Effect of Freeze-Thaw Cycles on Juice Properties, Volatile Compounds and Hot-Air Drying Kinetics of Blueberry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Freeze-Thaw Treatments
2.3. The pH and Total Soluble Solids (TSS)
2.4. Total Anthocyanins Content by the pH Differential Method
2.5. DPPH Free Radical Scavenging Test
2.6. Electronic Nose Test
2.7. Volatile Compounds Profile Analyzed by GC-MS
2.8. Hot-Air Drying Conditions and Modeling
2.8.1. Hot-Air Drying Conditions
2.8.2. Mathematical Models
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of FT Cycles on the Physicochemical Properties of Blueberry Juice
3.2. Effect of FT Cycles on the Aroma Profiles of Blueberry Juice
3.3. Effect of FT Cycles on Hot-Air Drying Kinetics of Blueberry Fruit
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strik, B.C. Perspective on the U.S. and global blueberry industry. J. Am. Pomol. Soc. 2007, 61, 144. [Google Scholar]
- Nindo, C.I.; Tang, J.; Powers, J.R.; Singh, P. Viscosity of blueberry and raspberry juices for processing applications. J. Food Eng. 2005, 69, 343–350. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, F.; Zhao, D.; Zhu, D.; Li, Y.; Liu, L. Effects of Immersion Freezing Methods on Freezing Characteristics of Blueberry. J. Chin. Inst. Food Sci. Technol. 2018, 18, 184–190. [Google Scholar]
- Munzenmayer, P.; Ulloa, J.; Pinto, M.; Ramirez, C.; Valencia, P.; Simpson, R.; Almonacid, S. Freeze-Drying of Blueberries, Effects of Carbon Dioxide (CO2) Laser Perforation as Skin Pretreatment to Improve Mass Transfer, Primary Drying Time, and Quality. Foods 2020, 9, 211. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Zhang, W.; Rajput, N.; Khan, M.A.; Li, C.; Zhou, G. Effect of multiple freeze–thaw cycles on the quality of chicken breast meat. Food Chem. 2015, 173, 808–814. [Google Scholar] [CrossRef]
- Hajji, W.; Bellagha, S.; Allaf, K. Effect of partial drying intensity, frozen storage and repeated freeze-thaw cycles on some quality attributes of dehydrofrozen quince fruit. J. Food Meas. Charact. 2020, 14, 353–365. [Google Scholar] [CrossRef]
- Zielinska, M.; Sadowski, P.; Błaszczak, W. Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.). LWT-Food Sci. Technol. 2015, 62, 555–563. [Google Scholar] [CrossRef]
- Nowak, K.W.; Zielinska, M.; Waszkieli, K.M. The effect of ultrasound and freezing/thawing treatment on the physical properties of blueberries. Food Sci. Biotechnol. 2018, 28, 741–749. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Yan, J.; Pan, S.; Yuan, F. Changes of the Aroma Composition and Other Quality Traits of Blueberry ‘Garden Blue’ during the Cold Storage and Subsequent Shelf Life. Foods 2020, 9, 1223. [Google Scholar] [CrossRef]
- Vollmannová, A.; Tóth, T.; Urminská, D.; Poláková, Z.; Timoracká, M.; Margitanová, E. Anthocyanins Content in Blueberries (Vaccinium corymbosum L.) in Relation to Freesing Duration. Czech J. Food Sci. 2009, 27, S204–S206. [Google Scholar] [CrossRef] [Green Version]
- González, E.M.; de Ancos, B.; Cano, M.P. Relation between bioactive compounds and free radical-scavenging capacity in berry fruits during frozen storage. J. Sci. Food Agric. 2003, 83, 722–726. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Kim, G.D.; Yang, H.S.; Joo, S.T. Effect of freeze–thaw cycles on physicochemical properties and color stability of beef semimembranosus muscle. Food Res. Int. 2011, 44, 3222–3228. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef]
- Chen, J.; Gu, J.; Zhang, R.; Mao, Y.; Tian, S. Freshness Evaluation of Three Kinds of Meats Based on the Electronic Nose. Sensors 2019, 19, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, H.J.; Zhang, Y.T.; Cao, M.N.; Liu, C.Z.; Mao, Y.Z.; Ren, G.R.; Wu, Z.Y.; Fang, S.; Tian, S.Y.; Wu, D. Fabrication of PGFE/CN-stabilized β-carotene-loaded peppermint oil nanoemulsions: Storage stability, rheological behavior and intelligent sensory analyses. LWT Food Sci. Technol. 2021, 138, 110688. [Google Scholar] [CrossRef]
- Xia, J.; Guo, Z.; Fang, S.; Gu, J.; Liang, X. Effect of Drying Methods on Volatile Compounds of Burdock (Arctium lappa L.) Root Tea as Revealed by Gas Chromatography Mass Spectrometry-Based Metabolomics. Foods 2021, 10, 868. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.S.; Fang, S.; Ruan, M.L. Influence of Blanching Pretreatment on the Drying Characteristics of Cherry Tomato and Mathematical Modeling. Int. J. Food Eng. 2015, 11, 265–274. [Google Scholar] [CrossRef]
- Doymaz, İ. Drying Kinetics and Rehydration Characteristics of Convective Hot-Air Dried White Button Mushroom Slices. J. Chem. 2014, 453175. [Google Scholar] [CrossRef] [Green Version]
- Mo, X.; Peng, X.; Liang, X.; Fang, S.; Xie, H.; Chen, J.; Meng, Y. Development of antifungal gelatin-based nanocomposite films functionalized with natamycin-loaded zein/casein nanoparticles. Food Hydrocoll. 2021, 113, 106506. [Google Scholar] [CrossRef]
- Vallespir, F.; Rodríguez, Ó.; Eim, V.S.; Rosselló, C.; Simal, S. Effects of freezing treatments before convective drying on quality parameters, Vegetables with different microstructures. J. Food Eng. 2019, 249, 15–24. [Google Scholar] [CrossRef]
- Celli, G.B.; Ghanem, A.; Brooks, S.L. Influence of freezing process and frozen storage on the quality of fruits and fruit products. Food Rev. Int. 2016, 32, 280–304. [Google Scholar] [CrossRef]
- Magro, R.P.; Stroschoen, S.R.; Da, S.; André, J.; Hickmann, F.S.; Oliveira, R.A.D. Characterization of blueberry fruits (vaccinium spp.) and derived products. Food Sci. Technol. 2014, 34, 773–779. [Google Scholar]
- Nadulski, R.; Grochowicz, J.Z.; Sobczak, P.; Kobus, Z.; Panasiewica, M. Application of Freezing and Thawing to Carrot (Daucus carota L.) Juice Extraction. Food Bioprocess Technol. 2015, 8, 218–227. [Google Scholar] [CrossRef]
- Ferreira, L.F.; Minuzzi, N.M.; Rodrigues, R.F.; Pauletto, R.; Rodrigues, E.; Emanuelli, T.; Bochi, V.C. Citric acid water-based solution for blueberry bagasse anthocyanins recovery, Optimization and comparisons with microwave-assisted extraction (MAE). LWT-Food Sci. Technol. 2020, 133, 110064. [Google Scholar] [CrossRef]
- Mu, C.; Yuan, Z.; Ouyang, X.; Sun, P.; Wang, B. Non-destructive detection of blueberry skin pigments and intrinsic fruit qualities based on deep learning. J. Sci. Food Agric. 2021, 101, 3165–3175. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Cheng, L.; Fang, S. Microencapsulation of Pigments by Directly Spray-Drying of Anthocyanins Extracts from Blueberry Pomace, Chemical Characterization and Extraction Modeling. Int. J. Food Eng. 2020, 16, 20190247. [Google Scholar] [CrossRef]
- Kong, C.H.Z.; Hamid, N.; Ma, Q.; Lu, J.; Wang, B.-G.; Sarojini, V. Antifreeze peptide pretreatment minimizes freeze-thaw damage to cherries, An in-depth investigation. LWT-Food Sci. Technol. 2017, 84, 441–448. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Hucl, P.; Rabalski, I. Compositional and antioxidant properties of anthocyanin-rich products prepared from purple wheat. Food Chem. 2018, 254, 13. [Google Scholar] [CrossRef]
- Suthanthangjai, W.; Davies, K.; Phillips, A.; Ansell, J.; Kilmartin, P. Biotransformation of blueberry anthocyanins to bioavailable phenolic compounds by Lactobacillus. Planta Med. 2013, 79, PJ46. [Google Scholar] [CrossRef]
- Adelina, N.M.; Wang, H.; Zhang, L.; Zhao, Y. Comparative analysis of volatile profiles in two grafted pine nuts by headspace-SPME/GC–MS and electronic nose as responses to different roasting conditions. Food Res. Int. 2021, 140, 110026. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.L.; Zhang, D.; An, Y.; Zhou, Q.; Qian, M.C. Characterization of Aroma-Active Compounds in Northern Highbush Blueberries “Bluecrop” (Vaccinium corymbosum “Bluecrop”) and “Elliott” (Vaccinium corymbosum “Elliott”) by Gas Chromatography–Olfactometry Dilution Analysis and Odor Activity Value. J. Agric. Food Chem. 2021, 69, 5691–5701. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Peng, B.; Yuan, F. Volatile composition of eight blueberry cultivars and their relationship with sensory attributes. Flavour. Frag. J. 2020, 35, 443–453. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Elsharif, S.A.; Banerjee, A.; Buettner, A. Structure-odor relationships of linalool, linalyl acetate and their corresponding oxygenated derivatives. Front. Chem. 2015, 3, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campestre, C.; Angelini, G.; Gasbarri, C.; Angerosa, F. The Compounds Responsible for the Sensory Profile in Monovarietal Virgin Olive Oils. Molecules 2017, 22, 1833. [Google Scholar] [CrossRef]
- Noguerol-Pato, R.; González-Álvarez, M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Evolution of the aromatic profile in Garnacha Tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained. Food Chem. 2013, 139, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Nichols, W.C.; Patterson, M.E. Ethanol accumulation and poststorage quality of ‘Delicious’ apples during short-term, low-O2, CA storage. HortScience 1987, 22, 89–92. [Google Scholar]
- Pesis, E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biol. Technol. 2005, 37, 1–19. [Google Scholar] [CrossRef]
- Wang, T.; Zhong, J.; Fang, S.; Chen, J.; Li, Y.; Meng, Y. Response surface optimization and kinetics model of osmotic dehydration blueberry in hot-air drying. Food Sci. Technol. 2016, 41, 52–57. [Google Scholar]
- Xu, X.; Zhang, L.; Feng, Y.; Zhou, C.; Yagoub, A.E.A.; Wahia, H.; Ma, H.; Zhang, J.; Sun, Y. Ultrasound freeze-thawing style pretreatment to improve the efficiency of the vacuum freeze-drying of okra (Abelmoschus esculentus (L.) Moench) and the quality characteristics of the dried product. Ultrason. Sonochem. 2021, 70, 105300. [Google Scholar] [CrossRef]
- Feng, Y.; Tan, C.P.; Zhou, C.; Yagoub, A.E.A.; Xu, B.; Sun, Y.; Ma, H.; Xu, X.; Yu, X. Effect of freeze-thaw cycles pretreatment on the vacuum freeze-drying process and physicochemical properties of the dried garlic slices. Food Chem. 2020, 324, 126883. [Google Scholar] [CrossRef] [PubMed]
- Jayatunga, G.K.; Amarasinghe, B.M.W.P.K. Drying kinetics, quality and moisture diffusivity of spouted bed dried Sri Lankan black pepper. J. Food Eng. 2019, 263, 38–45. [Google Scholar] [CrossRef]
Sample | Juice Yield (g/g) | pH | TSS (°Brix) |
---|---|---|---|
Fresh | 0.51 ± 0.00 d | 3.64 ± 0.02 c | 12.33 ± 0.33 a |
FT-1 | 0.57 ± 0.00 c | 3.70 ± 0.01 b | 12.33 ± 0.38 a |
FT-2 | 0.59 ± 0.00 b | 3.67 ± 0.03 bc | 12.73 ± 0.26 a |
FT-3 | 0.61 ± 0.00 a | 3.75 ± 0.03 a | 12.27 ± 0.19 a |
NAME | CAS | Relative Proportion (%) | |||
---|---|---|---|---|---|
Fresh | FT-1 | FT-2 | FT-3 | ||
ALCOHOLS | |||||
Ethanol | 64-17-5 | 0.81 ± 0.31 b | 5.48 ± 0.49 b | 38.61 ± 4.09 a | 43.46 ± 2.34 a |
(Z)-2-Hexen-1-ol | 111-27-3 | 0.33 ± 0.06 c | 0.96 ± 0.09 c | 2.33 ± 0.12 b | 6.56 ± 0.24 a |
Eucalyptol | 470-82-6 | 0.11 ± 0.08 a | 0.16 ± 0.02 a | 0.16 ± 0.09 a | 0.03 ± 0.04 a |
cis-Linalool oxide | 5989-33-3 | 0.98 ± 0.28 b | 1.64 ± 0.29 a | 1.33 ± 0.33 a,b | 1.70 ± 0.07 a |
Hotrienol | 20053-88-7 | 0.37 ± 0.02 a | 0.74 ± 0.29 a | 0.54 ± 0.11 a | 0.53 ± 0.15 a |
cis-Ocimenol | 7643-59-6 | 0.47 ± 0.20 b | 0.73 ± 0.03 a | 0.69 ± 0.23 a,b | 0.87 ± 0.07 a |
Ocimenol | 5986-38-9 | 0.26 ± 0.11 a | 0.38 ± 0.01 a | 0.40 ± 0.17 a | 0.38 ± 0.01 a |
trans-4-Thujanol | 17699-16-0 | 0.33 ± 0.10 a | 0.51 ± 0.15 a | 0.37 ± 0.04 a | 0.26 ± 0.03 b |
α-Terpineol | 98-55-5 | 17.56 ± 0.24 c | 36.70 ± 0.42 a | 23.90 ± 1.70 b | 20.67 ± 2.21 b |
p-Mentha-1(7),8-dien-2-ol | 35907-10-9 | 0.11 ± 0.09 a | 0.23 ± 0.02 a | 0.14 ± 0.04 a | 0.20 ± 0.08 a |
ALDEHYDES | |||||
Hexanal | 66-25-1 | 13.99 ± 1.55 a | 1.88 ± 0.25 b | 2.37 ± 0.22 b | 2.22 ± 0.36 b |
(Z)-3-Hexenal | 6789-80-6 | 0.86 ± 0.26 a | 0.15 ± 0.01 b | 0.08 ± 0.00 c | 0.07 ± 0.01 c |
(E)-2-Hexenal | 6728-26-3 | 48.47 ± 0.10 a | 15.43 ± 2.13 b | 8.84 ± 0.38 c | 6.97 ± 0.58 c |
Carvomenthenal | 29548-14-9 | 0.39 ± 0.08 a | 1.66 ± 1.55 a | 0.60 ± 0.24 a | 1.33 ± 0.76 a |
ESTERS | |||||
Ethyl Acetate | 141-78-6 | 0.37 ± 0.27 a | 0.44 ± 0.12 a | 0.23 ± 0.33 a | 0.54 ± 0.50 a |
Linalyl formate | 115-99-1 | 7.81 ± 2.70 b | 18.96 ± 4.11 a | 12.00 ± 3.04 a | 9.43 ± 0.83 b |
3-Cyclohexen-1-ol, 5-methylene-6-(1-methylethenyl)-, acetate | 54832-23-4 | 1.32 ± 0.32 ab | 2.68 ± 1.12 a | 1.25 ± 0.10 b | 1.48 ± 0.06 a |
HYDROCARBONS | |||||
o-Cymene | 527-84-4 | 0.35 ± 0.06 b | 0.52 ± 0.02 a | 0.22 ± 0.04 c | 0.10 ± 0.01 d |
p-Cymenene | 1195-32-0 | 0.83 ± 0.17 b | 1.47 ± 0.10 a | 0.96 ± 0.12 b | 0.60 ± 0.00 c |
TERPENES | |||||
γ-Ionone | 79-76-5 | 0.14 ± 0.01 b | 0.39 ± 0.03 a | 0.11 ± 0.05 bc | 0.07 ± 0.00 c |
β-Myrcene | 123-35-3 | 0.07 ± 0.03 b | 0.22 ± 0.03 a | 0.10 ± 0.01 b | 0.11 ± 0.09 ab |
α-Terpinene | 99-86-5 | 0.57 ± 0.13 bc | 1.19 ± 0.07 a | 0.71 ± 0.03 b | 0.41 ± 0.0 c |
D-Limonene | 5989-27-5 | 0.76 ± 0.03 b | 1.64 ± 0.29 a | 0.91 ± 0.13 b | 0.35 ± 0.00 c |
1S-α-Pinene | 7785-26-4 | 0.22 ± 0.01 b | 0.49 ± 0.19 a | 0.25 ± 0.03 b | 0.05 ± 0.01 c |
3-Carene | 13466-78-9 | 0.39 ± 0.00 b | 0.87 ± 0.29 a | 0.36 ± 0.21 bc | 0.18 ± 0.01 c |
γ-Terpinene | 99-85-4 | 0.15 ± 0.04 b | 0.32 ± 0.09 a | 0.14 ± 0.03 b | 0.03 ± 0.05 c |
Terpinolene | 586-62-9 | 1.30 ± 0.10 b | 3.23 ± 0.42 a | 1.75 ± 0.24 b | 0.79 ± 0.00 c |
L-β-Pinene | 18172-67-3 | 0.68 ± 0.07 a | 0.93 ± 0.33 a | 0.64 ± 0.07 a | 0.62 ± 0.17 a |
Samples | Effective Diffusivity, De (m2/s) | R2 |
---|---|---|
Fresh | 2.69 × 10−10 | 0.962 |
FT-1 | 4.43 × 10−10 | 0.973 |
FT-2 | 4.68 × 10−10 | 0.955 |
FT-3 | 4.59 × 10−10 | 0.964 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Liang, X.; Lu, Y.; Tian, S.; Chen, J.; Lin, F.; Fang, S. Effect of Freeze-Thaw Cycles on Juice Properties, Volatile Compounds and Hot-Air Drying Kinetics of Blueberry. Foods 2021, 10, 2362. https://doi.org/10.3390/foods10102362
Zhu L, Liang X, Lu Y, Tian S, Chen J, Lin F, Fang S. Effect of Freeze-Thaw Cycles on Juice Properties, Volatile Compounds and Hot-Air Drying Kinetics of Blueberry. Foods. 2021; 10(10):2362. https://doi.org/10.3390/foods10102362
Chicago/Turabian StyleZhu, Lin, Xianrui Liang, Yushuang Lu, Shiyi Tian, Jie Chen, Fubin Lin, and Sheng Fang. 2021. "Effect of Freeze-Thaw Cycles on Juice Properties, Volatile Compounds and Hot-Air Drying Kinetics of Blueberry" Foods 10, no. 10: 2362. https://doi.org/10.3390/foods10102362
APA StyleZhu, L., Liang, X., Lu, Y., Tian, S., Chen, J., Lin, F., & Fang, S. (2021). Effect of Freeze-Thaw Cycles on Juice Properties, Volatile Compounds and Hot-Air Drying Kinetics of Blueberry. Foods, 10(10), 2362. https://doi.org/10.3390/foods10102362