Fourier Transform Infrared Spectroscopy as a Tool to Study Milk Composition Changes in Dairy Cows Attributed to Housing Modifications to Improve Animal Welfare
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Housing and Management
2.3. Milk Analysis
2.4. Milk FTIR Spectra, Outliers Check and Spectral Pre-Treatments
2.5. Statistical Model
2.6. Combined Mixed Model and PCA for Spectral Analysis
2.7. Interpretation of Spectral Features in PCA Loading Spectra
2.8. Ethics Statement
3. Results
3.1. Interpretation of Spectral Features in Loading Spectra
3.2. Spectral Analysis
4. Discussion
4.1. Effect of Tie-Rail Configuration on Milk FTIR Spectral Data
4.2. Spectral Features Associated to Differences in Milk FTIR Spectra Attributed to Changes in Tie-Rail Configuration
4.3. Assigning Potential Milk Components to Wavenumbers with High PC Loadings
4.4. Interpretation of the Spectral Analysis Observations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasseur, E. Animal behavior and well-being symposium: Optimizing outcome measures of welfare in dairy cattle assessment. J. Anim. Sci. 2017, 95, 1365–1371. [Google Scholar] [CrossRef]
- Weber, C.; Hametner, C.; Tuchscherer, A.; Losand, B.; Kanitz, E.; Otten, W.; Singh, S.P.; Bruckmaier, R.M.; Becker, F.; Kanitz, W.; et al. Variation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows. J. Dairy Sci. 2013, 96, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Jorjong, S.; Knegsel, V.A.; Verwaeren, J.; Val Lahoz, M.; Bruckmaier, R.M.; Baets, D.B.; Kemp, B.; Fievez, V. Milk fatty acids as possible biomarkers to early diagnose elevated concentrations of blood plasma nonesterified fatty acids in dairy cows. J. Dairy Sci. 2014, 97, 7054–7064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnould, V.M.-R.; Reding, R.; Bormann, J.; Gengler, N.; Soyeurt, H. Review: Milk composition as management tool of sustainability. Biotechnol. Agron. Soc. Environ. 2013, 17, 613–621. [Google Scholar]
- Hanuš, O.; Samková, E.; Křížová, L.; Hasoňová, L.; Kala, R. Role of fatty acids in milk fat and the influence of selected factors on their variability—A review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [Green Version]
- Goulden, J.D.S. Analysis of milk by infrared absorption. J. Dairy Res. 1964, 31, 273–284. [Google Scholar] [CrossRef]
- Biggs, D.A. Milk analysis with the infrared milk analyzer. J. Dairy Sci. 1967, 50, 799–803. [Google Scholar] [CrossRef]
- Voort, F.R.V.D.; Sedman, J.; Emo, G.; Ismail, A.A. Assessment of Fourier transform infrared analysis of milk. J. AOAC Int. 1992, 75, 780–785. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- International Dairy Federation. Whole Milk: Determination of Milk Fat, Protein and Lactose Content. Guide for the Operation of Mid-Infrared Instruments, IDF Standard 141C; International Dairy Federation: Brussels, Belgium, 2000. [Google Scholar]
- Soyeurt, H.; Dardenne, P.; Dehareng, F.; Lognay, G.; Veselko, D.; Marlier, M.; Bertozzi, C.; Mayeres, P.; Gengler, N. Estimating fatty acid content in cow milk using mid-infrared spectrometry. J. Dairy Sci. 2006, 89, 3690–3695. [Google Scholar] [CrossRef] [Green Version]
- Soyeurt, H.; Dehareng, F.; Gengler, N.; McParland, S.; Wall, E.; Berry, D.P.; Coffey, M.; Dardenne, P. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems, and countries. J. Dairy Sci. 2011, 94, 1657–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutten, M.J.; Bovenhuis, H.; Hettinga, K.A.; van Valenberg, H.J.; van Arendonk, J.A. Predicting bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and summer. J. Dairy Sci. 2009, 92, 6202–6209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afseth, N.K.; Martens, H.; Randby, Å.; Gidskehaug, L.; Narum, B.; Jørgensen, K.; Lien, S.; Kohler, A. Predicting the fatty acid composition of milk: A comparison of two Fourier transform infrared sampling techniques. Appl. Spectrosc. 2010, 64, 700–707. [Google Scholar] [CrossRef]
- Eskildsen, C.E.; Rasmussen, M.A.; Engelsen, S.B.; Larsen, L.B.; Poulsen, N.A.; Skov, T. Quantification of individual fatty acids in bovine milk by infrared spectroscopy and chemometrics: Understanding predictions of highly collinear reference variables. J. Dairy Sci. 2014, 97, 7940–7951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbano, D.; Melilli, C. New Milk Analysis Technologies to Improve Dairy Cattle Performance; Department of Food Science, Cornell University: Ithaca, NY, USA, 2016. [Google Scholar]
- Samková, E.; Špička, J.; Hanuš, O.; Roubal, P.; Pecová, L.; Hasoňová, L.; Smetana, P.; Klimešová, M.; Čítek, J. Comparison of fatty acid proportions determined by mid-infrared spectroscopy and gas chromatography in bulk and individual milk samples. Animals 2020, 10, 1095. [Google Scholar] [CrossRef]
- Wojciechowski, K.L.; Barbano, D.M. Prediction of fatty acid chain length and unsaturation of milk fat by mid-infrared milk analysis. J. Dairy Sci. 2016, 99, 8561–8570. [Google Scholar] [CrossRef] [Green Version]
- Kaylegian, K.E.; Lynch, J.M.; Fleming, J.R.; Barbano, D.M. Influence of fatty acid chain length and unsaturation on mid-infrared milk analysis. J. Dairy Sci. 2009, 92, 2485–2501. [Google Scholar] [CrossRef]
- Bonfatti, V.; Di Martino, G.; Carnier, P. Effectiveness of mid-infrared spectroscopy for the prediction of detailed protein composition and contents of protein genetic variants of individual milk of Simmental cows. J. Dairy Sci. 2011, 94, 5776–5785. [Google Scholar] [CrossRef]
- Soyeurt, H.; Bastin, C.; Colinet, F.G.; Arnould, V.M.; Berry, D.P.; Wall, E.; Dehareng, F.; Nguyen, H.N.; Dardenne, P.; Schefers, J.; et al. Mid-infrared prediction of lactoferrin content in bovine milk: Potential indicator of mastitis. Anim. Int. J. Anim. Biosci. 2012, 6, 1830–1838. [Google Scholar] [CrossRef] [Green Version]
- Soyeurt, H.; Bruwier, D.; Romnee, J.M.; Gengler, N.; Bertozzi, C.; Veselko, D.; Dardenne, P. Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry. J. Dairy Sci. 2009, 92, 2444–2454. [Google Scholar] [CrossRef] [Green Version]
- Visentin, G.; Penasa, M.; Gottardo, P.; Cassandro, M.; de Marchi, M. Predictive ability of mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by using the uninformative variable selection algorithm. J. Dairy Sci. 2016, 99, 8137–8145. [Google Scholar] [CrossRef]
- Grelet, C.; Bastin, C.; Gelé, M.; Davière, J.B.; Johan, M.; Werner, A.; Reding, R.; Fernandez Pierna, J.A.; Colinet, F.G.; Dardenne, P.; et al. Development of Fourier transform mid-infrared calibrations to predict acetone, b-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. J. Dairy Sci. 2016, 99, 4816–4825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Marzo, L.; Cree, P.; Barbano, D.M. Prediction of fat globule particle size in homogenized milk using Fourier transform mid-infrared spectra. J. Dairy Sci. 2016, 99, 8549–8560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Marchi, M.; Fagan, C.C.; Odonnell, C.P.; Cecchinato, A.; Dal Zotto, R.; Cassandro, M.; Penasa, M.; Bittante, G. Prediction of coagulation properties, titratable acidity, and pH of bovine milk using mid-infrared spectroscopy. J. Dairy Sci. 2009, 92, 423–432. [Google Scholar] [CrossRef]
- Dal Zotto, R.; de Marchi, M.; Cecchinato, A.; Penasa, M.; Cassandro, M.; Carnier, P.; Gallo, L.; Bittante, G. Reproducibility and repeatability of measures of milk coagulation properties and predictive ability of mid-infrared reflectance spectroscopy. J. Dairy Sci. 2008, 91, 4103–4112. [Google Scholar] [CrossRef] [Green Version]
- de Marchi, M.; Penasa, M.; Tiezzi, F.; Toffanin, V.; Cassandro, M. Prediction of milk coagulation properties by Fourier transform mid-infrared spectroscopy (FTMIR) for genetic purposes, herd management and dairy profitability. In Proceedings of the 38th International Committee for Animal Recording (ICAR) Meeting, Cork, Ireland, 22 June 2012. [Google Scholar]
- de Marchi, M.; Toffanin, V.; Cassandro, M.; Penasa, M. Prediction of coagulating and noncoagulating milk samples using mid-infrared spectroscopy. J. Dairy Sci. 2013, 96, 4707–4715. [Google Scholar] [CrossRef]
- Ferragina, A.; de Los Campos, G.; Vazquez, A.; Cecchinato, A.; Bittante, G. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data. J. Dairy Sci. 2015, 98, 8133–8151. [Google Scholar] [CrossRef] [Green Version]
- Soyeurt, H.; Grelet, C.; McParland, S.; Calmels, M.; Coffey, M.; Tedde, A.; Delhez, P.; Dehareng, F.; Gengler, N. A comparison of 4 different machine learning algorithms to predict lactoferrin content in bovine milk from mid-infrared spectra. J. Dairy Sci. 2020, 103, 11585–11596. [Google Scholar] [CrossRef]
- Dehareng, F.; Delfosse, C.; Froidmont, E.; Soyeurt, H.; Martin, C.; Gengler, N.; Vanlierde, A.; Dardenne, P. Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows. Anim. Int. J. Anim. Biosci. 2012, 6, 1694–1701. [Google Scholar] [CrossRef] [Green Version]
- Vanlierde, A.; Vanrobays, M.L.; Dehareng, F.; Froidmont, E.; Soyeurt, H.; McParland, S.; Lewis, E.; Deighton, M.H.; Grandl, F.; Kreuzer, M.; et al. Hot topic: Innovative lactation-stage-dependent prediction of methane emissions from milk mid-infrared spectra. J. Dairy Sci. 2015, 98, 5740–5747. [Google Scholar] [CrossRef] [Green Version]
- McParland, S.; Banos, G.; Wall, E.; Coffey, M.P.; Soyeurt, H.; Veerkamp, R.F.; Berry, D.P. The use of mid-infrared spectrometry to predict body energy status of Holstein cows. J. Dairy Sci. 2011, 94, 3651–3661. [Google Scholar] [CrossRef] [Green Version]
- McParland, S.; Lewis, E.; Kennedy, E.; Moore, S.G.; McCarthy, B.; Odonovan, M.; Butler, S.T.; Pryce, J.E.; Berry, D.P. Mid-infrared spectrometry of milk as a predictor of energy intake and efficiency in lactating dairy cows. J. Dairy Sci. 2014, 97, 5863–5871. [Google Scholar] [CrossRef] [Green Version]
- Shetty, N.; Løvendahl, P.; Lund, M.S.; Buitenhuis, A.J. Prediction and validation of residual feed intake and dry matter intake in Danish lactating dairy cows using mid-infrared spectroscopy of milk. J. Dairy Sci. 2017, 100, 253–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedet, A.; Franzoi, M.; Penasa, M.; Pellattiero, E.; de Marchi, M. Prediction of blood metabolites from milk mid-infrared spectra in early-lactation cows. J. Dairy Sci. 2019, 102, 11298–11307. [Google Scholar] [CrossRef]
- Capuano, E.; Rademaker, J.; van den Bijgaart, H.; van Ruth, S.M. Verification of fresh grass feeding, pasture grazing and organic farming by FTIR spectroscopy analysis of bovine milk. Food Res. Int. 2014, 60, 59–65. [Google Scholar] [CrossRef]
- Grelet, C.; Vanlierde, A.; Froidmont, E.; Dehareng, F.; Hostens, M.; Foldager, L.; Ingvartsen, K.L.; Sorensen, M.T.; Larsen, T.; Salavati, M.; et al. Potential of milk mid-IR spectra to predict metabolic status of cows through blood components and an innovative clustering approach. Animal 2018, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Luke, T.; Rochfort, S.; Wales, W.; Bonfatti, V.; Marett, L.; Pryce, J. Metabolic profiling of early-lactation dairy cows using milk mid-infrared spectra. J. Dairy Sci. 2019, 102, 1747–1760. [Google Scholar] [CrossRef] [Green Version]
- de Koster, J.; Salavati, M.; Grelet, C.; Crowe, M.A.; Matthews, E.; O’Flaherty, R.; Opsomer, G.; Foldager, L.; Hostens, M. Prediction of metabolic clusters in early-lactation dairy cows using models based on milk biomarkers. J. Dairy Sci. 2019, 102, 2631–2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foldager, L.; Gaillard, C.; Sorensen, M.T.; Larsen, T.; Matthews, E.; O’Flaherty, R.; Carter, F.; Crowe, M.A.; Grelet, C.M.; Salavati, M.; et al. Predicting physiological imbalance in Holstein dairy cows by three different sets of milk biomarkers. Prev. Vet. Med. 2020, 179, 105006. [Google Scholar] [CrossRef] [PubMed]
- Laine, A.; Mabrouk, H.B.; Dale, L.-M.; Bastin, C.; Gengler, N. How to use mid-infrared spectral information from milk recording system to detect the pregnancy status of dairy cows. Commun. Agric. Appl. Biol. Sci. 2014, 79, 33–38. [Google Scholar]
- Ho, P.N.; Bonfatti, V.; Luke, T.D.W.; Pryce, J.E. Classifying the fertility of dairy cows using milk mid-infrared spectroscopy. J. Dairy Sci. 2019, 102, 10460–10470. [Google Scholar] [CrossRef] [Green Version]
- Ho, P.; Pryce, J. Predicting the likelihood of conception to first insemination of dairy cows using milk mid-infrared spectroscopy. J. Dairy Sci. 2020, 103, 11535–11544. [Google Scholar] [CrossRef]
- Mineur, A.; Hammami, H.; Grelet, C.M.; Egger-Danner, C.; Sölkner, J.; Gengler, N. Short communication: Investigation of the temporal relationships between milk mid-infrared predicted biomarkers and lameness events in later lactation. J. Dairy Sci. 2020, 103, 4475–4482. [Google Scholar] [CrossRef] [Green Version]
- Delhez, P.; Wyzen, B.; Dalcq, A.C.; Colinet, F.G.; Reding, E.; Vanlierde, A.; Dehareng, F.; Gengler, N.; Soyeurt, H. Relationships between milk mid-IR predicted gastro-enteric methane production and the technical and financial performance of commercial dairy herds. Anim. Int. J. Anim. Biosci. 2018, 12, 1981–1989. [Google Scholar] [CrossRef]
- Toledo-Alvarado, H.; Vazquez, A.I.; de los Campos, G.; Tempelman, R.J.; Bittante, G.; Cecchinato, A. Diagnosing pregnancy status using infrared spectra and milk composition in dairy cows. J. Dairy Sci. 2018, 101, 2496–2505. [Google Scholar] [CrossRef]
- Cecchinato, A.; de Marchi, M.; Gallo, L.; Bittante, G.; Carnier, P. Mid-infrared spectroscopy predictions as indicator traits in breeding programs for enhanced coagulation properties of milk. J. Dairy Sci. 2009, 92, 5304–5313. [Google Scholar] [CrossRef] [Green Version]
- St John, J.; Rushen, J.; Adam, S.; Vasseur, E. Making tiestalls more comfortable: I. Adjusting tie-rail height and forward position to improve dairy cows’ ability to rise and lie down. J. Dairy Sci. 2020, S0022-0302(20)31062-6. [Google Scholar] [CrossRef]
- Dairy Farmers of Canada—National Farm Animal Care Council. Code of Practice for the Care and Handling of Farm Animals—Dairy Cattle; Dairy Farmers of Canada: Ottawa, ON, Canada, 2009. [Google Scholar]
- Bouffard, V.; de Passille, A.; Rushen, J.; Vasseur, E.; Nash, C.; Haley, D.; Pellerin, D. Effect of following recommendations for tiestall configuration on neck and leg lesions, lameness, cleanliness, and lying time in dairy cows. J. Dairy Sci. 2017, 100, 2935–2943. [Google Scholar] [CrossRef] [Green Version]
- Esbensen, K.; Swarbrick, B.; Westad, F.; Whitcomb, P.J.; Anderson, M.J.; Esbensen, K. Multivariate Data Analysis: An Introduction to Multivariate Analysis, Process Analytical Technology and Quality by Design, 6th ed.; CAMO: Oslo, Norway, 2018. [Google Scholar]
- Lehman, A.; O’Rourke, N.; Hatcher, L.; Stepanski, E. JMP for Basic Univariate and Multivariate Statistics: Methods for Researchers and Social Scientists; Sas Institute: Cary, NC, USA, 2013. [Google Scholar]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Bradley, M. Curve fitting in Raman and IR spectroscopy: Basic theory of line shapes and applications. Thermo Fisher Sci. Madison USA Appl. Note 2007, 50733. Available online: https://assets.thermofisher.com/TFS-Assets/CAD/Application-Notes/AN50733_E.pdf (accessed on 13 January 2021).
- Jensen, R.G. Handbook of Milk Composition; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Sun, D.W. Principles of Infrared Spectroscopy. In Infrared Spectroscopy for Food Quality Analysis and Control; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Klimberg, R.K.; McCullough, B.D. Fundamentals of Predictive Analytics with JMP, 2nd ed.; SAS Institute: Cary, NC, USA, 2016. [Google Scholar]
- Bihl, T. Biostatistics Using JMP: A Practical Guide; SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
- St John, J.; Rushen, J.; Adam, S.; Vasseur, E. Making Tiestalls More Comfortable: I. Adjusting Tie-Rail Height And Forward Position to Improve Dairy Cows’ Ability to Rise and Lie Down—Supplementary Table S4. Available online: https://escholarship.mcgill.ca/concern/articles/p2677119j?locale=en (accessed on 13 January 2021).
- Petersson-Wolfe, C.S.; Steele, N.M.; Swartz, T.H.; Rue, B.T.D.; Beede, D.; Washburn, S.P.; Zulovich, J.M.; Harner, J.P.; St-Pierre, N.R.; Weigel, K.A.; et al. Opportunities for Identifying Animal Health and Well-Being Disorders Using Precision Technologies. In Large Dairy Herd Management; American Dairy Science Association: Champaign, IL, USA, 2017; pp. 1279–1292. [Google Scholar]
Molecule | Band Centers in Milk cm−1 (Second Derivative) | Band Centers in Water cm−1 (Second Derivative) |
---|---|---|
Urea | 1457, 1156 | 1461, 1160 |
β-Hydroxybutyric acid (BHB) | 2926, 1554, 1405, 1316, 1077 | 2981, 1559, 1404, 1311, 1269, 1207, 1130, 1060, 948 |
Acetone | 1690, 1414, 1373, 1239 | 1689, 1424, 1370, 1239, 1096 |
Citrate | 2926, 1557, 1394, 1248, 1078 | 2923, 1581-1566, 1390, 1288, 1093 |
Acetate | 1551, 1414 | 1554, 1416, 1348, 1060, 1021, 933 |
Phosphate | 1156, 1077, 940 | 1261, 1236, 1160, 1077, 941 |
Ammonium chloride | 1457 | 1454 |
Linoleic acid (fatty acid) | 3012, 2927, 2857, 1705, 1581, 1554, 1458, 1408, 987 | 3011, 2929, 2861, 1597, 1554, 1458, 1405 |
Creatine | 1538, 1396, 1311, 1106, 980 | 2950, 2835, 1538, 1431, 1396, 1307, 1168, 1107, 1049, 976 |
Histamine | 3012, 2857, 1581, 1457, 1315, 1033, 987 | 3008, 2888, 1573, 1488, 1310, 1033, 987, 941 |
Orotic acid | 1700, 1500, 1377, 1033 | 1700, 1497, 1377, 1014 |
Hippuric acid | 1581, 1400, 1307 | 1584, 1489, 1396, 1301 |
Long Term | |||||||
---|---|---|---|---|---|---|---|
Spectral Dataset | Meaningful PC | Eigenvalue | Explained Variance % | Cumulative Explained Variance % | p Values | ||
Treatment | Start | Block | |||||
Raw | PC1 | 144.01 | 51.61 | 51.62 | 0.2897 | 0.0768 | 0.0081 |
PC2 | 83.97 | 30.10 | 81.71 | 0.9753 | 0.2931 | 0.1052 | |
PC3 | 38.26 | 13.71 | 95.43 | 0.7750 | 0.0013 | 0.0001 | |
PC4 | 5.36 | 1.92 | 97.35 | 0.0836 | 0.7465 | 0.2169 | |
PC5 | 2.70 | 0.97 | 98.31 | 0.3495 | 0.1821 | 0.0859 | |
FD | PC1 | 161.77 | 58.19 | 58.19 | 0.3120 | 0.1375 | 0.0091 |
PC2 | 39.03 | 14.04 | 72.23 | 0.4568 | 0.0130 | 0.0010 | |
PC3 | 33.63 | 12.10 | 84.33 | 0.7935 | 0.0307 | 0.0388 | |
PC4 | 12.46 | 4.48 | 88.81 | 0.0519 | 0.0817 | 0.0071 | |
PC5 | 7.31 | 2.63 | 91.44 | 0.6068 | 0.0001 | 0.4963 | |
PC6 | 5.39 | 1.94 | 93.38 | 0.0371 | 0.0238 | 0.0464 | |
PC7 | 4.27 | 1.54 | 94.92 | 0.8602 | 0.7468 | 0.7219 | |
VN Raw | PC1 | 189.23 | 68.07 | 68.07 | 0.4486 | 0.3247 | 0.0941 |
PC2 | 62.68 | 22.55 | 90.62 | 0.9549 | 0.1570 | 0.0003 | |
PC3 | 11.23 | 4.04 | 94.66 | 0.6285 | 0.6290 | 0.1392 | |
PC4 | 6.49 | 2.34 | 96.99 | 0.0462 | 0.0695 | 0.0223 | |
VN-FD | PC1 | 161.38 | 58.05 | 58.05 | 0.4429 | 0.2729 | 0.1311 |
PC2 | 52.76 | 18.98 | 77.30 | 0.3412 | 0.0794 | 0.0001 | |
PC3 | 17.70 | 6.37 | 83.40 | 0.0698 | 0.2443 | 0.0145 | |
PC4 | 10.96 | 3.94 | 87.34 | 0.4485 | 0.0001 | 0.0513 | |
PC5 | 7.23 | 2.60 | 89.94 | 0.1883 | 0.0031 | 0.1370 | |
PC6 | 5.10 | 1.84 | 91.77 | 0.6687 | 0.2201 | 0.8147 | |
PC7 | 3.82 | 1.37 | 93.15 | 0.0106 | 0.5590 | 0.0600 | |
PC8 | 3.32 | 1.20 | 94.34 | 0.1827 | 0.1467 | 0.3407 | |
PC9 | 3.05 | 1.10 | 95.44 | 0.5853 | 0.9014 | 0.3648 | |
Short Term | |||||||
Spectral Dataset | Meaningful PC | Eigenvalue | Explained Variance % | Cumulative Explained Variance % | p Values | ||
Treatment | Start | Block | |||||
Raw | PC1 | 120.20 | 43.24 | 43.24 | 0.8027 | 0.2834 | 0.3742 |
PC2 | 116.59 | 41.94 | 85.17 | 0.4505 | <0.0001 | 0.0024 | |
PC3 | 28.43 | 10.23 | 95.40 | 0.9673 | 0.0022 | 0.0005 | |
PC4 | 4.70 | 1.69 | 97.09 | 0.7538 | 0.5885 | 0.2833 | |
PC5 | 3.42 | 1.23 | 98.32 | 0.4750 | 0.0667 | 0.1672 | |
FD | PC1 | 143.72 | 51.70 | 51.70 | 0.7183 | 0.8642 | 0.2918 |
PC2 | 53.42 | 19.22 | 70.916 | 0.8662 | <0.0001 | 0.0028 | |
PC3 | 30.73 | 11.05 | 81.97 | 0.7711 | 0.0011 | 0.0509 | |
PC4 | 14.51 | 5.22 | 87.19 | 0.5312 | 0.0157 | 0.0699 | |
PC5 | 8.54 | 3.07 | 90.26 | 0.4634 | 0.0012 | 0.0001 | |
PC6 | 7.12 | 2.56 | 92.82 | 0.9830 | 0.4151 | 0.0185 | |
PC7 | 4.03 | 1.45 | 94.27 | 0.6678 | 0.1466 | 0.0445 | |
PC8 | 3.38 | 1.22 | 95.49 | 0.9792 | 0.2750 | 0.7527 | |
VN Raw | PC1 | 184.33 | 66.305 | 66.305 | 0.8430 | 0.0835 | 0.4132 |
PC2 | 59.13 | 21.27 | 87.57 | 0.8334 | 0.2707 | 0.0002 | |
PC3 | 18.65 | 6.70 | 94.28 | 0.3532 | 0.0001 | 0.0252 | |
PC4 | 6.05 | 2.18 | 96.46 | 0.3044 | 0.0524 | 0.2503 | |
PC5 | 3.00 | 1.08 | 97.54 | 0.5695 | 0.0047 | 0.1282 | |
PC6 | 2.14 | 0.77 | 98.31 | 0.3011 | 0.1517 | 0.0000 | |
PC7 | 1.42 | 0.51 | 98.82 | 0.2854 | 0.0331 | 0.2038 | |
VN-FD | PC1 | 157.19 | 56.54 | 56.54 | 0.8203 | 0.1957 | 0.5475 |
PC2 | 53.57 | 19.26 | 75.80 | 0.9078 | 0.4261 | 0.0057 | |
PC3 | 15.28 | 5.50 | 81.30 | 0.6044 | 0.0272 | 0.0968 | |
PC4 | 11.74 | 4.22 | 85.52 | 0.3441 | <0.0001 | 0.0070 | |
PC5 | 7.86 | 2.83 | 88.35 | 0.3957 | 0.3243 | <0.0001 | |
PC6 | 6.25 | 2.25 | 90.60 | 0.6979 | 0.0064 | 0.1319 | |
PC7 | 5.70 | 2.05 | 92.64 | 0.7479 | 0.9305 | 0.9583 | |
PC8 | 4.20 | 1.51 | 94.15 | 0.9162 | 0.5622 | 0.9332 | |
PC9 | 2.99 | 1.08 | 95.23 | 0.2639 | 0.8408 | 0.2663 | |
PC10 | 2.89 | 1.04 | 96.27 | 0.6651 | 0.2540 | 0.3726 |
Treatment | Estimate | Standard Error | DF | t Value | p Value |
---|---|---|---|---|---|
1 | 0.6846 | 0.4959 | 30 | 1.38 | 0.1776 |
2 | 0.5001 | 0.5267 | 30 | 0.95 | 0.3499 |
3 | −1.4596 | 0.4652 | 30 | −3.14 | 0.0038 |
4 | 0.4188 | 0.4652 | 30 | 0.9 | 0.3752 |
Treatment | Treatment | Estimate | Standard Error | DF | t Value | p Value | Scheffé Adj. p Value |
---|---|---|---|---|---|---|---|
1 | 2 | 0.1845 | 0.7097 | 30 | 0.26 | 0.7967 | 0.9953 |
1 | 3 | 2.1442 | 0.68 | 30 | 3.15 | 0.0037 | 0.0332 |
1 | 4 | 0.2658 | 0.68 | 30 | 0.39 | 0.6986 | 0.9845 |
2 | 3 | 1.9597 | 0.7027 | 30 | 2.79 | 0.0091 | 0.0711 |
2 | 4 | 0.08133 | 0.7027 | 30 | 0.12 | 0.9086 | 0.9996 |
3 | 4 | −1.8784 | 0.6579 | 30 | −2.86 | 0.0077 | 0.0622 |
Treatment | TR1 1 | TR2 1 | ||||||
---|---|---|---|---|---|---|---|---|
Week | 8 | 9 | 10 | Avg. | 8 | 9 | 10 | Avg. |
Fat % | 4.22 ± 0.70 | 4.16 ± 0.71 | 4.10 ± 0.46 | 4.16 ± 0.62 | 4.20 ± 0.57 | 4.28 ± 0.63 | 4.16 ± 0.64 | 4.21 ± 0.59 |
Protein % | 3.44 ± 0.32 | 3.44 ± 0.27 | 3.44 ± 0.26 | 3.44 ± 0.27 | 3.37 ± 0.33 | 3.38 ± 0.31 | 3.44 ± 0.31 | 3.39 ± 0.31 |
Lactose % | 4.62 ± 0.12 | 4.63 ± 0.17 | 4.61 ± 0.18 | 4.62 ± 0.15 | 4.65 ± 0.16 | 4.65 ± 0.16 | 4.61 ± 0.19 | 4.64 ± 0.17 |
Urea mg/dL | 14.29 ± 2.46 | 14.71 ± 2.90 | 13.90 ± 2.72 | 14.30 ± 2.63 | 14.03 ± 2.07 | 14.50 ± 3.50 | 13.54 ± 2.57 | 14.02 ± 2.71 |
BHB mmol/L | 0.05 ± 0.03 | 0.05 ± 0.03 | 0.05 ± 0.03 | 0.05 ± 0.03 | 0.07 ± 0.03 | 0.06 ± 0.04 | 0.08 ± 0.03 | 0.07 ± 0.03 |
Treatment | TR3 1 | TR4 1 | ||||||
Week | 8 | 9 | 10 | Avg. | 8 | 9 | 10 | Avg. |
Fat % | 3.89 ± 0.45 | 3.94 ± 0.54 | 3.92 ± 0.49 | 3.91 ± 0.48 | 3.73 ± 0.64 | 3.90 ± 0.60 | 4.11 ± 0.56 | 3.91 ± 0.60 |
Protein % | 3.34 ± 0.27 | 3.33 ± 0.29 | 3.36 ± 0.31 | 3.34 ± 0.28 | 3.41 ± 0.29 | 3.39 ± 0.30 | 3.42 ± 0.31 | 3.41 ± 0.29 |
Lactose % | 4.63 ± 0.16 | 4.59 ± 0.20 | 4.59 ± 0.21 | 4.60 ± 0.18 | 4.61 ± 0.10 | 4.60 ± 0.11 | 4.59 ± 0.13 | 4.60 ± 0.11 |
Urea mg/dL | 12.84 ± 2.77 | 13.05 ± 2.15 | 12.59 ± 2.13 | 12.83 ± 2.31 | 13.35 ± 1.74 | 14.48 ± 2.37 | 14.57 ± 2.34 | 14.13 ± 2.18 |
BHB mmol/L | 0.06 ± 0.02 | 0.06 ± 0.02 | 0.07 ± 0.02 | 0.06 ± 0.02 | 0.06 ± 0.02 | 0.05 ± 0.03 | 0.07 ± 0.02 | 0.06 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahadi, M.; Ismail, A.A.; Vasseur, E. Fourier Transform Infrared Spectroscopy as a Tool to Study Milk Composition Changes in Dairy Cows Attributed to Housing Modifications to Improve Animal Welfare. Foods 2021, 10, 450. https://doi.org/10.3390/foods10020450
Bahadi M, Ismail AA, Vasseur E. Fourier Transform Infrared Spectroscopy as a Tool to Study Milk Composition Changes in Dairy Cows Attributed to Housing Modifications to Improve Animal Welfare. Foods. 2021; 10(2):450. https://doi.org/10.3390/foods10020450
Chicago/Turabian StyleBahadi, Mazen, Ashraf A. Ismail, and Elsa Vasseur. 2021. "Fourier Transform Infrared Spectroscopy as a Tool to Study Milk Composition Changes in Dairy Cows Attributed to Housing Modifications to Improve Animal Welfare" Foods 10, no. 2: 450. https://doi.org/10.3390/foods10020450