Associations among Primary Stability, Histomorphometric Findings, and Bone Density: A Prospective Randomized Study after Alveolar Ridge Preservation with a Collagen Cone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Treatment Protocol
2.3. Radiological Measurement of Bone Density
2.4. Primary Stability of the Implants
2.5. Association between the Primary Implant Stability and the Radiological Bone Density Measurement
2.6. Histomorphometric Evaluation
2.7. Randomization
- According to sex (2 groups: male and female)
- According to the region of the test tooth (3 groups: anterior, premolar, and molar)
2.8. Blinding
2.9. Statistical Analysis
3. Results
3.1. Study Population
3.2. Changes in the Radiologically Measured Bone Density after ARP
3.3. Association between Radiologically Measured Bone Density and Histomorphometric Results
3.4. Primary Stability of Implants
3.5. Changes in the Primary Stability after ARP
3.6. Association between the Primary Stability and the Radiologically Measured Bone Density
4. Discussion
4.1. Measurements of Bone Density
4.2. Primary Stability of Implants
Author Contributions
Funding
Conflicts of Interest
References
- Pauwels, R.; Jacobs, R.; Singer, S.R.; Mupparapu, M. CBCT-based bone quality assessment: Are Hounsfield units applicable? Dentomaxillofac. Radiol. 2015, 44, 20140238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, I.M.; Freitas, D.Q.; Ambrosano, G.M.; Boscolo, F.N.; Almeida, S.M. Bone density: Comparative evaluation of Hounsfield units in multislice and cone-beam computed tomography. Braz. Oral Res. 2012, 26, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, F.; de Menezes, L.M.; Enciso, R.; Weissheimer, A.; de Oliveira, R.B. Computed gray levels in multislice and cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.J.; de Souza, T.S.; Mota Junior, S.L.; Fraga, M.R.; Vitral, R.W. Bone mineral density in cone beam computed tomography: Only a few shades of gray. World J. Radiol. 2014, 6, 607–612. [Google Scholar] [CrossRef]
- Razi, T.; Niknami, M.; Alavi Ghazani, F. Relationship between Hounsfield Unit in CT Scan and Gray Scale in CBCT. J. Dent. Res. Dent. Clin. Dent. Prospects 2014, 8, 107–110. [Google Scholar]
- Valiyaparambil, J.V.; Yamany, I.; Ortiz, D.; Shafer, D.M.; Pendrys, D.; Freilich, M.; Mallya, S.M. Bone quality evaluation: Comparison of cone beam computed tomography and subjective surgical assessment. Int. J. Oral Maxillofac. Implants 2012, 27, 1271–1277. [Google Scholar]
- Hao, Y.; Zhao, W.; Wang, Y.; Yu, J.; Zou, D. Assessments of jaw bone density at implant sites using 3D cone-beam computed tomography. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1398–1403. [Google Scholar]
- Kim, D.G. Can dental cone beam computed tomography assess bone mineral density? J. Bone Metab. 2014, 21, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Martelli, S.J.R.; Damian, M.F.; Schinestsck, A.R.; Schuch, L.F.; Cascaes, A.M.; Vasconcelos, A.C.U. Imaging and histomorphometric evaluation of mandible and tibia of rats treated with bisphosphonates. Oral Maxillofac. Surg. 2019, 23, 473–479. [Google Scholar] [CrossRef]
- Kamigaki, Y.; Sato, I.; Yosue, T. Histological and radiographic study of human edentulous and dentulous maxilla. Anat. Sci. Int. 2017, 92, 470–482. [Google Scholar] [CrossRef]
- Chappuis, V.; Araujo, M.G.; Buser, D. Clinical relevance of dimensional bone and soft tissue alterations post-extraction in esthetic sites. Periodontology 2000 2017, 73, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Avila-Ortiz, G.; Elangovan, S.; Kramer, K.W.; Blanchette, D.; Dawson, D.V. Effect of alveolar ridge preservation after tooth extraction: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 950–958. [Google Scholar] [CrossRef]
- Corbella, S.; Taschieri, S.; Francetti, L.; Weinstein, R.; Del Fabbro, M. Histomorphometric Results After Postextraction Socket Healing with Different Biomaterials: A Systematic Review of the Literature and Meta-Analysis. Int. J. Oral Maxillofac. Implants 2017, 32, 1001–1017. [Google Scholar] [CrossRef]
- MacBeth, N.; Trullenque-Eriksson, A.; Donos, N.; Mardas, N. Hard and soft tissue changes following alveolar ridge preservation: A systematic review. Clin. Oral Implants Res. 2017, 28, 982–1004. [Google Scholar] [CrossRef]
- Schnutenhaus, S.; Goetz, W.; Dreyhaupt, J.; Rudolph, H.; Luthardt, R.G. Alveolar Ridge Preservation: A Histomorphometric Analysis. Open Dent. J. 2018, 12, 916–928. [Google Scholar] [CrossRef] [Green Version]
- Fiorellini, J.P.; Howell, T.H.; Cochran, D.; Malmquist, J.; Lilly, L.C.; Spagnoli, D.; Toljanic, J.; Jones, A.; Nevins, M. Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation. J. Periodontol. 2005, 76, 605–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loveless, T.P.; Kilinc, Y.; Altay, M.A.; Flores-Hidalgo, A.; Baur, D.A.; Quereshy, F.A. Hounsfield unit comparison of grafted versus non-grafted extraction sockets. J. Oral Sci. 2015, 57, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Monje, A.; Ravida, A.; Wang, H.L.; Helms, J.A.; Brunski, J.B. Relationship Between Primary/Mechanical and Secondary/Biological Implant Stability. Int. J. Oral Maxillofac. Implants 2019, 34, s7–s23. [Google Scholar] [CrossRef] [PubMed]
- Friberg, B.; Sennerby, L.; Linden, B.; Grondahl, K.; Lekholm, U. Stability measurements of one-stage Branemark implants during healing in mandibles. A clinical resonance frequency analysis study. Int. J. Oral Maxillofac. Surg. 1999, 28, 266–272. [Google Scholar] [CrossRef]
- Deli, G.; Petrone, V.; De Risi, V.; Tadic, D.; Zafiropoulos, G.G. Longitudinal implant stability measurements based on resonance frequency analysis after placement in healed or regenerated bone. J. Oral Implantol. 2014, 40, 438–447. [Google Scholar] [CrossRef]
- Sennerby, L.; Meredith, N. Implant stability measurements using resonance frequency analysis: Biological and biomechanical aspects and clinical implications. Periodontology 2000 2008, 47, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Salimov, F.; Tatli, U.; Kurkcu, M.; Akoglan, M.; Oztunc, H.; Kurtoglu, C. Evaluation of relationship between preoperative bone density values derived from cone beam computed tomography and implant stability parameters: A clinical study. Clin. Oral Implants Res. 2014, 25, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Arisan, V.; Karabuda, Z.C.; Avsever, H.; Ozdemir, T. Conventional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-assisted implant placement. Part I: Relationship of radiographic gray density and implant stability. Clin. Implant Dent. Relat. Res. 2013, 15, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Schnutenhaus, S.; Doering, I.; Dreyhaupt, J.; Rudolph, H.; Luthardt, R.G. Alveolar ridge preservation with a collagen material: A randomized controlled trial. J. Periodontal Implant Sci. 2018, 48, 236–250. [Google Scholar] [CrossRef]
- ISO10993-6. Biological Evaluation of Medical Devices Part 6: Tests for Local Effects after Implantation. 2016. Available online: https://www.iso.org/obp/ui/#iso:std:iso:10993:-6:ed-3:v1:en (accessed on 5 May 2020).
- Masood, F.; Nicholson, J.; Beckerley, J.; Liang, H.; Radfar, L. Comparison of Healing Following Tooth Extraction with Ridge Preservation Using Anorganic Bovine Bone Mineral Particulate and Self-Expanding Composite Graft. Compend. Contin. Educ. Dent. 2016, 37, e1–e4. [Google Scholar]
- Gallucci, G.O.; Hamilton, A.; Zhou, W.; Buser, D.; Chen, S. Implant placement and loading protocols in partially edentulous patients: A systematic review. Clin. Oral Implants Res. 2018, 29 (Suppl. 16), 106–134. [Google Scholar] [CrossRef] [Green Version]
- Artzi, Z.; Tal, H.; Dayan, D. Porous bovine bone mineral in healing of human extraction sockets. Part 1: Histomorphometric evaluations at 9 months. J. Periodontol. 2000, 71, 1015–1023. [Google Scholar] [CrossRef]
- Parsa, A.; Ibrahim, N.; Hassan, B.; van der Stelt, P.; Wismeijer, D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin. Oral Implants Res. 2015, 26, e1–e7. [Google Scholar] [CrossRef]
- Brosh, T.; Yekaterina, B.E.; Pilo, R.; Shpack, N.; Geron, S. Can cone beam CT predict the hardness of interradicular cortical bone? Head Face Med. 2014, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Van Dessel, J.; Nicolielo, L.F.; Huang, Y.; Coudyzer, W.; Salmon, B.; Lambrichts, I.; Jacobs, R. Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT. Eur. J. Oral Implantol. 2017, 10, 95–105. [Google Scholar]
- Razi, T.; Emamverdizadeh, P.; Nilavar, N.; Razi, S. Comparison of the Hounsfield unit in CT scan with the gray level in cone-beam CT. J. Dent. Res. Dent. Clin. Dent. Prospects 2019, 13, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Parsa, A.; Ibrahim, N.; Hassan, B.; Motroni, A.; van der Stelt, P.; Wismeijer, D. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment. Int. J. Oral Maxillofac. Implants 2012, 27, 1438–1442. [Google Scholar]
- Bastami, F.; Shahab, S.; Parsa, A.; Abbas, F.M.; Noori Kooshki, M.H.; Namdari, M.; Lisar, H.A.; Rafiei, T.; Fahimipour, F.; Salehi, M.; et al. Can gray values derived from CT and cone beam CT estimate new bone formation? An in vivo study. Oral Maxillofac. Surg. 2018, 22, 13–20. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, R.; Monje, F. The reliability of cone-beam computed tomography to assess bone density at dental implant recipient sites: A histomorphometric analysis by micro-CT. Clin. Oral Implants Res. 2013, 24, 871–879. [Google Scholar] [CrossRef]
- Lozano-Carrascal, N.; Salomo-Coll, O.; Gilabert-Cerda, M.; Farre-Pages, N.; Gargallo-Albiol, J.; Hernandez-Alfaro, F. Effect of implant macro-design on primary stability: A prospective clinical study. Med. Oral Patol. Oral Cir. Bucal 2016, 21, e214–e221. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Takechi, M.; Minami, M.; Shigeishi, H.; Hiraoka, M.; Nishimura, M.; Kamata, N. Influence of factors related to implant stability detected by wireless resonance frequency analysis device. J. Oral Rehabil. 2010, 37, 131–137. [Google Scholar] [CrossRef]
- Barikani, H.; Rashtak, S.; Akbari, S.; Fard, M.K.; Rokn, A. The effect of shape, length and diameter of implants on primary stability based on resonance frequency analysis. Dent. Res. J. 2014, 11, 87–91. [Google Scholar]
- Winter, W.; Mohrle, S.; Holst, S.; Karl, M. Parameters of implant stability measurements based on resonance frequency and damping capacity: A comparative finite element analysis. Int. J. Oral Maxillofac. Implants 2010, 25, 532–539. [Google Scholar]
- Chatvaratthana, K.; Thaworanunta, S.; Seriwatanachai, D.; Wongsirichat, N. Correlation between the thickness of the crestal and buccolingual cortical bone at varying depths and implant stability quotients. PLoS ONE 2017, 12, e0190293. [Google Scholar] [CrossRef] [Green Version]
- Acil, Y.; Sievers, J.; Gulses, A.; Ayna, M.; Wiltfang, J.; Terheyden, H. Correlation between resonance frequency, insertion torque and bone-implant contact in self-cutting threaded implants. Odontology 2017, 105, 347–353. [Google Scholar] [CrossRef]
- Manresa, C.; Bosch, M.; Echeverria, J.J. The comparison between implant stability quotient and bone-implant contact revisited: An experiment in Beagle dog. Clin. Oral Implants Res. 2014, 25, 1213–1221. [Google Scholar] [CrossRef]
- Makary, C.; Rebaudi, A.; Sammartino, G.; Naaman, N. Implant primary stability determined by resonance frequency analysis: Correlation with insertion torque, histologic bone volume, and torsional stability at 6 weeks. Implant Dent. 2012, 21, 474–480. [Google Scholar] [CrossRef]
- Javed, F.; Romanos, G.E. The role of primary stability for successful immediate loading of dental implants. A literature review. J. Dent. 2010, 38, 612–620. [Google Scholar] [CrossRef]
Region. | ARP Group | Control Group | Total |
---|---|---|---|
Anterior teeth | 17 | 17 | 34 |
Premolars | 19 | 21 | 40 |
Molars | 8 | 5 | 13 |
Parameter | Group | Valid Datasets | Mini-Mum | 25% Percentile | Median | 75% Percentile | Maxi-Mum | p-Value |
---|---|---|---|---|---|---|---|---|
Upper third (1/3) | ARP | 44 | −13.03 | −0.82 | −0.40 | 0.14 | 7.59 | 0.55 |
Control | 43 | −5.86 | −0.61 | −0.36 | 0.08 | 6.43 | ||
Middle (1/2) | ARP | 44 | −10.49 | −0.49 | −0.22 | 0.25 | 3.43 | 0.78 |
Control | 43 | −5.10 | −0.36 | −0.12 | 0.18 | 5.75 | ||
Lower third (2/3) | ARP | 44 | −6.82 | −0.40 | 0.14 | 0.33 | 1.27 | 0.70 |
Control | 43 | −2.92 | −0.13 | 0.15 | 0.37 | 5.85 |
Parameter | Group | Valid Datasets | Mini-Mum | 25% Percen-Tile | Median | 75% Percen-Tile | Maxi-Mum | WSR p-Value | WRS p-Value |
---|---|---|---|---|---|---|---|---|---|
Difference 1/3 to 1/2 | total | 87 | −2.55 | −0.42 | −0.13 | 0.00 | 4.16 | <0.01 | |
ARP | 44 | −2.55 | −0.54 | −0.21 | 0.01 | 4.16 | <0.01 | 0.42 | |
control | 43 | −1.62 | −0.35 | −0.12 | 0.00 | 0.69 | <0.01 | ||
Difference 1/3 to 2/3 | total | 87 | −6.21 | −0.93 | −0.34 | −0.02 | 8.29 | <0.01 | |
ARP | 44 | −6.21 | −0.94 | −0.39 | −0.02 | 8.29 | <0.01 | 0.76 | |
control | 43 | −3.86 | −0.86 | −0.31 | −0.06 | 1.65 | <0.01 | ||
Difference 1/2 to 2/3 | total | 87 | −3.67 | −0.45 | −0.19 | 0,02 | 4.13 | <0.01 | |
ARP | 44 | −3.67 | −0.56 | −0.16 | 0.02 | 4.13 | <0.01 | 0.68 | |
control | 43 | −2.24 | −0.43 | −0.28 | −0.03 | 0.96 | <0.01 |
Histomorphometric Parameters | Location of Bone Density Measurement | Correlation Coefficient | p-Value |
---|---|---|---|
Osteogenesis | 1/3 | −0.14 | 0.57 |
½ | −0.20 | 0.42 | |
2/3 | −0.26 | 0.30 | |
Remodelling | 1/3 | −0.18 | 0.46 |
½ | −0.26 | 0.30 | |
2/3 | −0.42 | 0.08 | |
Activity of osteoblasts | 1/3 | −0.27 | 0.27 |
½ | −0.27 | 0.29 | |
2/3 | −0.27 | 0.28 | |
Mineralization | 1/3 | 0.16 | 0.53 |
½ | 0.09 | 0.71 | |
2/3 | −0.08 | 0.74 | |
Bundle Bone | 1/3 | 0.08 | 0.76 |
½ | 0.03 | 0.90 | |
2/3 | −0.11 | 0.66 | |
Vascularization | 1/3 | −0.35 | 0.15 |
½ | −0.34 | 0.16 | |
2/3 | −0.33 | 0.17 | |
Inflammation yes/no | 1/3 | −0.44 | 0.06 |
½ | −0.40 | 0.09 | |
2/3 | −0.37 | 0.11 |
Region | ARP Group | Control Group | Total |
---|---|---|---|
Anterior teeth | 8 | 9 | 17 |
Premolars | 15 | 14 | 29 |
Molars | 6 | 3 | 9 |
Parameter | ARP Group | Control Group | ||||
---|---|---|---|---|---|---|
Diameter | ||||||
3.3 mm | 3.8 mm | 4.3 mm | 3.3 mm | 3.8 mm | 4.3 mm | |
Length | ||||||
7 mm | 1 | |||||
9 mm | 5 | 1 | 5 | |||
11 mm | 9 | 4 | 7 | 1 | ||
13 mm | 9 | 1 | 1 | 10 | 1 |
Parameter | Group | Valid Datasets | Mean | SD | Minimum | Maximum | p-Value |
---|---|---|---|---|---|---|---|
ISQ buccal | ARP | 29 | 63.00 | 8.75 | 35.00 | 73.00 | 0.69 |
Control | 26 | 64.12 | 7.88 | 41.00 | 74.00 | ||
ISQ mesial | ARP | 29 | 63.48 | 9.60 | 35.00 | 76.00 | 0.70 |
Control | 26 | 65.15 | 8.30 | 43.00 | 75.00 |
Parameter | Location of Bone Density Measurement | Spearman’s Rank Correlation Coefficient (ρ) | p-Value |
---|---|---|---|
ISQ buccal | 1/3 | −0.04 | 0.75 |
2/3 | 0.10 | 0.48 | |
3/3 | 0.22 | 0.11 | |
ISQ mesial | 1/3 | −0.03 | 0.81 |
2/3 | 0.10 | 0.48 | |
3/3 | 0.21 | 0.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schnutenhaus, S.; Götz, W.; Dreyhaupt, J.; Rudolph, H.; Luthardt, R.G.; Edelmann, C. Associations among Primary Stability, Histomorphometric Findings, and Bone Density: A Prospective Randomized Study after Alveolar Ridge Preservation with a Collagen Cone. Dent. J. 2020, 8, 112. https://doi.org/10.3390/dj8040112
Schnutenhaus S, Götz W, Dreyhaupt J, Rudolph H, Luthardt RG, Edelmann C. Associations among Primary Stability, Histomorphometric Findings, and Bone Density: A Prospective Randomized Study after Alveolar Ridge Preservation with a Collagen Cone. Dentistry Journal. 2020; 8(4):112. https://doi.org/10.3390/dj8040112
Chicago/Turabian StyleSchnutenhaus, Sigmar, Werner Götz, Jens Dreyhaupt, Heike Rudolph, Ralph G. Luthardt, and Cornelia Edelmann. 2020. "Associations among Primary Stability, Histomorphometric Findings, and Bone Density: A Prospective Randomized Study after Alveolar Ridge Preservation with a Collagen Cone" Dentistry Journal 8, no. 4: 112. https://doi.org/10.3390/dj8040112
APA StyleSchnutenhaus, S., Götz, W., Dreyhaupt, J., Rudolph, H., Luthardt, R. G., & Edelmann, C. (2020). Associations among Primary Stability, Histomorphometric Findings, and Bone Density: A Prospective Randomized Study after Alveolar Ridge Preservation with a Collagen Cone. Dentistry Journal, 8(4), 112. https://doi.org/10.3390/dj8040112