Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Colombo, M.; Poggio, C.; Lasagna, A.; Chiesa, M.; Scribante, A. Vickers micro-hardness of new restorative CAD/CAM dental materials: Evaluation and comparison after exposure to acidic drink. Materials (Basel) 2019, 12, 1246. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Nakamura, T.; Matsumura, H.; Ban, S.; Kobayashi, T. Current status of zirconia restoration. J. Prosthodont. Res. 2013, 57, 236–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Lawn, B.R. Novel Zirconia Materials in Dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Shahmiri, R.; Standard, O.C.; Hart, J.N.; Sorrell, C.C. Optical properties of zirconia ceramics for esthetic dental restorations: A systematic review. J. Prosthet. Dent. 2018, 119, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, S.H.; Han, J.S.; Yeo, I.L.; Yoon, H.I. Optical and Surface Properties of Monolithic Zirconia after Simulated Toothbrushing. Materials (Basel) 2019, 10, 1158. [Google Scholar] [CrossRef]
- Carrabba, M.; Keeling, A.J.; Aziz, A.; Vichi, A.; Fabian Fonzar, R.; Wood, D. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test. J. Dent. 2017, 60, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Ozcan, M.; Bernasconi, M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes Dent. 2015, 17, 7–26. [Google Scholar]
- Tzanakakis, E.G.; Tzoutzas, I.G.; Koidis, P.T. Is there a potential for durable adhesion to zirconia restorations? A systematic review. J. Prosthet. Dent. 2016, 115, 9–19. [Google Scholar] [CrossRef]
- Khan, A.A.; Al Kheraif, A.A.; Jamaluddin, S.; Elsharawy, M.; Divakar, D.D. Recent Trends in Surface Treatment Methods for Bonding Composite Cement to Zirconia: A Reveiw. J. Adhes Dent. 2017, 19, 7–19. [Google Scholar]
- Yang, L.; Xie, H.; Meng, H.; Wu, X.; Chen, Y.; Zhang, H. Effects of Luting Cements and Surface Conditioning on Composite Bonding Performance to Zirconia. J. Adhes Dent. 2018, 20, 549–558. [Google Scholar]
- Thammajaruk, P.; Buranadham, S.; Thanatvarakorn, O.; Ferrari, M.; Guazzato, M. Influence of glass-ceramic coating on composite zirconia bonding and its characterization. Dent. Mater. 2019, 35, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Inokoshi, M.; Takagaki, T.; Uo, M.; Minakuchi, S. Bonding Efficacy of 4-META/MMA-TBB Resin to Surface-treated Highly Translucent Dental Zirconia. J. Adhes Dent. 2018, 20, 453–459. [Google Scholar] [PubMed]
- Piest, C.; Wille, S.; Strunskus, T.; Polonskyi, O.; Kern, M. Efficacy of Plasma Treatment for Decontaminating Zirconia. J. Adhes Dent. 2018, 20, 289–297. [Google Scholar] [PubMed]
- Yang, L.; Chen, B.; Xie, H.; Chen, Y.; Chen, Y.; Chen, C. Durability of Resin Bonding to Zirconia Using Products Containing 10-Methacryloyloxydecyl Dihydrogen Phosphate. J. Adhes Dent. 2018, 20, 279–287. [Google Scholar] [PubMed]
- Moura, D.M.D.; do Nascimento Januario, A.B.; de Araujo, A.M.M.; de Oliveira Dal Piva, A.M.; Ozcan, M.; Bottino, M.A.; Souza, R.O.A. Effect of primer-cement systems with different functional phosphate monomers on the adhesion of zirconia to dentin. J. Mech. Behav. Biomed. Mater. 2018, 88, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araujo, A.M.M.; Januario, A.; Moura, D.M.D.; Tribst, J.P.M.; Ozcan, M.; Souza, R.O.A. Can the Application of Multi-Mode Adhesive be a Substitute to Silicatized/Silanized Y-TZP Ceramics? Braz. Dent. J. 2018, 29, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Grasel, R.; Santos, M.J.; Rego, H.C.; Rippe, M.P.; Valandro, L.F. Effect of Resin Luting Systems and Alumina Particle Air Abrasion on Bond Strength to Zirconia. Oper. Dent. 2018, 43, 282–290. [Google Scholar] [CrossRef]
- Dos Santos, A.F.; Sandes de Lucena, F.; Sanches Borges, A.F.; Lisboa-Filho, P.N.; Furuse, A.Y. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength. J. Prosthet. Dent. 2018, 120, 589–595. [Google Scholar] [CrossRef]
- Dal Piva, A.M.O.; Carvalho, R.L.A.; Lima, A.L.; Bottino, M.A.; Melo, R.M.; Valandro, L.F. Silica coating followed by heat-treatment of MDP-primer for resin bond stability to yttria-stabilized zirconia polycrystals. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 104–111. [Google Scholar] [CrossRef]
- Yoshida, K. Influence of cleaning methods on resin bonding to saliva-contaminated zirconia. J. Esthet. Restor. Dent. 2018, 30, 259–264. [Google Scholar] [CrossRef]
- Wille, S.; Lehmann, F.; Kern, M. Durability of Resin Bonding to Lithium Disilicate and Zirconia Ceramic using a Self-etching Primer. J. Adhes Dent. 2017, 19, 491–496. [Google Scholar]
- Xie, H.; Cheng, Y.; Chen, Y.; Qian, M.; Xia, Y.; Chen, C. Improvement in the Bonding of Y-TZP by Room-temperature Ultrasonic HF Etching. J. Adhes Dent. 2017, 19, 425–433. [Google Scholar]
- Pitta, J.; Branco, T.C.; Portugal, J. Effect of saliva contamination and artificial aging on different primer/cement systems bonded to zirconia. J. Prosthet. Dent. 2018, 119, 833–839. [Google Scholar] [CrossRef]
- Yagawa, S.; Komine, F.; Fushiki, R.; Kubochi, K.; Kimura, F.; Matsumura, H. Effect of priming agents on shear bond strengths of resin-based luting agents to a translucent zirconia material. J. Prosthodont. Res. 2018, 62, 204–209. [Google Scholar] [CrossRef]
- Noda, Y.; Nakajima, M.; Takahashi, M.; Mamanee, T.; Hosaka, K.; Takagaki, T.; Ikeda, M.; Foxton, R.M.; Tagami, J. The effect of five kinds of surface treatment agents on the bond strength to various ceramics with thermocycle aging. Dent. Mater. J. 2017, 36, 755–761. [Google Scholar] [CrossRef]
- Chuang, S.F.; Kang, L.L.; Liu, Y.C.; Lin, J.C.; Wang, C.C.; Chen, H.M.; Tai, C.K. Effects of silane- and MDP-based primers application orders on zirconia-resin adhesion-A ToF-SIMS study. Dent. Mater. 2017, 33, 923–933. [Google Scholar] [CrossRef]
- Elsayed, A.; Younes, F.; Lehmann, F.; Kern, M. Tensile Bond Strength of So-called Universal Primers and Universal Multimode Adhesives to Zirconia and Lithium Disilicate Ceramics. J. Adhes Dent. 2017, 19, 221–228. [Google Scholar]
- Galvao Ribeiro, B.R.; Galvao Rabelo Caldas, M.R.; Almeida, A.A.; Fonseca, R.G.; Adabo, G.L. Effect of surface treatments on repair with composite resin of a partially monoclinic phase transformed yttrium-stabilized tetragonal zirconia. J. Prosthet. Dent. 2018, 119, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Chen, Y.; Lu, Z.; Qian, M.; Xie, H.; Tay, F.R. The effects of water on degradation of the zirconia-resin bond. J. Dent. 2017, 64, 23–29. [Google Scholar] [CrossRef]
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Wilwerding, T.M.; Latta, M.A.; Miyazaki, M. Interfacial Characteristics and Bond Durability of Universal Adhesive to Various Substrates. Oper. Dent. 2017, 42, e59–e70. [Google Scholar] [CrossRef]
- Sakrana, A.A.; Ozcan, M. Effect of chemical etching solutions versus air abrasion on the adhesion of self-adhesive resin cement to IPS e.max ZirCAD with and without aging. Int. J. Esthet. Dent. 2017, 12, 72–85. [Google Scholar]
- Akazawa, N.; Koizumi, H.; Nogawa, H.; Nakayama, D.; Kodaira, A.; Matsumura, H. Effect of mechanochemical surface preparation on bonding to zirconia of a tri-n-butylborane initiated resin. Dent. Mater. J. 2017, 36, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Wandscher, V.F.; Fraga, S.; Pozzobon, J.L.; Soares, F.Z.; Foletto, E.L.; May, L.G.; Valandro, L.F. Tribochemical Glass Ceramic Coating as a New Approach for Resin Adhesion to Zirconia. J. Adhes Dent. 2016, 18, 435–440. [Google Scholar]
- Esteves-Oliveira, M.; Jansen, P.; Wehner, M.; Dohrn, A.; Bello-Silva, M.S.; Eduardo, C.P.; Meyer-Lueckel, H. Surface Characterization and Short-term Adhesion to Zirconia after Ultra-short Pulsed Laser Irradiation. J. Adhes Dent. 2016, 18, 483–492. [Google Scholar]
- Rona, N.; Yenisey, M.; Kucukturk, G.; Gurun, H.; Cogun, C.; Esen, Z. Effect of electrical discharge machining on dental Y-TZP ceramic-resin bonding. J. Prosthodont. Res. 2017, 6, 158–167. [Google Scholar] [CrossRef]
- Sawada, T.; Spintzyk, S.; Schille, C.; Zöldföldi, J.; Paterakis, A.; Schweizer, E.; Ingrid, S.; Frank, R.; Jurgen, G.G. Influence of Pre-Sintered Zirconia Surface Conditioning on Shear Bond Strength to Resin Cement. Materials (Basel) 2016, 9, 518. [Google Scholar] [CrossRef]
- Zhao, L.; Jian, Y.T.; Wang, X.D.; Zhao, K. Bond strength of primer/cement systems to zirconia subjected to artificial aging. J. Prosthet. Dent. 2016, 116, 790–796. [Google Scholar] [CrossRef]
- Iwasaki, T.; Komine, F.; Fushiki, R.; Kubochi, K.; Shinohara, M.; Matsumura, H. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material. Dent. Mater. J. 2016, 35, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Passia, N.; Mitsias, M.; Lehmann, F.; Kern, M. Bond strength of a new generation of universal bonding systems to zirconia ceramic. J. Mech. Behav. Biomed. Mater. 2016, 62, 268–274. [Google Scholar] [CrossRef]
- Lopes, G.C.; Spohr, A.M.; De Souza, G.M. Different Strategies to Bond Bis-GMA-based Resin Cement to Zirconia. J. Adhes Dent. 2016, 18, 239–246. [Google Scholar]
- Salem, R.; Naggar, G.E.; Aboushelib, M.; Selim, D. Microtensile Bond Strength of Resin-bonded Hightranslucency Zirconia Using Different Surface Treatments. J. Adhes Dent. 2016, 18, 191–196. [Google Scholar]
- Hallmann, L.; Ulmer, P.; Lehmann, F.; Wille, S.; Polonskyi, O.; Johannes, M.; Köbel, S.; Trottenberg, T.; Bornholdt, S.; Haase, F.; et al. Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin. Dent. Mater. 2016, 32, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Angkasith, P.; Burgess, J.O.; Bottino, M.C.; Lawson, N.C. Cleaning Methods for Zirconia Following Salivary Contamination. J. Prosthodont 2016, 25, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Bomicke, W.; Schurz, A.; Krisam, J.; Rammelsberg, P.; Rues, S. Durability of Resin-Zirconia Bonds Produced Using Methods Available in Dental Practice. J. Adhes Dent. 2018, 18, 17–27. [Google Scholar]
- Xie, H.; Li, Q.; Zhang, F.; Lu, Y.; Tay, F.R.; Qian, M.; Chen, C. Comparison of resin bonding improvements to zirconia between one-bottle universal adhesives and tribochemical silica coating, which is better? Dent. Mater. 2016, 32, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Cheung, G.J.; Botelho, M.G. Zirconia Surface Treatments for Resin Bonding. J. Adhes Dent. 2015, 17, 551–558. [Google Scholar]
- Ahn, J.S.; Yi, Y.A.; Lee, Y.; Seo, D.G. Shear Bond Strength of MDP-Containing Self-Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer-Containing Primers. Biomed. Res. Int. 2015. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.; Campos, F.; Bergoli, C.D.; Bottino, M.A.; Ozcan, M.; Souza, R. Effect of Adhesive Cementation Strategies on the Bonding of Y-TZP to Human Dentin. Oper. Dent. 2016, 41, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Yenisey, M.; Dede, D.O.; Rona, N. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics. J. Prosthodont. Res. 2016, 60, 36–46. [Google Scholar] [CrossRef]
- Pereira Lde, L.; Campos, F.; Dal Piva, A.M.; Gondim, L.D.; Souza, R.O.; Ozcan, M. Can application of universal primers alone be a substitute for airborne-particle abrasion to improve adhesion of resin cement to zirconia? J. Adhes Dent. 2015, 17, 169–174. [Google Scholar]
- Kim, D.H.; Son, J.S.; Jeong, S.H.; Kim, Y.K.; Kim, K.H.; Kwon, T.Y. Efficacy of various cleaning solutions on saliva-contaminated zirconia for improved resin bonding. J. Adv. Prosthodont. 2015, 7, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Tsoi, J.K.; Matinlinna, J.P.; Wong, H.M. Effects of some chemical surface modifications on resin zirconia adhesion. J. Mech. Behav. Biomed. Mater. 2015, 46, 23–30. [Google Scholar] [CrossRef]
- Ishii, R.; Tsujimoto, A.; Takamizawa, T.; Tsubota, K.; Suzuki, T.; Shimamura, Y.; Miyazaki, M. Influence of surface treatment of contaminated zirconia on surface free energy and resin cement bonding. Dent. Mater. J. 2015, 34, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Chen, C.; Lv, P. Selective infiltrated etching to surface treat zirconia using a modified glass agent. Adhes Dent. 2014, 16, 553–557. [Google Scholar]
- Oliveira-Ogliari, A.; Collares, F.M.; Feitosa, V.P.; Sauro, S.; Ogliari, F.A.; Moraes, R.R. Methacrylate bonding to zirconia by in situ silica nanoparticle surface deposition. Dent. Mater. 2015, 31, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Lung, C.Y.; Liu, D.; Matinlinna, J.P. Silica coating of zirconia by silicon nitride hydrolysis on adhesion promotion of resin to zirconia. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 46, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Sciasci, P.; Abi-Rached, F.O.; Adabo, G.L.; Baldissara, P.; Fonseca, R.G. Effect of surface treatments on the shear bond strength of luting cements to Y-TZP ceramic. J. Prosthet. Dent. 2015, 113, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Qeblawi, D.M.; Campillo-Funollet, M.; Munoz, C.A. In vitro shear bond strength of two self-adhesive resin cements to zirconia. J Prosthet. Dent. 2015, 113, 122–127. [Google Scholar] [CrossRef]
- Feitosa, S.A.; Patel, D.; Borges, A.L.; Alshehri, E.Z.; Bottino, M.A.; Ozcan, M.; Valandro, L.F.; Bottino, M.C. Effect of cleansing methods on saliva-contaminated zirconia--an evaluation of resin bond durability. Oper. Dent. 2015, 40, 163–171. [Google Scholar] [CrossRef]
- Yi, Y.A.; Ahn, J.S.; Park, Y.J.; Jun, S.H.; Lee, I.B.; Cho, B.H.; Son, H.H.; Seo, D.G. The effect of sandblasting and different primers on shear bond strength between yttria-tetragonal zirconia polycrystal ceramic and a self-adhesive resin cement. Oper. Dent. 2015, 40, 63–71. [Google Scholar] [CrossRef]
- Kim, J.H.; Chae, S.Y.; Lee, Y.; Han, G.J.; Cho, B.H. Effects of multipurpose, universal adhesives on resin bonding to zirconia ceramic. Oper. Dent. 2015, 40, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Klosa, K.; Warnecke, H.; Kern, M. Effectiveness of protecting a zirconia bonding surface against contaminations using a newly developed protective lacquer. Dent. Mater. 2014, 30, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Druck, C.C.; Pozzobon, J.L.; Callegari, G.L.; Dorneles, L.S.; Valandro, L.F. Adhesion to Y-TZP ceramic: Study of silica nanofilm coating on the surface of Y-TZP. J. Biomed. Mater. Res. B Appl. Biomater. 2015, 103, 143–150. [Google Scholar] [CrossRef] [PubMed]
- De Souza, G.; Hennig, D.; Aggarwal, A.; Tam, L.E. The use of MDP-based materials for bonding to zirconia. J. Prosthet. Dent. 2014, 112, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xie, H.; Song, X.; Burrow, M.F.; Chen, G.; Zhang, F. Evaluation of a commercial primer for bonding of zirconia to two different resin composite cements. J. Adhes Dent. 2014, 16, 169–176. [Google Scholar] [PubMed]
- Shin, Y.J.; Shin, Y.; Yi, Y.A.; Kim, J.; Lee, I.B.; Cho, B.H.; Son, H.H.; Seo, D.G. Evaluation of the shear bond strength of resin cement to Y-TZP ceramic after different surface treatments. Scanning 2014, 36, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.M.; Miragaya, L.; Sabrosa, C.E.; Maia, L.C. Stability of the bond between two resin cements and an yttria-stabilized zirconia ceramic after six months of aging in water. J. Prosthet. Dent. 2014, 112, 568–575. [Google Scholar] [CrossRef]
- Oba, Y.; Koizumi, H.; Nakayama, D.; Ishii, T.; Akazawa, N.; Matsumura, H. Effect of silane and phosphate primers on the adhesive performance of a tri-n-butylborane initiated luting agent bonded to zirconia. Dent. Mater. J. 2014, 33, 226–232. [Google Scholar] [CrossRef]
- Liu, D.; Pow, E.H.N.; Tsoi, J.K.; Matinlinna, J.P. Evaluation of four surface coating treatments for resin to zirconia bonding. J. Mech. Behav. Biomed. Mater. 2014, 32, 300–309. [Google Scholar] [CrossRef]
- Erdem, A.; Akar, G.C.; Erdem, A.; Kose, T. Effects of different surface treatments on bond strength between resin cements and zirconia ceramics. Oper. Dent. 2014, 39, E118–E127. [Google Scholar] [CrossRef]
- Xie, H.; Chen, C.; Dai, W.; Chen, G.; Zhang, F. In vitro short-term bonding performance of zirconia treated with hot acid etching and primer conditioning etching and primer conditioning. Dent. Mater. J. 2013, 32, 928–938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Song, X.; Chen, Y.; Zhu, Q.; Zhang, W. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement. Photomed. Laser Surg. 2013, 31, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Turker, S.B.; Ozcan, M.; Mandali, G.; Damla, I.; Bugurman, B.; Valandro, L.F. Bond strength and stability of 3 luting systems on a zirconia-dentin complex. Gen. Dent. 2013, 61, e10–e13. [Google Scholar] [PubMed]
- Cheung, G.C.; Botelho, M.G.; Matinlinna, J.P. Effect of surface treatments of zirconia ceramics on the bond strength to resin cement. J. Adhes Dent. 2014, 16, 49–56. [Google Scholar] [PubMed]
- Keul, C.; Liebermann, A.; Roos, M.; Uhrenbacher, J.; Stawarczyk, B.; Ing, D. The effect of ceramic primer on shear bond strength of resin composite cement to zirconia: A function of water storage and thermal cycling. J. Am. Dent. Assoc. 2013, 144, 1261–1271. [Google Scholar] [CrossRef]
- Sarmento, H.R.; Campos, F.; Sousa, R.S.; Machado, J.P.; Souza, R.O.; Bottino, M.A.; Ozcan, M. Influence of air-particle deposition protocols on the surface topography and adhesion of resin cement to zirconia. Acta Odontol. Scand. 2014, 72, 346–453. [Google Scholar] [CrossRef]
- Heikkinen, T.T.; Matinlinna, J.P.; Vallittu, P.K.; Lassila, L.V. Long term water storage deteriorates bonding of composite resin to alumina and zirconia short communication. Open. Dent. J. 2013, 7, 123–125. [Google Scholar] [CrossRef]
- Bottino, M.A.; Bergoli, C.; Lima, E.G.; Marocho, S.M.; Souza, R.O.; Valandro, L.F. Bonding of Y-TZP to dentin: Effects of Y-TZP surface conditioning, resin cement type, and aging. Oper. Dent. 2014, 39, 291–300. [Google Scholar] [CrossRef]
- Gomes, A.L.; Ramos, J.C.; Santos-del Riego, S.; Montero, J.; Albaladejo, A. Thermocycling effect on microshear bond strength to zirconia ceramic using Er:YAG and tribochemical silica coating as surface conditioning. Lasers Med. Sci. 2015, 30, 787–795. [Google Scholar] [CrossRef]
- Liu, L.; Liu, S.; Song, X.; Zhu, Q.; Zhang, W. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics. Lasers Med. Sci. 2015, 30, 627–634. [Google Scholar] [CrossRef]
- Seto, K.B.; McLaren, E.A.; Caputo, A.A.; White, S.N. Fatigue behavior of the resinous cement to zirconia bond. Oper Dent. 2013, 22, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Baldissara, P.; Querzè, M.; Monaco, C.; Scotti, R.; Fonseca, R.G. Efficacy of surface treatments on the bond strength of resin cements to two brands of zirconia ceramic. J. Adhes Dent. 2013, 15, 259–267. [Google Scholar] [PubMed]
- Vanderlei, A.; Bottino, M.A.; Valandro, L.F. Evaluation of resin bond strength to yttria-stabilized tetragonal zirconia and framework marginal fit: Comparison of different surface conditionings. Oper. Dent. 2014, 39, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Niu, L.N.; Wang, Y.J.; Jiao, K.; Liu, Y.; Zhou, W.; Shen, L.J.; Fang, M.; Li, M.; Zhang, X.; et al. Bonding of resin cement to zirconia with high pressure primer coating. PLoS ONE 2014, 9, e101174. [Google Scholar] [CrossRef] [PubMed]
- Saker, S.; Ibrahim, F.; Ozcan, M. Effect of different surface treatments on adhesion of In-Ceram Zirconia to enamel and dentin substrates. J. Adhes Dent. 2013, 15, 369–376. [Google Scholar] [PubMed]
- Queiroz, J.R.; Massi, M.; Nogueira, L., Jr.; Sobrinho, A.S.; Bottino, M.A.; Ozcan, M. Silica-based nano-coating on zirconia surfaces using reactive magnetron sputtering: Effect on chemical adhesion of resin cements. J. Adhes Dent. 2013, 15, 151–159. [Google Scholar] [PubMed]
- De Sa Barbosa, W.F.; Aguiar, T.R.; Francescantonio, M.D.; Cavalcanti, A.N.; de Oliveira, M.T.; Giannini, M. Effect of water storage on bond strength of self-adhesive resin cements to zirconium oxide ceramic. J. Adhes Dent. 2013, 15, 145–150. [Google Scholar] [PubMed]
- Lung, C.Y.; Kukk, E.; Matinlinna, J.P. The effect of silica-coating by sol-gel process on resin-zirconia bonding. Dent. Mater. J. 2013, 32, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Subasi, M.G.; Inan, O. Influence of surface treatments and resin cement selection on bonding to zirconia. Lasers Med. Sci. 2014, 29, 19–27. [Google Scholar] [CrossRef]
- Kern, M.; Passia, N.; Sasse, M.; Yazigi, C. Ten-year outcome of zirconia ceramic cantilever resin-bonded fixed dental prostheses and the influence of the reasons for missing incisors. J. Dent. 2017, 65, 51–55. [Google Scholar] [CrossRef]
- Rathmann, F.; Bomicke, W.; Rammelsberg, P.; Ohlmann, B. Veneered zirconia inlay-retained fixed dental prostheses: 10-Year results from a prospective clinical study. J. Dent. 2017, 64, 68–72. [Google Scholar] [CrossRef]
- Chaar, M.S.; Kern, M. Five-year clinical outcome of posterior zirconia ceramic inlay-retained FDPs with a modified design. J. Dent. 2015, 43, 1411–1415. [Google Scholar] [CrossRef]
- Sasse, M.; Kern, M. Survival of anterior cantilevered all-ceramic resin-bonded fixed dental prostheses made from zirconia ceramic. J. Dent. 2014, 42, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Sasse, M.; Kern, M. CAD/CAM single retainer zirconia-ceramic resin-bonded fixed dental prostheses: Clinical outcome after 5 years. Int J. Comput. Dent. 2013, 16, 109–118. [Google Scholar] [PubMed]
- Blatz, M.B.; Vonderheide, M.; Conejo, J. The Effect of Resin Bonding on Long-Term Success of High-Strength Ceramics. J. Dent. Res. 2018, 97, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Luthra, R.; Kaur, P. An insight into current concepts and techniques in resin bonding to high strength ceramics. Aust. Dent. J. 2016, 61, 163–173. [Google Scholar] [CrossRef]
- Inokoshi, M.; De Munck, J.; Minakuchi, S.; Van Meerbeek, B. Meta-analysis of bonding effectiveness to zirconia ceramics. J. Dent. Res. 2014, 93, 329–334. [Google Scholar] [CrossRef]
- Otani, A.; Amaral, M.; May, L.G.; Cesar, P.F.; Valandro, L.F. A critical evaluation of bond strength tests for the assessment of bonding to Y-TZP. Dent. Mater. 2015, 31, 648–656. [Google Scholar] [CrossRef]
- Yun, J.Y.; Ha, S.R.; Lee, J.B.; Kim, S.H. Effect of sandblasting and various metal primers on the shear bond strength of resin cement to Y-TZP ceramic. Dent. Mater. 2010, 26, 650–658. [Google Scholar] [CrossRef]
- Zhang, Y.; Lawn, B.R.; Rekow, E.D.; Thompson, V.P. Effect of sandblasting on the long-term performance of dental ceramics. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71, 381–386. [Google Scholar] [CrossRef]
- Souza, R.O.; Valandro, L.F.; Melo, R.M.; Machado, J.P.; Bottino, M.A.; Ozcan, M. Air-particle abrasion on zirconia ceramic using different protocols: Effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. J. Mech. Behav. Biomed. Mater. 2013, 26, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M. Air Abrasion of Zirconia Resin-bonded Fixed Dental Prostheses Prior to Adhesive Cementation: Why and How? J. Adhes Dent. 2013, 394. [Google Scholar]
- Thammajaruk, P.; Inokoshi, M.; Chong, S.; Guazzato, M. Bonding of composite cements to zirconia: A systematic review and meta-analysis of in vitro studies. J. Mech. Behav. Biomed. Mater. 2018, 80, 258–268. [Google Scholar] [CrossRef] [PubMed]
Database | PubMed, Medline; Cochrane Library. |
---|---|
Publication date | 1 January 2013–31 December 2018 |
Keywords | Zirconia, 3Y-TZP, Adhesion, Adhesive cementation, Bonding, Resin, Composite resin, Composite material, Dentin, Enamel. |
Language | English |
Type of paper | In vitro studies, clinical articles, systematic reviews. |
Inclusion criteria | Studies evaluating adhesion between zirconia and composite. |
Exclusion criteria | In vitro studies: absence of bonding strength evaluation, insufficient aging (TC <5000 or storage <one month), complete crown specimens; Clinical articles: Case Report, Follow up < 5 years, studies on complete crowns. |
Journal category | All |
Search | Query | Items Found |
---|---|---|
1 | Zirconia OR 3Y-TZP | 7020 |
2 | Adhesion OR adhesive cementation OR bonding | 372,909 |
3 | Resin OR composite resin OR composite material | 88,815 |
4 | 1 AND 2 AND 3 | 652 |
5 | Filters: Publication date from 2013/01/01 to 2018/12/31 | 370 |
Final string | ||
(((“zirconium oxide”[Supplementary Concept] OR “zirconium oxide”[All Fields] OR “zirconia”[All Fields]) OR 3Y-TZP[All Fields]) AND (((“J Adhes”[Journal] OR “adhesion”[All Fields]) OR ((“adhesives”[Pharmacological Action] OR “adhesives”[MeSH Terms] OR “adhesives”[All Fields] OR “adhesive”[All Fields]) AND (“cementation”[MeSH Terms] OR “cementation”[All Fields]))) OR (“object attachment”[MeSH Terms] OR (“object”[All Fields] AND “attachment”[All Fields]) OR “object attachment”[All Fields] OR “bonding”[All Fields]))) AND (((“resins, plant”[MeSH Terms] OR (“resins”[All Fields] AND “plant”[All Fields]) OR “plant resins”[All Fields] OR “resin”[All Fields]) OR (“composite resins”[MeSH Terms] OR (“composite”[All Fields] AND “resins”[All Fields]) OR “composite resins”[All Fields] OR (“composite”[All Fields] AND “resin”[All Fields]) OR “composite resin”[All Fields])) OR (composite[All Fields] AND material[All Fields])) AND (“2013/01/01”[PDAT]: “2018/12/31”[PDAT]) |
Search | Query | Items Found |
---|---|---|
1 | Zirconia OR 3Y-TZP | 7020 |
2 | Adhesion OR adhesive cementation OR bonding | 372,909 |
3 | Dentin OR enamel | 57,574 |
4 | 1 AND 2 AND 3 | 158 |
5 | Filters: Publication date from 1 January, 2013 to 31 December, 2018 | 77 |
Final string | ||
(((“zirconium oxide”[Supplementary Concept] OR “zirconium oxide”[All Fields] OR “zirconia”[All Fields]) OR 3Y-TZP[All Fields]) AND (((“J Adhes”[Journal] OR “adhesion”[All Fields]) OR ((“adhesives”[Pharmacological Action] OR “adhesives”[MeSH Terms] OR “adhesives”[All Fields] OR “adhesive”[All Fields]) AND (“cementation”[MeSH Terms] OR “cementation”[All Fields]))) OR (“object attachment”[MeSH Terms] OR (“object”[All Fields] AND “attachment”[All Fields]) OR “object attachment”[All Fields] OR “bonding”[All Fields]))) AND ((“dentin”[MeSH Terms] OR “dentin”[All Fields]) OR (“dental enamel”[MeSH Terms] OR (“dental”[All Fields] AND “enamel”[All Fields]) OR “dental enamel”[All Fields] OR “enamel”[All Fields])) AND (“2013/01/01”[PDAT]: “2018/12/31”[PDAT]) |
Search | Query | Items Found |
---|---|---|
1 | Zirconia OR 3Y-TZP | 267 |
2 | Adhesion OR adhesive cementation OR bonding | 12,030 |
3 | Resin OR composite resin OR composite material | 6317 |
4 | 1 AND 2 AND 3 | 52 |
5 | Cochrane Library publication date from Jan 2013 to Dec 2018 | 31 |
Final string | ||
((zirconia) OR 3Y-TZP):ti,ab,kw AND (((adhesion) OR adhesive cementation) OR bonding):ti,ab,kw AND (((resin) OR composite resin) OR composite material):ti,ab,kw (Word variations have been searched)” with Cochrane Library publication date Between Jan 2013 and Dec 2018 (Word variations have been searched) |
Article | Tested Adhesion Techniques | Results | |
---|---|---|---|
1 | Yang et al., 2018 [10] | Different kinds of cement (RMGIC, self-adhesive, MDP-free). Primers and universal adhesives with 10-MDP. Preliminary APA preliminary. | RMGIC get worse adhesion results. Better bond strength for MDP primer (or adhesive) with traditional composite cement, than MDP cement alone. |
2 | Thammajaruk et al., 2019 [11] | Ceramic coating technique (DCM hot bond coating) vs. APA. | APA gives better adhesion and more stable long-term results. |
3 | Shimizu et al., 2018 [12] | Mechanical pre-treatment (none, APA, plasma treatment) and chemical pre-treatment (none, 10-MDP primer). | APA improves the bonding strength and the pre-treatment with MDP primer resulted in better adhesion. |
4 | Piest et al., 2018. [13] | Efficacy of plasma treatment for contaminated zirconia (saliva and silicone). | Plasma treatment is expensive and not efficacious, especially for silicone contamination. |
5 | Yang et al., 2018 [14] | Comparison between two kinds of adhesion protocol: one involves APA followed by MDP- free composite cement, others that involve APA followed by MDP containing product (primer or adhesive or cement). | Product containing 10-MDP (primers, adhesives, and cement) improve zirconia adhesion in comparison APA with MDP-free composite cement. |
6 | Moura et al., 2018 [15] | Comparison of three adhesion techniques: -APA+ MDP- composite cement -MDP-primer + MDP-free composite cement (no APA) -APA+ primer with functional monomer + MDP-free composite cement. | The adhesion protocol that involves APA followed the use of MDP-composite cement has worse results. |
7 | Araùjo et al., 2018 [16] | Compare the effectiveness of an MDP-adhesive as a substitute for TBC adhesion protocol. | Mechanical pre-treatment included in the TBC technique is necessary for an adequate adhesion. |
8 | Grasel et al., 2018 [17] | Evaluation of the effectiveness of mechanical pre-treatment (APA). Comparison of different adhesion systems (universal primer and composite cement) after APA. | Mechanical pre-treatment is necessary for improving adhesion. No substantial differences between the adhesion systems. |
9 | Dos Santos et al., 2018 [18] | Effect of incorporation of TiO2 nanotubes in a polycrystalline zirconia on bond strength. | The technique tested has no significant effect. |
0 | Dal Piva et al., 2018 [19] | Efficacy of a heat-treatment after TBC protocol. | Heat treatment is not valid in improving adhesion. |
1 | Yoshida et al., 2018 [20] | Cleaning methods for saliva contaminated zirconia (Ivoclean, ADG, etching gel, APA). | ADG and APA are effective cleaning methods on the alumina blasted zirconia. |
2 | Wille et al., 2017 [21] | Effectiveness comparison of “phosphoric acid esters”-based primer and a self-etching primer applied on sandblasted zirconia. Cementation with composite cement. | Phosphoric acid esters primer gets better results. |
3 | Xie et al., 2017 [22] | Different zirconia treatments (APA Al2O3, 40% HF 30 min, 40% HF 10 min in US bath) and different 10-MDP primers. Composite cement. | No differences emerge on the type of primer, nor on the way the acid is applied. Treatment with HF achieves results comparable to sandblasting. |
4 | Pitta et al., 2017 [23] | The study evaluates the effect of saliva contamination on the effectiveness of the adhesive system. | Some adhesive systems do not appear to be affected by saliva contamination. |
5 | Yagawa et al., 2018 [24] | Comparison of some primers containing different adhesive monomers. Cementation with self-curing or dual composite. | Dual cement ensures better adhesion. Major SBS for samples treated with 10-MDP primer. |
6 | Noda et al., 2017 [25] | Comparison of different primers with functional monomers. | Primer containing 10-MDP exhibits higher bond strength than MAC-10 primer. |
7 | Chuang et al., 2017 [26] | Comparison of silane, 10-MDP, or both MDP and silane primers on sandblasted samples. | 10-MDP primers get better SBS. |
8 | Elsayed et al., 2017 [27] | Sandblasted samples, subjected to the application of different primer/composite cement adhesive systems. | -APA + Monobond Plus (silane/adhesive monomers) + Variolink Esthetic DC. -APA + All Bond universal (10-MDP) + Duo Link Universal. |
9 | Galvão Ribeiro et al., 2018 [28] | Comparison between APA and TBC treatment followed by application of silane or silane/10-MDP primers. Self-adhesive composite. | TBC + silane/10-MDP primer + self-adhesive composite. |
0 | Chen C et al., 2017 [29] | Effect of storage in aqueous solutions (acid, basic, or neutral) on adhesion. Sandblasted samples, treated with two different MDP primers, cemented with a composite. | Values of SBS greater for samples deposited in alkaline solution. |
1 | Tsujimoto e al., 2017 [30] | Bond durability of universal adhesives. | Thermocycling decreases bond strength. |
2 | Sakrana and Ozcan, 2017 [31] | Different mechanical treatments (APA, CH2Cl2, HCl). | Better adhesion for HCl e APA. |
3 | Akazawa et al., 2017 [32] | Comparison between APA and TBC followed by the application of different primers. MDP-free composite cement. | -TBC + silane/10-MDP primer. -SAPA Al2O3 (50-70 µm) + silano/10-MDP primer. |
4 | Wandscher et al., 2016 [33] | Sandblasting with leucite powder, feldspar ceramic or Cojet method. Silane and adhesive cement application. | Better results for leucite powder sandblasting. |
5 | Esteves-Oliveira et al., 2016 [34] | Comparison between APA, TBC, ultrashort pulses laser. Self-adhesive composite. | Laser treatment is the more effective one. |
6 | Rona et al., 2017 [35] | Comparison between APA, TBS, Er: YAG e EDM (Electric Discharge Machine). MDP/silane or silane primer; MDP- based composite. | Better SBS values for EDM e Rocatec. |
7 | Sawada et al., 2016 [36] | Effectiveness of experimental conditioners, based on silica and quartz, applied before sintering. | Experimental solution does not improve significantly adhesion. |
8 | Zhao et al., 2016 [37] | Comparison of different primer/cement systems in improving zirconia adhesion. | Using an MDP-primer before cement improves adhesion, regardless of the type of cement (self-adhesive or MDP-free). |
9 | Iwasaki et al., 2016 [38] | Zirconia treatment with APA or TBC, followed by primer application with different functional components and traditional composite cement. | -TBC + 10-MDP/silane primer + traditional composite cement. |
0 | Passia et al., 2016 [39] | Effectiveness of different primers and composite cements after APA Al2O3. | -APA Al2O3 associated with MDP cement or phosphoric acid methacrylate cement and MDP primer. |
1 | Lopes et al., 2016 [40] | Different kinds of primers on sandblasted zirconia. MDP free cement. | MDP-based primers improve adhesion. |
2 | Salem et al., 2016 [41] | Different kind of treatments (APA Al2O3, SIE, “Modified fusion sputtering”). Self-adhesive composite. | -SIE or “Modified fusion sputtering” + silane/10-MDP primer. |
3 | Hallmann et al., 2016 [42] | Mechanical pre-treatments (APA with alumina or zirconia, abrasive paper, acid solution, plasma, argon-ion bombardment); 10-MDP composite. | The most effective method is APA with Al2O3. Increased adhesion strength even with sandblasting with zirconia particles, which seems to be less harmful. |
4 | Angkasith et al., 2016 [43] | Effect of saliva contamination with the use of 10-MDP primers. | If the contamination occurs after the primer, rinsing with water is sufficient. Otherwise, Ivoclean and APA are effective. |
5 | Bomicke et al., 2016 [44] | Comparison between different mechanical treatments (APA, Cojet, and Rocatec TBC), and comparison between the adhesive system. | -Rocatec + silane/10-MDP primer + 10-MDP composite. |
6 | Xie et al., 2016 [45] | Comparison between TBC and APA with different MDP primers. | -APA + Z-Prime plus+ 10-MDP primer -TBC |
7 | Cheung et al., 2015 [46] | Comparison of different surface treatments (vitrification, APA) followed by the application or not of silane/MDP primers and cementation with an MDP composite. | Liner (pre sintering) + HF + silane/MDP primer. |
8 | Ahn et al., 2015 [47] | Comparison between sandblasted or not zirconia. Application or not of primers with 10-MDP or other adhesive monomers. 10-MDP cement. | Good adhesion for APA + Primer 10-MDP + 10-MDP cement. Self-adhesive cement without preliminary sandblasting does not guarantee adhesion. |
9 | Alves et al., 2016 [48] | Comparison on cement (traditional composite or self-adhesive), and different substrates (Cojet, Rocatec, silane primer/10-MDP). | Better SBS for primer + traditional composite. |
0 | Yenisey et al., 2016 [49] | Effectiveness of various surface treatments and their association (APA, Cojet, Rocatec, Er: YAG, silane primer, Silano-Pen). | -APA + Cojet + silane. |
1 | Pereira et al., 2015 [50] | Comparison of application of various types of primers with or without sandblasting. | In general, sandblasting increases the bond strength if associated with the use of the primer, except for Scotchbond Universal (universal primer) and MZ Primer (primer with adhesive monomers). |
2 | Kim DH et al., 2015 [51] | Different cleaning methods: NaOCl, APA, Ivoclean, H2O2, H2O, and sodium dodecyl sulfate. | Effective for saliva cleansing NaOCl, Ivoclean, and sandblasting. |
3 | Liu D et al., 2015 [52] | TBC comparison with application of acid solutions (Nitric and Fluoridric acid) and application of pre-sintering silica particles. Silane/10-MDP primer, 10-MDP composite. | TBC method and silica particle deposition have higher SBS values. |
4 | Ishii et al., 2015 [53] | Comparison of saliva cleansing methods: water, sandblasting, Ivoclean, orthophosphoric acid. | Sandblasting and Ivoclean are effective. |
5 | Jiang et al., 2014 [54] | APA Al2O3 vs. SIE. 4-META-based composite. | Both methods increase adhesion values when compared to the control. |
6 | Oliveira-Ogliari et al., 2015 [55] | Effectiveness of solutions based on zirconia precursors compared with TBC. Silane, adhesive cement. | Promising results for experimental solutions. |
7 | Lung et al., 2015 [56] | Comparison of a solution based on silicon nitride with TBC. Silane, adhesive cement. | TBC gets better results. |
8 | Sciasci et al., 2015 [57] | Different surface treatments (APA, TBC) in association with different types of cement (modified CVI and adhesive cements). | High adhesion values for TBC with traditional adhesive cements or self-adhesive. |
9 | Qeblawi et al., 2015 [58] | Comparison of zirconia treatment (APA and TBC) and adhesive cement type. | -TBC (Cojet) + silane + self-adhesive.-APA (Al2O3 50 µm) + self-adhesive (MDP). |
0 | Feitosa et al., 2015 [59] | Different saliva cleansing methods: water, Ivoclean, orthophosphoric acid, isopropanol. | Ivoclean is the most effective of the tested methods. |
1 | Yi et al., 2015 [60] | APA and TBC, followed by primer application with different functional components and cementation with 10-MDP composite. | -APA Al2O3 + 10-MDP primer + 10-MDP composite. |
2 | Kim JH et al., 2015 [61] | Effectiveness comparison of various 10-MDP based primers. For this purpose, no preliminary treatments are done on zirconia and a traditional composite cement is used. | Primer universali All Bond Universal (10-MDP) and Single Bond Universal (10-MDP/silane) get better results than the Alloy Primer (10-MDP). |
3 | Klosa et al., 2014 [62] | Effectiveness of a solution of ethyl cellulose in the removal of contaminants. | The experimental solution improves SBS but does not reach the values of the uncontaminated sample. |
4 | Druck et al., 2015 [63] | Comparison of deposition of silica nanofilm (magnetron sputtering PVD) with tribological-chemical treatment. Silane and adhesive cement application. | Similar results (TBS) for TBC and Si nanofilm (5 nm). |
5 | De Souza et al., 2014 [64] | Different primers for zirconia, adhesive systems, and MDP- based cements. | Better adhesion values for samples in which the primer is applied. |
6 | Chen C et al., 2014 [65] | Comparison between TBC and APA followed or not by application of primer (Z-Prime Plus), both with traditional composite cement and self-adhesive (RelyX Unicem). | -TBC+ silane + traditional composite cement. |
7 | Shin et al., 2014 [66] | Two different MDP composites on zirconia treated with various methods (MDP primer, APA + primer, Cojet). | No significant differences on the type of cement. Best SBS for APA followed by the application of the 10-MDP primer. |
8 | Da Silva et al., 2014 [67] | Comparison of zirconia treatment (10-MDP primer vs. TBC) and comparison of cement type (traditional composite cement and self-adhesive, with adhesive monomers). | Best result for self-adhesive composite, in association with tribological-chemical treatment. |
9 | Oba et al., 2014 [68] | Efficacy of different primers on sandblasted zirconia. | MDP primers get better results, and are indifferent if silane is also present. |
0 | Liu et al., 2014 [69] | Comparison between: Rocatec, Glazing Porcelain + HF, pre-sintering silica powder application, pre-sintering zirconia powder application. Composite self-adhesive. | High SBS values for tTBC treatment and zirconia powder. |
1 | Erdem et al. 2014 [70] | Comparison of zirconia treatments (APA, TBC, Er: YAG), associated with different cements. | -Air abrasion 110 µm + self-adhesive composite.-Rocatec + silane + both traditional or self-adhesive cement. |
2 | Xie et al., 2013 [71] | Comparison of different treatments of zirconia (APA, Cojet, acid etching), followed by application or not of the primer. | -TBC (Cojet) + silane + MDP-free composite. -Hot etching + MDP primer + MDP-free composite. |
3 | Lin et al., 2013 [72] | Comparison of different treatments of zirconia (sandblasting with Al2O3 and Er: YAG laser). | The use of the Er: YAG laser is not able to increase the adhesion values. |
4 | Turker et al., 2013 [73] | Comparison of adhesion of CVI, CVI modified with resin, and MDP composite cements. Preliminary blasting. | Better adhesion values for self-adhesive cements. |
5 | Cheung et al., 2014 [74] | Comparison of different surface treatments (vitrification, APA) followed by the application or not of silane/MDP primers, cementation with MDP composite. | -TBC + silane/MDP + MDP cement.-Vitrification + HF+ silane/MDP+ MDP cement. |
6 | Keul et al., 2013 [75] | Comparison of the use of self-adhesive cements alone or in combination with primers containing adhesive monomers. | The use of the primer improves the bond strength. |
7 | Sarmento et al., 2014 [76] | APA and TBC comparison. Silane/10-MDP primer and 10-MDP composite. | After thermocycling spontaneous de-cementation of all the samples. |
8 | Heikkinen et al., 2013 [77] | Effect of different kind of silane on silica-coated alumina blasted zirconia. | Not significant differences. |
9 | Bottino et al., 2014 [78] | Comparison of two surface treatments of zirconia (vitrification and TB) associated with two different 10-MDP based resin cements. | Panavia F cement guarantees better adhesion, in particular in association with vitrification. |
0 | Gomes et al., 2015 [79] | Confronto trattamento zirconia (TBC, Laser Er: YAG) e tipologia cemento (cemento 10-MDP e cemento autoadesivo con altri monomeri). | -TBC (Rocatec) + silane + 10-MDP composite. |
1 | Liu L et al., 2015 [80] | Different zirconnia treatments (APA Al2O3, Nd: YAG laser). MDP-based cement. | -APA Al2O3 + MDP cement. |
2 | Seto et al., 2013 [81] | Comparison of different types of adhesive cement on sandblasted samples. | Higher adhesion values for cement with 10-MDP (Panavia 2.0 + Oxiguard primer) and GCem (self-adhesive with other monomers). |
3 | Baldissara et al., 2013 [82] | Comparison TBC with ceramic liner, and between self-adhesive composite (Panavia F e Rely X). | TBC achieves superior bond strength, especially in association with RelyX. Panavia F gives better results in association with the liner. |
4 | Vanderlei et al., 2014 [83] | Comparison between “glaze on technique and TBC.” MDP composite cement. | -Low fusing porcelain glaze + HF + silane MDPcomposite. |
5 | Wang et al., 2014 [84] | Use of MDP-primers (with different air-dried pressure) on sandblasted zirconia. | The pressure can affect the result depending on the primer used. |
6 | Saker et al., 2013 [85] | Comparison of different treatments (APA, TBC + silane or 10-MDP based primer, “glaze on” technique). Cementation with MDP composite. | -TBC + MDP primer - “Glaze on” technique + HF + silane. |
7 | Queiroz et al., 2013 [86] | Comparison of different zirconia treatments (sandblasting + primer, only primer, silica nanofilm with magnetron sputtering) and different cements (10-MDP, HEMA, other monomers). | -Air abrasion (Al2O3 45µm) + Metal/zirconia primer + self-adhesive composite. |
8 | De Sà Barbosa et al., 2013 [87] | Effectiveness comparison of some self-adhesive composite cements containing adhesive monomers other than 10-MDP (RelyX Unicem, BisCem, G-Cem, SeT) with traditional composite cement (RelyX ARC). APA 50 µm. | The only group to maintain higher values after 1 year is the one cemented with G-Cem. |
9 | Lung et al., 2013 [88] | Comparison between TEOS sol-gel technique and TBC. | Silica coating method improved adhesion more effectively. |
0 | Subasi et al., 2014 [89] | Comparison between mechanical treatments (APA Al2O3, TBC, Er: YAG laser) and between the cement (MDP or other monomers-based). | No differences between APA and TBC, with better results for MDP cements. |
RMGIC, Resin Modified Glass Ionomer Cement. APA, Air Particle Abrasion. TBC, Tribochemical silica coating. SBS, Shear Bond Strength. TBS, Tensile Bond Strength. |
Article | Type of Restoration | Adhesion Protocol | Follow-Up | Overall Survival Rate | |
---|---|---|---|---|---|
1 | Kern et al., 2017 [90] | Single-retainer RBFDP | -APA Al2O3 50 µm, 10-MDP self-adhesive cement -Zirconia primer MDP-free composite cement. | 10 years | 98.2% |
2 | Rathmann et al., 2017 [91] | IRFDP | Tribochemical silica coating, silane, 10-MDP self-adhesive cement or MDP-free. | 5 years | 21.2% |
3 | Chaar et Kern, 2015 [92] | IRFDP | APA Al2O3 50 µm, self-adhesive 10-MDP cement. | 5 years | 95.8% |
4 | Sasse et Kern, 2014 [93] | Single-retainer RBFDP | APA Al2O3 50 µm, self-adhesive 10-MDP cement. | 6 years | 91.1% |
5 | Sasse et Kern, 2013 [94] | Single-retainer RBFDP | -APA Al2O3 50 µm, 10-MDP self-adhesive cement -Zirconia primer MDP-free composite cement. | 5 years | 89.4% |
RBFDP, Resin Bonded Fixed Dental Prosthesis. IRFDP, Inlay Retained Fixed Dental Prosthesis. APA, Air Particle Abrasion. |
Article | Cause for Exclusion | |
---|---|---|
1 | Blatz et al., 2017 [95] | Review of clinical trials, includes studies on complete crowns. |
2 | Khan et al., 2017 [9] | Review of laboratory studies, do not consider the aging factor. |
3 | Tzanakakis et al., 2016 [8] | Review of laboratory studies, do not consider the aging factor. |
4 | Luthra et kaur, 2016 [96] | Review of laboratory studies, do not consider the aging factor. |
5 | Ozcan et Bernasconi, 2015 [7] | Review of laboratory studies, do not consider the aging factor. |
6 | Inokoshi et al., 2014 [97] | Review of laboratory studies, does not observe the inclusion criteria relating to aging, and sets an “aging” limit at 1000 TC. |
7 | Miyazaki et al., 2013 [2] | Review of laboratory and clinical studies, do not consider the aging factor, and includes studies on complete crowns. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scaminaci Russo, D.; Cinelli, F.; Sarti, C.; Giachetti, L. Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials. Dent. J. 2019, 7, 74. https://doi.org/10.3390/dj7030074
Scaminaci Russo D, Cinelli F, Sarti C, Giachetti L. Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials. Dentistry Journal. 2019; 7(3):74. https://doi.org/10.3390/dj7030074
Chicago/Turabian StyleScaminaci Russo, Daniele, Francesca Cinelli, Chiara Sarti, and Luca Giachetti. 2019. "Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials" Dentistry Journal 7, no. 3: 74. https://doi.org/10.3390/dj7030074
APA StyleScaminaci Russo, D., Cinelli, F., Sarti, C., & Giachetti, L. (2019). Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials. Dentistry Journal, 7(3), 74. https://doi.org/10.3390/dj7030074