Heavy Metals, Proximate Analysis and Brine Shrimp Lethality of Vernonia amygdalina and Ocimum gratissimum Growing in Crude Oil-Rich Delta State, Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Sample Preparation
2.2. Analytical Methods
2.2.1. Moisture
2.2.2. Crude Proteins
2.2.3. Crude Fat
2.2.4. Ash
2.2.5. Total Carbohydrates
2.2.6. Comparative Analysis of Experimental Data to Reference Material Data
2.2.7. Heavy Metals
2.3. Brine Shrimp Toxicity Assay
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Erukainure, O.L.; Chukwuma, C.I.; Sanni, O.; Matsabisa, M.G.; Islam, M.S. Histochemistry, phenolic content, antioxidant, and anti-diabetic activities of vernonia amygdalina leaf extract. J. Food Biochem. 2019, 43, e12737. [Google Scholar] [CrossRef]
- Brendler, T. African Herbal Pharmacopoeia; Association for African Medicinal Plants Standards: Port Louis, Mauritius, 2010. [Google Scholar]
- Priyanka, C.; Shivika, S.; Vikas, S. Ocimum gratissimum: A review on ethnomedicinal properties, phytochemical constituents, and pharmacological profile. In Biotechnological Approaches for Medicinal and Aromatic Plants; Springer: Singapore, 2018; pp. 251–270. [Google Scholar]
- Gurav, T.P.; Dholakia, B.B.; Giri, A.P. A glance at the chemodiversity of ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. Phytochem. Rev. 2021, 1–35. [Google Scholar] [CrossRef]
- Idris, S.; Iyaka, Y.; Ndamitso, M.; Paiko, Y. Nutritional composition of the leaves and stems of Ocimum gratissimum. J. Emerg. Trends Eng. Appl. Sci. 2011, 2, 801–805. [Google Scholar]
- Attah, A.F.; O’brien, M.; Koehbach, J.; Sonibare, M.A.; Moody, J.O.; Smith, T.J.; Gruber, C.W. Uterine contractility of plants used to facilitate childbirth in nigerian ethnomedicine. J. Ethnopharmacol. 2012, 143, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Bakar, N.A. Growth Performance and Phytochemicals of Vernonia Amygdalina delile as Affected by Light Intensity, Growing Media, Harvest Time and Storage Duration. Master’s Thesis, Universiti Putra Malaysia, Selangor, Malaysia, 2019. [Google Scholar]
- Fatoba, P.; Ogunkunle, C.O.; Folarin, O.O.; Oladele, F.A. Heavy metal pollution and ecological geochemistry of soil impacted by activities of oil industry in the Niger Delta, Nigeria. Environ. Earth Sci. 2016, 75, 297. [Google Scholar] [CrossRef]
- Egbe, R.; Thompson, D. Environmental challenges of oil spillage for families in oil producing communities of the Niger Delta region. JHER 2021, 13, 24–34. [Google Scholar]
- Ajah, F.O.; Osuji, J.O.; Anoliefo, G.O. Genotoxicity and environmental implications of crude oil-related pollutants in Nigeria. Asian J. Adv. Res. Rep. 2019, 4, 1–12. [Google Scholar] [CrossRef]
- Ametepey, S.T.; Cobbina, S.J.; Akpabey, F.J.; Duwiejuah, A.B.; Abuntori, Z.N. Health risk assessment and heavy metal contamination levels in vegetables from Tamale Metropolis, Ghana. Int. J. Food Contam. 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Ozabor, F.; Obaro, H.N. Health effects of poor waste management in Nigeria: A case study of Abraka in Delta State. Int. J. Environ. Waste Manag. 2016, 18, 195–204. [Google Scholar] [CrossRef]
- Mattila, P.; Salo-Väänänen, P.; Könkö, K.; Aro, H.; Jalava, T. Basic composition and amino acid contents of mushrooms cultivated in finland. J. Agric. Food Chem. 2002, 50, 6419–6422. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the AOAC; AOAC: Washington, DC, USA, 1990. [Google Scholar]
- Varol, M.; Gündüz, K.; Sünbül, M.R.; Aytop, H. Arsenic and trace metal concentrations in different vegetable types and assessment of health risks from their consumption. Environ. Res. 2021, 112252. [Google Scholar] [CrossRef]
- Meyer, B.; Ferrigni, N.; Putnam, J.; Jacobsen, L.; Nichols, D.J.; McLaughlin, J.L. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Ukwade, C.; Ebuehi, O.; Adisa, R. Phytochemical and Cytotoxic Screening of Selected Medicinal Plants (Byrsocarpus coccineus, Terminalia avicennioides and Anogeissus leiocarpus) Using Brine Shrimp (Artemia salina) Lethality Assay. Eur. J. Nutr. Food Saf. 2020, 60–71. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Curr. Protoc. Bioinform. 2011, 34, 1–14. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Malaria. Available online: https://www.who.int/news-room/fact-sheets/detail/malaria (accessed on 23 October 2021).
- Baker, J.M. The effects of oils on plants. Environ. Pollut. 1970, 1, 27–44. [Google Scholar]
- Ilyas, N.; Shoukat, U.; Saeed, M.; Akhtar, N.; Yasmin, H.; Khan, W.; Iqbal, S. Comparison of plant growth and remediation potential of pyrochar and thermal desorption for crude oil-contaminated soils. Sci. Rep. 2021, 11, 2817. [Google Scholar] [CrossRef]
- Ellis, R., Jr.; Adams, R.S., Jr. Contamination of soils by petroleum hydrocarbons. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1961; pp. 197–216. [Google Scholar]
- Al-Hilali, B.M.I.; Theyab, M.A.; Hasan, N.H.; AL-Samarraie, M.Q.; Sahi, S.H.; Abdullah, H.S. Crude oil affecting growth of plants (castor: Ricinus communis, and bean: Vicia faba) and some soil properties. Mater. Today Proc. 2021, 42, 3068–3071. [Google Scholar] [CrossRef]
- Usunomena, U.; Okolie, N. Phytochemical analysis of proximate composition of Vernonia amygdalina. Int. J. Sci. World 2016, 4, 11–14. [Google Scholar]
- Odukoya, J.; Lambert, R.; Sakrabani, R. Understanding the impacts of crude oil and its induced abiotic stresses on agrifood production: A review. Horticulturae 2019, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Igile, G.; Oleszek, W.; Burda, S.; Jurzysta, M. Nutritional assessment of Vernonia amygdalina leaves in growing mice. J. Agric. Food Chem. 1995, 43, 2162–2166. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Li, N.; Lou, Y.; Zhao, X. Effect of oil spill stress on fatty acid stable carbon isotope composition of Ulva pertusa. Sci. Total Environ. 2019, 649, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Usunobun, U.; Okolie, N.P. Phytochemical, trace and mineral composition of Vernonia amygdalina leaves. Int. J. Biol. Pharm. Res. 2015, 6, 393–399. [Google Scholar]
- Yeap, S.K.; Ho, W.Y.; Beh, B.K.; San Liang, W.; Ky, H.; Yousr, A.H.N.; Alitheen, N.B. Vernonia amygdalina, an ethnoveterinary and ethnomedical used green vegetable with multiple bio-activities. J. Med. Plants Res. 2010, 4, 2787–2812. [Google Scholar]
- Oladele, A.; Fadare, O. Heavy metals and proximate composition of forest leafy vegetables in oil producing area of Nigeria. Ethiop. J. Environ. Stud. Manag. 2015, 8, 451–463. [Google Scholar] [CrossRef] [Green Version]
- Qian, L.; Zhang, J.; Chen, X.; Qi, S.; Wu, P.; Wang, C.; Wang, C. Toxic effects of boscalid in adult zebrafish (danio rerio) on carbohydrate and lipid metabolism. Environ. Pollut. 2019, 247, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Attanayake, A.; Arawwawala, L.; Jayatilaka, K. Chemical standardisation of leaf extract of Coccinia grandis (L.) voigt (Cucurbitaceae) of Sri Lankan origin. J. Pharmacogn. Phytochem. 2016, 5, 119. [Google Scholar]
- Edeoga, H.; Omosun, G.; Uche, L. Chemical composition of Hyptis suaveolens and Ocimum gratissimum hybrids from Nigeria. Afr. J. Biotechnol. 2006, 5, 892–895. [Google Scholar]
- Kroes, R.; Renwick, A.; Cheeseman, M.; Kleiner, J.; Mangelsdorf, I.; Piersma, A.; Schilter, B.; Schlatter, J.; van Schothorst, F.; Vos, J.G.; et al. Structure-based thresholds of toxicological concern (TTC): Guidance for application to substances present at low levels in the diet. Food Chem. Toxicol. 2004, 42, 65–83. [Google Scholar] [CrossRef]
- Agbogidi, O. Trace metal profile of some fruits in kokori and abraka market, delta state, nigeria. Int. J. Sch. Res. Gate 2014, 2, 4. [Google Scholar]
- Attah, A.F.; Omobola, A.I.; Moody, J.O.; Sonibare, M.A.; Adebukola, O.M.; Onasanwo, S.A. Detection of cysteine-rich peptides in Tragia benthamii baker (euphorbiaceae) and in vivo anti-inflammatory effect in a chick model. Phys. Sci. Rev. 2021. [Google Scholar] [CrossRef]
- Ajayi, A.M.; Umukoro, S.; Ben-Azu, B.; Adzu, B.; Ademowo, O.G. Toxicity and protective effect of phenolic-enriched ethylacetate fraction of Ocimum gratissimum (linn.) leaf against acute inflammation and oxidative stress in rats. Drug Dev. Res. 2017, 78, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Ijeh, I.I.; Onyechi, O. Biochemical and histopathological changes in liver of albino rats fed diets incorporated with Vernonia amygdalina and Vernonia colorata leaves. Int. J. Med. Med Sci. 2010, 2, 285–289. [Google Scholar]
- Omede, A.; Suleiman, M.; Atanu, F.; Momoh, S.; Friday, E.; Sheneni, V.D.; Jegede, E.R. Evaluation of antioxidant and cytotoxic properties of Vernonia amygdalina. Int. J. Cell Sci. Mol. Biol. 2018, 4, 81–86. [Google Scholar]
No. | Sample | Zone | Coordinates | Place of Collection | Codes |
---|---|---|---|---|---|
1 | Vernonia amygdalina | Abraka | 5°45′ N 6°15′ E | Oria | VA-OAB |
2 | Ocimum gratissimum | OG-OAB | |||
3 | Vernonia amygdalina | Abraka | 5°47′ N 6°15′ E | Urhuovie | VA-UAB |
4 | Ocimum gratissimum | OG-UAB | |||
5 | Vernonia amygdalina | Abraka | 5°47′ N 6°15′ E | Ajalom | VA-AAB |
6 | Ocimum gratissimum | OG-AAB | |||
7 | Vernonia amygdalina | Kokori | 5°38′ N 6°04′ E | Egbo | VA-EGK |
8 | Ocimum gratissimum | OG-EGK | |||
9 | Vernonia amygdalina | Kokori | 5°38′ N 6°15′ E | Kokori | VA-K |
10 | Ocimum gratissimum | OG-K | |||
11 | Vernonia amygdalina | Kokori | 5°38′ N 6°22′ E | Samagidi | VA-SK |
12 | Ocimum gratissimum | OG-SK |
Metals | Certified Value (µg/g) | Measured Value a (µg/g) | FAO/WHO (µg/g) | US FDA (µg/g) |
---|---|---|---|---|
As | 6.05 ± 0.12 | 5.59 ± 0.19 | 10.00 | 10.00 |
Cd | 0.36 ± 0.01 | 0.35 ± 0.01 | 0.20 | 0.20 |
Cr | 0.75 ± 0.06 | 0.71 ± 0.04 | 1.30 | 1.30 |
Hg | 0.25 ± 0.02 | 0.21 ± 0.01 | 1.00 | 1.00 |
Pb | 2.00 ± 0.02 | 1.99 ± 0.01 | 10.00 | 10.00 |
Tl | 5.25 ± 0.11 | 5.30 ± 0.13 | 0.20 | 0.20 |
S/N | Samples’ ID | % Moisture Content | % Crude Protein | % Crude Fat | %Crude Fibre | % Ash | % CHO |
---|---|---|---|---|---|---|---|
1 | VA-OAB | 9.66 ± 0.02 a | 28.81 ± 0.05 a | 1.10 ± 0.02 a | 15.60 ± 0.03 a | 19.70 ± 0.52 a | 46.56 ± 0.10 a |
2 | OG-OAB | 7.51± 0.01 c | 14.89 ± 0.12 c | 1.68 ± 0.01 c | 28.00 ± 0.05 c | 11.21 ± 0.02 c | 64.72 ± 0.16 c |
3 | VA-UAB | 8.88 ± 0.03 d | 24.30 ± 0.12 d | 1.70 ± 0.02 c | 17.33 ± 0.03 d | 18.22 ± 0.02 d | 49.54 ± 0.09 b |
4 | 0G-UAB | 9.60 ± 0.02 d,e | 23.86 ± 0.11 c,e | 1.38 ± 0.01 j,i | 18.2 ± 0.05 j | 18.11 ± 0.02 j | 46.92 ± 0.11 j |
5 | VA-AAB | 9.90 ± 0.02 i | 23.71 ± 0.12 b | 1.39 ± 0.01 h,i | 18.21 ± 0.07 i | 18.13 ± 0.05 d | 46.88 ± 0.09 b,d |
6 | OG-AAB | 8.32 ± 0.02 f | 17.21 ± 0.12 f | 2.17 ± 0.02 f | 23.35 ± 0.04 f | 12.48 ± 0.01 f | 59.80 ± 0.15 f |
7 | VA-EGK | 9.50 ± 0.02 b | 23.64 ± 0.12 b | 0.93 ± 0.02 b | 19.10 ± 0.05 b | 20.24 ± 0.02 b | 46.72 ± 0.07 b |
8 | OG-EGK | 9.33 ± 0.03 h | 20.58 ± 0.12 h | 1.30 ± 0.01 h | 24.45 ± 0.07 h | 15.20 ± 0.01 h | 53.59 ± 0.14 h |
9 | VA-K | 9.51 ± 0.03 b | 23.71 ± 0.13 b | 0.73 ± 0.05 e | 22.91 ± 0.09 e | 18.56 ± 0.05 e | 46.92 ± 0.09 e |
10 | OG-K | 8.11 ± 0.01 g | 19.40 ± 0.12 g | 0.83 ± 0.05 b,e,l | 26.13 ± 0.05 g | 15.48 ± 0.01 g | 56.16 ± 0.15 g |
11 | VA-SK | 10.76 ± 0.04 l | 22.99 ± 0.12 l | 0.83 ± 0.05 b,e,l | 21.17 ± 0.017 l | 19.44 ± 0.05 l | 45.79 ± 0.15 l |
12 | OG-SK | 9.86 ± 0.04 b | 24.52 ± 0.12 d | 1.50 ± 0.01 k,j | 30.11 ± 0.02 k | 18.68 ± 0.02 k | 46.83 ± 0.16 b,d,i |
S/N | Sample | Mortality (%) | 95% CI | LC50 Value (µg) | #Inference | ||||
---|---|---|---|---|---|---|---|---|---|
Concentration (µg/mL) | |||||||||
1 | 10 | 100 | 500 | 1000 | |||||
1 | VA-OAB | 10.00 | 20.00 | 20.00 | 46.66 | 60.00 | 6.92 × 103 | 7.74 × 102 | Mildly toxic |
2 | OG-OAB | 3.33 | 10.00 | 16.55 | 30.00 | 36.66 | 9.46 × 105 | 6.09 × 103 | Non-toxic |
3 | VA-UAB | 6.66 | 3.33 | 20.00 | 30.00 | 46.66 | 3.64 × 105 | 3.88 × 103 | Non-toxic |
4 | OG-UAB | 3.33 | 6.66 | 3.33 | 36.66 | 33.30 | 2.50 × 105 | 4.66 × 103 | Non-toxic |
5 | VA-AAB | 0.00 | 0.00 | 3.33 | 100.00 | 100.00 | 0.00 | 6.14 × 103 | Non-toxic |
6 | OG-AAB | 10.00 | 10.00 | 13.33 | 30.00 | 40.00 | 2.42 × 107 | 1.45 × 104 | Non-toxic |
7 | VA-EGK | 20.00 | 40.00 | 3.33 | 43.33 | 93.30 | 3.42 × 102 | 1.12 × 102 | Toxic |
8 | OG-EGK | 23.33 | 26.36 | 30.00 | 36.66 | 60.00 | 2.16 × 107 | 1.67 × 103 | Non-toxic |
9 | VA-K | 40.00 | 50.00 | 60.00 | 66.66 | 76.66 | 46.00 | 9.23 | Highly toxic |
10 | OG-K | 26.66 | 30.00 | 33.33 | 40.00 | 56.66 | 1.56 × 106 | 1.21 × 103 | Non-toxic |
11 | VA-SK | 10.00 | 16.66 | 20.00 | 20.00 | 43.33 | 1.15 × 107 | 3.25 × 104 | Non-toxic |
12 | OG-SK | 13.33 | 20.00 | 80.00 | 96.66 | 100.00 | 38.00 | 1.03 × 103 | Non-toxic |
13 | K2Cr2O7 | 10.00 | 20.00 | 80.00 | 96.66 | 100.00 | 38.00 | 23.08 | Highly toxic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diyaolu, O.A.; Attah, A.F.; Oluwabusola, E.T.; Moody, J.O.; Jaspars, M.; Ebel, R. Heavy Metals, Proximate Analysis and Brine Shrimp Lethality of Vernonia amygdalina and Ocimum gratissimum Growing in Crude Oil-Rich Delta State, Nigeria. Foods 2021, 10, 2913. https://doi.org/10.3390/foods10122913
Diyaolu OA, Attah AF, Oluwabusola ET, Moody JO, Jaspars M, Ebel R. Heavy Metals, Proximate Analysis and Brine Shrimp Lethality of Vernonia amygdalina and Ocimum gratissimum Growing in Crude Oil-Rich Delta State, Nigeria. Foods. 2021; 10(12):2913. https://doi.org/10.3390/foods10122913
Chicago/Turabian StyleDiyaolu, Oluwatofunmilayo Arike, Alfred F. Attah, Emmanuel T. Oluwabusola, Jones Olanrewaju Moody, Marcel Jaspars, and Rainer Ebel. 2021. "Heavy Metals, Proximate Analysis and Brine Shrimp Lethality of Vernonia amygdalina and Ocimum gratissimum Growing in Crude Oil-Rich Delta State, Nigeria" Foods 10, no. 12: 2913. https://doi.org/10.3390/foods10122913
APA StyleDiyaolu, O. A., Attah, A. F., Oluwabusola, E. T., Moody, J. O., Jaspars, M., & Ebel, R. (2021). Heavy Metals, Proximate Analysis and Brine Shrimp Lethality of Vernonia amygdalina and Ocimum gratissimum Growing in Crude Oil-Rich Delta State, Nigeria. Foods, 10(12), 2913. https://doi.org/10.3390/foods10122913