 0.005 c | −0.027 ± 0.006 a | −0.031 ± 0.003 a |
β (N·m/min) | 0.463 ± 0.039 b | 0.221 ± 0.030 e | 0.349 ± 0.014 cd | 0.303 ± 0.021 de | 0.613 ± 0.067 a | 0.403 ± 0.090 bc |
γ (N·m/min) | −0.020 ± 0.016 a | −0.021 ± 0.006 a | −0.025 ± 0.010 a | −0.010 ± 0.007 a | −0.023 ± 0.006 a | 0.007 ± 0.034 a |
Wbran (%) | L* | a* | b* |
---|---|---|---|
0 | 81.88 ± 0.46 a | −0.65 ± 0.02 f | 17.17 ± 0.20 c |
10 | 59.81 ± 0.16 b | 2.47 ± 0.07 e | 23.71 ± 0.33 a |
30 | 47.82 ± 0.48 c | 5.53 ± 0.04 a | 20.98 ± 0.23 b |
50 | 42.19 ± 0.23 d | 5.00 ± 0.08 b | 14.82 ± 0.18 d |
70 | 39.51 ± 0.22 e | 4.40 ± 0.03 c | 11.47 ± 0.16 e |
90 | 38.49 ± 0.11 f | 3.66 ± 0.13 d | 8.94 ± 0.09 f |
Wbran (%) | Hardness | Springiness | Cohesiveness | Gumminess | Chewiness | Resilience |
---|---|---|---|---|---|---|
0 | 1651 ± 59 e | 0.945 ± 0.006 b | 0.846 ± 0.014 a | 1398 ± 41 e | 1321 ± 48 e | 0.558 ± 0.014 a |
10 | 1680 ± 42 e | 0.970 ± 0.026 a | 0.842 ± 0.014 a | 1415 ± 58 e | 1374 ± 92 e | 0.548 ± 0.014 a |
30 | 3554 ± 98 d | 0.904 ± 0.002 c | 0.808 ± 0.012 b | 2871 ± 43 d | 2596 ± 40 d | 0.485 ± 0.013 b |
50 | 8367 ± 378 c | 0.871 ± 0.008 d | 0.782 ± 0.002 c | 6542 ± 279 c | 5696 ± 290 c | 0.458 ± 0.003 c |
70 | 11116 ± 632 b | 0.872 ± 0.015 d | 0.783 ± 0.018 c | 8693 ± 294 b | 7577 ± 176 b | 0.448 ± 0.020 c |
90 | 19691 ± 752 a | 0.854 ± 0.008 d | 0.761 ± 0.018 c | 14192 ± 1441 a | 12116 ± 1228 a | 0.438 ± 0.017 c |
Wbran (%) | 0 | 10 | 30 | 50 | 70 | 90 |
Slice area | 2819 ± 65 a | 2817 ± 40 a | 2258 ± 61 b | 1992 ± 13 c | 1918 ± 40 cd | 1842 ± 12 d |
Brightness | 102.270 ± 7.079 a | 51.311 ± 0.884 b | 33.501 ± 3.704 c | 31.803 ± 1.568 c | 27.839 ± 0.484 c | 27.015 ± 1.515 c |
Cell contrast | 0.796 ± 0.013 a | 0.622 ± 0.005 f | 0.649 ± 0.013 e | 0.688 ± 0.012 d | 0.722 ± 0.010 c | 0.766 ± 0.010 b |
Number of cells | 1991 ± 148 a | 1558 ± 20 d | 1645 ± 26 cd | 1766 ± 88 bc | 1857 ± 71 ab | 1972 ± 41 a |
Area of cells | 46.220 ± 0.978 a | 49.379 ± 0.150 b | 46.076 ± 1.039 b | 44.121 ± 0.439 c | 43.031 ± 0.343 c | 41.613 ± 0.334 d |
Wall thickness | 0.447 ± 0.006 b | 0.485 ± 0.004 a | 0.450 ± 0.004 b | 0.420 ± 0.006 c | 0.406 ± 0.006 d | 0.395 ± 0.006 e |
Cell diameter | 1.389 ± 0.050 b | 1.800 ± 0.043 a | 1.416 ± 0.057 b | 1.234 ± 0.077 c | 1.117 ± 0.036 d | 1.019 ± 0.025 e |
Cell volume | 3.558 ± 0.205 cd | 6.984 ± 0.215 a | 5.164 ± 0.308 b | 4.034 ± 0.385 c | 3.378 ± 0.227 d | 2.747 ± 0.235 e |
Coarse cell volume | 6.507 ± 1.157 b | 10.364 ± 0.493 a | 9.445 ± 0.626 a | 6.804 ± 0.752 b | 5.323 ± 0.147 c | 4.194 ± 0.302 c |
Cell elongation | 1.618 ± 0.014 a | 1.532 ± 0.009 b | 1.556 ± 0.020 b | 1.564 ± 0.010 b | 1.607 ± 0.049 a | 1.643 ± 0.019 a |
Cell density | 0.706 ± 0.046 d | 0.553 ± 0.010 e | 0.729 ± 0.014 d | 0.887 ± 0.048 c | 0.968 ± 0.018 b | 1.071 ± 0.029 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chen, S.; Geng, S.; Liu, C.; Ma, H.; Liu, B. Effects of Tartary Buckwheat Bran Flour on Dough Properties and Quality of Steamed Bread. Foods 2021, 10, 2052. https://doi.org/10.3390/foods10092052
Zhang S, Chen S, Geng S, Liu C, Ma H, Liu B. Effects of Tartary Buckwheat Bran Flour on Dough Properties and Quality of Steamed Bread. Foods. 2021; 10(9):2052. https://doi.org/10.3390/foods10092052
Chicago/Turabian StyleZhang, Sheng, Si Chen, Sheng Geng, Changzhong Liu, Hanjun Ma, and Benguo Liu. 2021. "Effects of Tartary Buckwheat Bran Flour on Dough Properties and Quality of Steamed Bread" Foods 10, no. 9: 2052. https://doi.org/10.3390/foods10092052
APA StyleZhang, S., Chen, S., Geng, S., Liu, C., Ma, H., & Liu, B. (2021). Effects of Tartary Buckwheat Bran Flour on Dough Properties and Quality of Steamed Bread. Foods, 10(9), 2052. https://doi.org/10.3390/foods10092052