Low-Voltage Electrical Stimulation of Beef Carcasses Slows Carcass Chilling Rate and Improves Steak Color
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carcass Selection and Electrical Stimulation Treatments
2.2. Carcass Temperature and pH
2.3. Carcass Characteristics and Sample Collection
2.4. Glycolytic Potential
2.5. Warner–Bratzler Shear Force and Cook Loss
2.6. Instrumental Color
2.7. Statistical Analysis
3. Results
3.1. Carcass Characteristics
3.2. Carcass Temperature and PH
3.3. Glycolytic Potential
3.4. Warner–Bratzler Shear Force and Cook Loss
3.5. Instrumental Color
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chrystall, B.B.; Hagyard, C. Electrical stimulation and lamb tenderness. N. Z. J. Agric. Res. 1976, 19, 7–11. [Google Scholar] [CrossRef]
- Dutson, T.R.; Yates, D.L.; Smith, G.C.; Carpenter, Z.L.; Hostetler, R.L. Rigor onset before chilling. In Proceedings of the Reciprocal Meat Conference, Auburn, AL, USA, 12–15 June 1997; pp. 79–86. [Google Scholar]
- Locker, R.H.; Daines, G.J. Tenderness in relation to the temperature of rigor onset in cold shortened beef. J. Sci. Food Agric. 1976, 27, 193–196. [Google Scholar] [CrossRef]
- McKeith, F.K.; Smith, G.C.; Savell, J.W.; Dutson, T.R.; Carpenter, Z.L.; Hammons, D.R. Effects of Certain Electrical Stimulation Parameters on Quality and Palatability of Beef. J. Food Sci. 1981, 46, 13–18. [Google Scholar] [CrossRef]
- Roeber, D.L.; Cannell, R.C.; Belk, K.E.; Tatum, J.D.; Smith, G.C. Effects of a unique application of electrical stimulation on tenderness, color, and quality attributes of the beef longissimus muscle. J. Anim. Sci. 2000, 78, 1504–1509. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Li, X.; Hviid, M.; Lundström, K. Effect of low-voltage electrical stimulation after dressing on color stability and water holding capacity of bovine longissimus muscle. Meat Sci. 2011, 88, 559–565. [Google Scholar] [CrossRef]
- Adeyemi, K.D.; Sazili, A.Q. Efficacy of Carcass Electrical Stimulation in Meat Quality Enhancement: A Review. Asian-Australas. J. Anim. Sci. 2014, 27, 447–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeith, F.K.; Ellis, M.; Miller, K.D.; Sutton, D.S. The effect of RN genotype on pork quality. In Proceedings of the Reciprocal Meat Conference, Storrs, CT, USA, 12 May 1998; pp. 118–124. [Google Scholar]
- Bowker, B.; Wynveen, E.; Grant, A.; Gerrard, D. Effects of electrical stimulation on early postmortem muscle pH and temperature declines in pigs from different genetic lines and halothane genotypes. Meat Sci. 1999, 53, 125–133. [Google Scholar] [CrossRef]
- Wiklund, E.; Stevenson-Barry, J.; Duncan, S.; Littlejohn, R. Electrical stimulation of red deer (Cervus elaphus) carcasses—Effects on rate of pH-decline, meat tenderness, colour stability and water-holding capacity. Meat Sci. 2001, 59, 211–220. [Google Scholar] [CrossRef]
- Kim, Y.; Lonergan, S.; Grubbs, J.; Cruzen, S.; Fritchen, A.; Della Malva, A.; Marino, R.; Huff-Lonergan, E. Effect of low voltage electrical stimulation on protein and quality changes in bovine muscles during postmortem aging. Meat Sci. 2013, 94, 289–296. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.; Maddock, D.; Savell, J. Water-holding capacity and color characteristics of beef from electrically stimulated carcasses. J. Muscle Foods 2003, 14, 33–49. [Google Scholar] [CrossRef]
- Nichols, J.E.; Cross, H.R. Effects of Electrical Stimulation and Early Postmortem Muscle Excision on pH Decline, Sarcomere Length and Color in Beef Muscles. J. Food Prot. 1980, 43, 514–519. [Google Scholar] [CrossRef]
- Hwang, I.; Devine, C.; Hopkins, D. The biochemical and physical effects of electrical stimulation on beef and sheep meat tenderness. Meat Sci. 2003, 65, 677–691. [Google Scholar] [CrossRef]
- Simmons, N.; Daly, C.; Cummings, T.; Morgan, S.; Johnson, N.; Lombard, A. Reassessing the principles of electrical stimulation. Meat Sci. 2008, 80, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Rodas-González, A.; López-Campos, Ó.; Galbraith, J.; Juárez, M.; Larsen, I.; Jin, Y.; Aalhus, J. Effects of electrical stimulation on meat quality of bison striploin steaks and ground patties. Can. J. Anim. Sci. 2016, 96, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Dutson, T.; Smith, G.; Savell, J.; Carpenter, Z. Possible mechanisms by which electrical stimulation improves meat tenderness. In Proceedings of the 26th European Meeting of Meat Research Workers, Brno, Czechoslovakia, 12 May 1980; pp. 84–87. [Google Scholar]
- Savell, J.; Dutson, T.; Smith, G.; Carpenter, Z. Structural Changes in Electrically Stimulated Beef Muscle. J. Food Sci. 1978, 43, 1606–1607. [Google Scholar] [CrossRef]
- Ho, C.Y.; Stromer, M.H.; Robson, R.M. Effect of electrical stimulation on postmortem titin, nebulin, desmin, and troponin-T degradation and ultrastructural changes in bovine longissimus muscle. J. Anim. Sci. 1996, 74, 1563–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juárez, M.; Basarab, J.A.; Baron, V.S.; Valera, M.; Óscar, L.-C.; Larsen, I.L.; Aalhus, J.L. Relative contribution of electrical stimulation to beef tenderness compared to other production factors. Can. J. Anim. Sci. 2016, 96, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, D.; Thompson, J. Inhibition of protease activity 2. Degradation of myofibrillar proteins, myofibril examination and determination of free calcium levels. Meat Sci. 2001, 59, 199–209. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M. Beef longissimus slice shear force measurement among steak locations and institutions1,2,3. J. Anim. Sci. 2007, 85, 2283–2289. [Google Scholar] [CrossRef]
- Derington, A.; Brooks, J.; Garmyn, A.; Thompson, L.; Wester, D.; Miller, M. Relationships of slice shear force and Warner-Bratzler shear force of beef strip loin steaks as related to the tenderness gradient of the strip loin. Meat Sci. 2011, 88, 203–208. [Google Scholar] [CrossRef]
- Shackelford, S.; Morgan, J.; Cross, H.; Savell, J. Identification of Threshold Levels for Warner-Bratzler Shear Force in Beef Top Loin Steaks. J. Muscle Foods 1991, 2, 289–296. [Google Scholar] [CrossRef]
- Miller, M.F.; Hoover, L.C.; Cook, K.D.; Guerra, A.L.; Huffman, K.L.; Tinney, K.S.; Ramsey, C.B.; Brittin, H.C.; Huffman, L.M. Consumer Acceptability of Beef Steak Tenderness in the Home and Restaurant. J. Food Sci. 1995, 60, 963–965. [Google Scholar] [CrossRef]
- Savell, J.; Smith, G.C.; Carpenter, Z.L. Beef quality and palatability as affected by electrical stimulation and cooler aging. J. Food Sci. 1978, 43, 1666–1668. [Google Scholar] [CrossRef]
- Shanks, B.C.; Wulf, D.M.; Maddock, R.J. Technical note: The effect of freezing on Warner-Bratzler shear force values of beef longissimus steaks across several postmortem aging periods. J. Anim. Sci. 2002, 80, 2122–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeith, F.K.; Savell, J.W.; Smith, G.C. Tenderness Improvement of the Major Muscles of the Beef Carcass by Electrical Stimulation. J. Food Sci. 1981, 46, 1774–1776. [Google Scholar] [CrossRef]
- Sleper, P.S.; Hunt, M.C.; Kropf, D.H.; Kastner, C.L.; Dikeman, M.E. Electrical Stimulation Effects on Myoglobin Properties of Bovine Longissimus Muscle. J. Food Sci. 1983, 48, 479–483. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, X.; Mao, Y.; Luo, X.; Zhu, L.; Hopkins, D.L. Effect of new generation medium voltage electrical stimulation on the meat quality of beef slaughtered in a Chinese abattoir. Meat Sci. 2019, 149, 47–54. [Google Scholar] [CrossRef]
Treatment 1 | ||||
---|---|---|---|---|
Variable | ES40 | ES80 | SEM 3 | p-Value |
Hot carcass weight, kg | 427.25 | 424.30 | 8.16 | 0.7200 |
Ribeye area 4, cm2 | 85.06 | 87.44 | 4.71 | 0.6172 |
12th rib fat thickness 4, cm | 1.62 | 1.61 | 0.14 | 0.9482 |
USDA YG 5 | 3.86 | 3.70 | 0.23 | 0.5000 |
Treatment 3 | Contrast p-Value | ||||
---|---|---|---|---|---|
Variable | Control | ES40 | ES80 | Control vs. ES 4 | ES Level 5 |
Glucose, µmol/g | 0.19 ± 0.006 | 0.19 ± 0.008 | 0.18 ± 0.008 | 0.5825 | 0.7308 |
Lactate, µmol/g | 0.20 ± 0.005 | 0.20 ± 0.006 | 0.19 ± 0.006 | 0.9557 | 0.5655 |
GP, µmol/g | 76.10 ± 1.66 | 76.02 ± 2.18 | 74.26 ± 2.28 | 0.6760 | 0.5784 |
WBSF, kg | 3.84 ± 0.08 | 3.69 ± 0.10 | 3.64 ± 0.11 | 0.0220 | 0.7332 |
Cook loss, % | 17.94 ± 0.28 | 18.34 ± 0.38 | 18.24 ± 0.39 | 0.3753 | 0.8536 |
Days Postmortem 1 | |||||
---|---|---|---|---|---|
Variable | 3 | 7 | 14 | SEM 2 | p-Value |
WBSF, kg | 3.70 a | 3.84 b | 3.63 a | 0.08 | 0.0021 |
Cook loss, % | 17.38 a | 18.69 b | 18.45 b | 0.34 | 0.0127 |
Treatment 2 | Contrast p-Value | ||||
---|---|---|---|---|---|
Variable | Control | ES40 | ES80 | Control vs. ES 3 | ES Level 4 |
L* | 40.38 ± 0.34 | 42.28 ± 0.46 | 42.77 ± 0.48 | <0.0001 | 0.4582 |
a* | 24.94 ± 0.30 | 26.08 ± 0.33 | 26.06 ± 0.38 | <0.0001 | 0.9460 |
b* | 10.14 ± 0.27 | 11.30 ± 0.29 | 11.19 ± 0.34 | <0.0001 | 0.7079 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakker, C.; Underwood, K.; Grubbs, J.K.; Blair, A. Low-Voltage Electrical Stimulation of Beef Carcasses Slows Carcass Chilling Rate and Improves Steak Color. Foods 2021, 10, 1065. https://doi.org/10.3390/foods10051065
Bakker C, Underwood K, Grubbs JK, Blair A. Low-Voltage Electrical Stimulation of Beef Carcasses Slows Carcass Chilling Rate and Improves Steak Color. Foods. 2021; 10(5):1065. https://doi.org/10.3390/foods10051065
Chicago/Turabian StyleBakker, Christina, Keith Underwood, Judson Kyle Grubbs, and Amanda Blair. 2021. "Low-Voltage Electrical Stimulation of Beef Carcasses Slows Carcass Chilling Rate and Improves Steak Color" Foods 10, no. 5: 1065. https://doi.org/10.3390/foods10051065
APA StyleBakker, C., Underwood, K., Grubbs, J. K., & Blair, A. (2021). Low-Voltage Electrical Stimulation of Beef Carcasses Slows Carcass Chilling Rate and Improves Steak Color. Foods, 10(5), 1065. https://doi.org/10.3390/foods10051065