Use of Data Analysis Methods in Dental Publications: Is There Evidence of a Methodological Change?
Abstract
:1. Introduction
- How the authorship has changed over this specific time span?
- Has the characteristics of the study design changed?
- What is the information that authors give on statistical data analysis procedures?
- How widespread is statistical significance testing?
- Has the statistical intensity of published articles changed in the 2010s?
- What is the frequency of use of new complex computational approaches?
2. Materials and Methods
2.1. Article Set
2.2. Variables
2.3. Data Analysis
3. Results
3.1. Authors
3.2. Characteristics of the Study Design
3.3. Reporting of Data Analysis Methods
3.4. Use of Statistical Significance Testing
3.5. Statistical Intensity of Dental Articles
3.6. Statistical Procedures
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shintani, A. Primer of statistics in dental research: Part II. J. Prosthodont. Res. 2014, 58, 85–91. [Google Scholar] [CrossRef]
- Shetty, A.C.; Al Rasheed, N.M.; Albwardi, S.A. Dental professionals’ attitude towards biostatistics. J. Dent. Oral Hyg. 2015, 7, 113–118. [Google Scholar]
- Hannigan, A.; Hegarty, A.C.; McGrath, D. Attitudes towards statistics of graduate entry medical students: The role of prior learning experiences. BMC Med. Educ. 2014, 14, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batra, M.; Gupta, M.; Dany, S.S.; Rajput, P. Perception of Dental Professionals towards Biostatistics. Int. Sch. Res. Not. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Needleman, H.; Niederman, R. A bibliometric analysis of the pediatric dental literature in MEDLINE. Pediatr. Dent. 2001, 23, 415–418. [Google Scholar] [PubMed]
- Lesaffre, E.; Garcia Zattera, M.; Redmond, C.; Huber, H.; Needleman, I. Reported methodological quality of split-mouth studies. J. Clin. Periodontol. 2007, 34, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Spanou, A.; Koletsi, D.; Fleming, P.S.; Polychronopoulou, A.; Pandis, N. Statistical analysis in orthodontic journals: Are we ignoring confounding? Eur. J. Orthod. 2016, 38, 32–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vähänikkilä, H.; Nieminen, P.; Miettunen, J.; Larmas, M. Use of statistical methods in dental research: Comparison of four dental journals during a 10-year period. Acta Odontol. Scand. 2009, 67, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Vähänikkilä, H.; Miettunen, J.; Tjäderhane, L.; Larmas, M.; Nieminen, P. The use of time-to-event methods in dental research: A comparison based on five dental journals over a 11-year period. Community Dent. Oral Epidemiol. 2012, 40, 36–42. [Google Scholar] [CrossRef]
- Vähänikkilä, H.; Tjäderhane, L.; Nieminen, P. The statistical reporting quality of articles published in 2010 in five dental journals. Acta Odontol. Scand. 2015, 73, 76–80. [Google Scholar] [CrossRef]
- Vahanikkila, H.; Virtanen, J.I.; Nieminen, P. How do statistics in dental articles differ from those articles published in highly visible medical journals? Scientometrics 2016, 108, 1417–1424. [Google Scholar] [CrossRef]
- Choi, E.; Lyu, J.; Park, J.; Kim, H.-Y. Statistical methods used in articles published by the Journal of Periodontal and Implant Science. J. Periodontal Implant Sci. 2014, 44, 288–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.J.; Kim, D.-K.; Hong, S.J. Assessment of errors and misused statistics in dental research. Int. Dent. J. 2011, 61, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Layton, D.M.; Clarke, M. Quality of reporting of dental survival analyses. J. Oral Rehabil. 2014, 41, 928–940. [Google Scholar] [CrossRef]
- Nieminen, P.; Miettunen, J.; Koponen, H.; Isohanni, M. Statistical methodologies in psychopharmacology: A review. Hum. Psychopharmacol. Exp. 2006, 21, 195–203. [Google Scholar] [CrossRef]
- Motulsky, H. Intuitive Biostatistics, 3rd ed.; Oxford University Press: New York, NY, USA, 2014; ISBN 9780199946648. [Google Scholar]
- Campbell, M.J.; Machin, D. Medical Statistics, A Commonsense Approach, 3rd ed.; Wiley: Chichester, UK, 2003; ISBN 0471987212. [Google Scholar]
- Indrayan, A.; Malhotra, R.K. Medical Biostatistics, 4th ed.; CRC Press: Milton, GA, USA, 2018; ISBN 1498799531. [Google Scholar]
- Bland, M. An Introduction to Medical Statistics; Oxford University Press: New York, NY, USA, 2015; ISBN 0199589925. [Google Scholar]
- Litaker, M.S.; Gordan, V.V.; Rindal, D.B.; Fellows, J.L.; Gilbert, G.H.; National Dental PBRN Collaborative Group, T.N.D.P.C. Cluster Effects in a National Dental PBRN restorative study. J. Dent. Res. 2013, 92, 782–787. [Google Scholar] [CrossRef] [Green Version]
- Masood, M.; Masood, Y.; Newton, J.T. The clustering effects of surfaces within the tooth and teeth within individuals. J. Dent. Res. 2015, 94, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Diez, R. A glossary for multilevel analysis. J. Epidemiol. Community Health 2002, 56, 588–594. [Google Scholar] [CrossRef]
- Goldstein, H. Multilevel Statistical Models, 4th ed.; Wiley: Chichester, UK, 2011; ISBN 0470973390. [Google Scholar]
- Pretty, I.A.; Maupomé, G. A closer look at diagnosis in clinical dental practice: Part 6. Emerging technologies for detection and diagnosis of noncaries dental problems. J. Can. Dent. Assoc. 2004, 70, 621–626. [Google Scholar]
- Nieminen, P.; Kaur, J. Reporting of data analysis methods in psychiatric journals: Trends from 1996 to 2018. Int. J. Methods Psychiatr. Res. 2019, 28, e1784. [Google Scholar] [CrossRef] [Green Version]
- Veierod, M.B.; Lydersen, S.; Laake, P. Medical Statistics in Clinical and Epidemiological Research; Gyldendal Norsk Forlag: Oslo, Norway, 2012; ISBN 978-82-05-39959-4. [Google Scholar]
- Rashidi, H.H.; Tran, N.K.; Betts, E.V.; Howell, L.P.; Green, R. Artificial Intelligence and Machine Learning in Pathology: The Present Landscape of Supervised Methods. Acad. Pathol. 2019, 6, 2374289519873088. [Google Scholar] [CrossRef] [PubMed]
- Alabi, R.O.; Elmusrati, M.; Sawazaki-Calone, I.; Kowalski, L.P.; Haglund, C.; Coletta, R.D.; Mäkitie, A.A.; Salo, T.; Leivo, I.; Almangush, A. Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: A Web-based prognostic tool. Virchows Arch. 2019, 475, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertel, W. Introduction to Artificial Intelligence; Springer: London, UK, 2011; ISBN 0857292994. [Google Scholar]
- Caliebe, A.; Leverkus, F.; Antes, G.; Krawczak, M. Does big data require a methodological change in medical research? BMC Med. Res. Methodol. 2019, 19, 125. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, P.; Virtanen, J.I.; Vahanikkila, H. An instrument to assess the statistical intensity of medical research papers. PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Arnold, L.D.; Braganza, M.; Salih, R.; Colditz, G.A. Statistical Trends in the Journal of the American Medical Association and Implications for Training across the Continuum of Medical Education. PLoS ONE 2013, 8, e77301. [Google Scholar] [CrossRef]
- Baker, S.R.; Gibson, B.G. Social oral epidemi(olog)(2) y where next: One small step or one giant leap? Community Dent. Oral Epidemiol. 2014, 42, 481–494. [Google Scholar] [CrossRef] [Green Version]
- Nieminen, P.; Toljamo, T.; Vähänikkilä, H. Reporting data analysis methods in high-impact respiratory journals. ERJ Open Res. 2018, 4, 00140–02017. [Google Scholar] [CrossRef] [Green Version]
- Lang, T.A.; Altman, D.G. Statistical Analyses and Methods in the Published Literature: The SAMPL Guidelines. In Guidelines for Reporting Health Research: A User’s Manual; John Wiley & Sons, Ltd.: Oxford, UK, 2014; pp. 264–274. ISBN 9780470670446. [Google Scholar]
- ECMJE Recommendations for He Conduct, Reporting, Editing, and Publication of Scolarly Work in Medical Journals. Available online: http://www.icmje.org/recommendations/ (accessed on 1 January 2020).
- Nieminen, P.; Carpenter, J.; Rucker, G.; Schumacher, M. The relationship between quality of research and citation frequency. BMC Med. Res. Methodol. 2006, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Karadeniz, P.K.; Uzabaci, E.; Kuyuk, S.A.; Kesin, F.K.; Can, F.E.; Secil, M.; Ercan, I. Statistical errors in articles published in radiology journals. Diagn. Interv. Radiol. 2019, 25, 102–108. [Google Scholar] [CrossRef]
- Song, F.; Parekh-Bhurke, S.; Hooper, L.; Loke, Y.K.; Ryder, J.J.; Sutton, A.J.; Hing, C.B.; Harvey, I. Extent of publication bias in different categories of research cohorts: A meta-analysis of empirical studies. BMC Med. Res. Methodol. 2009, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Mlinarić, A.; Horvat, M.; Šupak Smolčić, V. Dealing with the positive publication bias: Why you should really publish your negative results. Biochem. Med. 2017, 27, 30201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasserstein, R.L.; Schirm, A.L.; Lazar, N.A. Moving to a World Beyond “p < 0.05”. Am. Stat. 2019, 73, 1–19. [Google Scholar]
- Strasak, A.M.; Zaman, Q.; Marinell, G.; Pfeiffer, K.P.; Ulmer, H. The Use of Statistics in Medical Research: A Comparison of “The New England Journal of Medicine” and “Nature Medicine”. Am. Stat. 2007, 61, 47–55. [Google Scholar] [CrossRef]
- Deo, R.C. Machine Learning in Medicine HHS Public Access. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeRouen, T.A. Promises and Pitfalls in the Use of “Big Data” for Clinical Research. J. Dent. Res. 2015, 94, 107S–109S. [Google Scholar] [CrossRef] [PubMed]
Procedure | Purpose |
---|---|
Statistical tables | To report categorical distributions, cross-tabulations, statistics measuring central tendencies, dispersion and correlation |
Statistical illustrations | To illustrate distributions, includes bar diagrams, histograms, 100% bars, graphs showing means (and standard deviations) in bars or line charts, scatter plots, charts showing time series data, survival curves, box plots, flow charts |
Comparison of frequencies | To analyse categorical response variables |
- Chi-square test | To compare a response variable between independent groups |
- McNemar’s test | To compare a response variable in before/after study designs |
Comparison of means | To analyse an outcome or response variable with normal distribution |
- two-sample t-test | To compare responses between two independent groups |
- analysis of variance | To compare responses between more than two groups |
- repeated measures t-test | To compare responses in before/after study designs |
- analysis of variance with repeated measures | To compare responses and analyse changes in repeated measurements |
Non-parametric tests | To analyse a quantitative response variable with skewed distribution or several outliers and extreme values |
- Mann-Whitney test | To compare responses between two independent groups |
- Kruskal-Wallis test | To compare responses between more than two groups |
- Wilcoxon signed-rank test | To compare responses in before/after study designs |
Quantifying association between two variables | Statistics for measuring correlations between two or more quantitative variables, includes Pearson product-moment correlation and non-parametric Spearman’s correlation, and cross-tabulation with chi-square test, risk ratio or odds ratio statistics for categorical variables |
Regression models | Explaining variation with several explanatory variables |
- Linear regression | To analyse variation of a continuous quantitative outcome with symmetric distribution |
- Negative binomial regression | To analyse variation of an outcome variable with counts |
- Logistic regression | To analyse variation of a categorical outcome |
- Cox proportional hazard regression | To analyse variation of a time-to event outcome variable |
2010 n (%) | 2017 n (%) | All n (%) | |
---|---|---|---|
Study design | |||
Observational studies | 77 (38.5) | 108 (54.0) | 185 (46.3) |
Experimental studies | 48 (23.5) | 23 (11.5) | 71 (17.7) |
Reliability | 18 (9.0) | 9 (4.5) | 27 (6.8) |
Laboratory works | 52 (26.0) | 53 (26.5) | 105 (26.2) |
Other | 5 (2.5) | 7 (3.5) | 12 (3.0) |
Sample size | |||
<30 | 50 (25.0) | 41 (20.5) | 91 (22.8) |
30–99 | 48(24.0) | 47 (23.5) | 95 (23.8) |
100–300 | 36 (18.0) | 30 (15.0) | 66 (16.5) |
>300 | 49 (24.5) | 66 (33.0) | 115 (28.7) |
Missing | 17 (8.5) | 16 (8.0) | 33 (8.3) |
Total number of articles | 200 | 200 | 400 |
Methods Group | 2010 n (%) | 2017 n (%) | All n (%) | p-Value of Chi-Square Test |
---|---|---|---|---|
Comparing groups | 135 (67.5) | 128 (64.0) | 263 (65.7) | 0.527 |
Repeated measurements | 34 (17.0) | 34 (17.0) | 68 (17.0) | >0.999 |
Correlation coefficient methods | 50 (25.0) | 35 (17.5) | 85 (21.3) | 0.087 |
Regression models | 63 (31.5) | 60 (30.0) | 123 (30.8) | 0.828 |
Other multivariable methods | 11 (5.5) | 8 (4.0) | 19 (4.8) | 0.639 |
Intra-cluster correlation methods | 21 (10.5) | 25 (12.5) | 46 (11.5) | 0.639 |
Measures of agreement | 44 (22.0) | 34 (17.0) | 78 (19.5) | 0.256 |
Meta-analysis | 0 | 10 (5.0) | 10 (2.5) | 0.002 |
Statistical genetics | 4 (2.0) | 10 (5.0) | 14 (3.5) | 0.172 |
GAM or spline functions | 2 (1.0) | 3 (1.5) | 5 (1.3) | >0.999 |
Bayesian methods | 0 | 3 (1.5) | 3 (0.8) | 0.248 |
ANN or machine learning | 0 | 0 | 0 | na |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieminen, P.; Vähänikkilä, H. Use of Data Analysis Methods in Dental Publications: Is There Evidence of a Methodological Change? Publications 2020, 8, 9. https://doi.org/10.3390/publications8010009
Nieminen P, Vähänikkilä H. Use of Data Analysis Methods in Dental Publications: Is There Evidence of a Methodological Change? Publications. 2020; 8(1):9. https://doi.org/10.3390/publications8010009
Chicago/Turabian StyleNieminen, Pentti, and Hannu Vähänikkilä. 2020. "Use of Data Analysis Methods in Dental Publications: Is There Evidence of a Methodological Change?" Publications 8, no. 1: 9. https://doi.org/10.3390/publications8010009