Emerging Metal Additive Manufacturing for Individualized Dental Therapies: A Narrative Review
Abstract
1. Introduction
2. Recent Advances in Metal AM for Dental Applications
3. Clinical Applications of Metal AM in Personalized Dental Treatments
4. Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.C.; Affolter, C. High-cycle fatigue performance of laser powder bed fusion Ti-6Al-4V alloy with inherent internal defects: Critical literature review. Metals 2024, 14, 972. [Google Scholar] [CrossRef]
- Jamshidi, P.; Aristizabal, M.; Kong, W.H.; Villapun, V.; Cox, S.C.; Grover, L.M.; Attallah, M.M. Selective laser melting of Ti-6Al-4V: The impact of post-processing on the tensile, fatigue, and biological properties for medical implant applications. Materials 2020, 13, 2813. [Google Scholar] [CrossRef]
- Huang, S.; Wei, H.; Li, D. Additive manufacturing technologies in the oral implant clinic: A review of current applications and progress. Front. Bioeng. Biotechnol. 2023, 11, 1100155. [Google Scholar] [CrossRef]
- Khorsandi, D.; Fahimipour, A.; Abasian, P.; Saber, S.S.; Seyedi, M.; Ghanavati, S.; Ahmad, A.; De Stephanis, A.A.; Taghavinezhaddilami, F.; Leonova, A.; et al. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater. 2021, 122, 26–49. [Google Scholar] [CrossRef] [PubMed]
- Gracis, S.; Appiani, A.; Noè, G. Digital workflow in implant prosthodontics: The critical aspects for reliable accuracy. J. Esthet. Restor. Dent. 2023, 35, 250–261. [Google Scholar] [CrossRef]
- Revilla-León, M.; Sadeghpour, M.; Özcan, M. A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry. J. Prosthodont. 2020, 29, 579–593. [Google Scholar] [CrossRef]
- Celik, H.K.; Koc, S.; Kustarci, A.; Caglayan, N.; Rennie, A.E.W. The state of additive manufacturing in dental research—A systematic scoping review of 2012–2022. Heliyon 2023, 9, e17462. [Google Scholar] [CrossRef]
- Li, J.; Fan, H.; Li, H.; Hua, L.; Du, J.; He, Y.; Jin, Y. Recent advancements in the surface modification of additively manufactured metallic bone implants. Addit. Manuf. Front. 2025, 4, 200195. [Google Scholar] [CrossRef]
- Brogini, S.; Sartori, M.; Giavaresi, G.; Cremascoli, P.; Alemani, F.; Bellini, D.; Martini, L.; Maglio, M.; Pagani, S.; Fini, M. Osseointegration of additive manufacturing Ti-6Al-4V and Co-Cr-Mo alloys, with and without surface functionalization with hydroxyapatite and type I collagen. J. Mech. Behav. Biomed. Mater. 2021, 115, 104262. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Pramanik, A.; Basak, A.K.; Dong, Y.; Prakash, C.; Debnath, S.; Shankar, S.; Jawahir, I.S.; Dixit, S.; Buddhi, D. A critical review on additive manufacturing of Ti-6Al-4V alloy: Microstructure and mechanical properties. J. Mater. Res. Technol. 2022, 18, 4641–4661. [Google Scholar] [CrossRef]
- Mafra, I.J.; Bordin, D.; Siroma, R.S.; Moraschini, V.; Faverani, L.P.; Souza, J.G.; Mourão, C.F.; Shibli, J.A. Additive manufacturing titanium dental implants placed in sinuses grafted with 70HA:30-TCP: A one-year retrospective study for evaluation of survival rate. Dent. J. 2024, 12, 181. [Google Scholar] [CrossRef]
- Begines, B.; Arevalo, C.; Romero, C.; Hadzhieva, Z.; Boccaccini, A.R.; Torres, Y. Fabrication and characterization of bioactive gelatin-alginate-bioactive glass composite coatings on porous titanium substrates. ACS Appl. Mater. Interfaces 2022, 14, 15008–15020. [Google Scholar] [CrossRef]
- Aufa, A.N.; Hassan, M.Z.; Ismail, Z.; Ren, J.M. Sol–gel surface modification of selective laser melting Ti6Al4V for biomedical applications. Prog. Addit. Manuf. 2025, 10, 2247–2264. [Google Scholar] [CrossRef]
- Aufa, A.N.; Hassan, M.Z.; Ismail, Z.; Harun, N.; Ren, J.; Sadali, M.F. Surface enhancement of Ti-6Al-4V fabricated by selective laser melting on bone-like apatite formation. J. Mater. Res. Technol. 2022, 19, 4018–4030. [Google Scholar] [CrossRef]
- Duan, Y.S.; Liu, X.D.; Zhang, S.J.; Wang, L.; Ding, F.; Song, S.; Chen, X.T.; Deng, B.L.; Song, Y.L. Selective laser melted titanium implants play a positive role in early osseointegration in type 2 diabetes mellitus rats. Dent. Mater. J. 2020, 39, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Danza, M.; Zollino, I.; Candotto, V.; Cura, F.; Carinci, F. Fibroblast behavior after titanium surfaces exposure. Dent. Res. J. 2012, 9 (Suppl. 2), S211–S215. [Google Scholar]
- Moloi, T.; Dzogbewu, T.C.; Maringa, M.; Muiruri, A. A Review of the fatigue behaviour of laser powder bed fusion Ti6Al4V. Metall. Mater. Eng. 2025, 31, 288–310. [Google Scholar]
- Grand View Research. Dental 3D Printing Market Size, Share & Trends Analysis Report, 2024–2030; Grand View Research: San Francisco, CA, USA, 2023; Available online: https://www.grandviewresearch.com/industry-analysis/dental-3d-printing-market (accessed on 12 May 2025).
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. (Eds.) Additive Manufacturing Technologies, 2nd ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Vanmunster, L.; D’Haeyer, C.; Coucke, P.; Braem, A.; Van Hooreweder, B. Mechanical behavior of Ti6Al4V produced by laser powder bed fusion with engineered open porosity for dental applications. J. Mech. Behav. Biomed. Mater. 2022, 126, 104974. [Google Scholar] [CrossRef]
- Repnin, A.; Borisov, E.; Emelianov, A.; Popovich, A. Fracture toughness of Ti6Al4V/Cp-Ti multi-material produced via selective laser melting. Metals 2023, 13, 1738. [Google Scholar] [CrossRef]
- Gunashekar, G.; Reddy, N.D.D.; Penumakala, P.K.; Narala, S.K.R. Compressive response of additively manufactured Ti-6Al-4V Triply Periodic Minimal Surface structures with different unit cell designs for biomedical implant applications. Mater. Today Commun. 2025, 44, 112013. [Google Scholar] [CrossRef]
- Dong, M.Q.; Zhang, Y.; Zhou, W.W.; Chen, P.; Zhou, Z.X.; Kanetaka, H.; Ishimoto, T.; Koizumi, Y.; Nakano, T.; Nomura, N. Laser additive manufacturing of a carbon-supersaturated β-Ti alloy for biomaterial application. Addit. Manuf. Lett. 2024, 11, 100233. [Google Scholar] [CrossRef]
- Tsutsumi, Y.; Ishimoto, T.; Oishi, T.; Manaka, T.; Chen, P.; Ashida, M.; Doi, K.; Katayama, H.; Hanawa, T.; Nakano, T. Crystallographic texture- and grain boundary density-independent improvement of corrosion resistance in austenitic 316L stainless steel fabricated via laser powder bed fusion. Addit. Manuf. 2021, 45, 102066. [Google Scholar] [CrossRef]
- Polozov, I.N.; Nefyodova, V.; Zolotarev, A.; Sokolova, V.; Gracheva, A.; Popovich, A. Optimizing selective laser melting of Ti-13Nb-13Zr-5Cu alloy: Processing parameters, microstructure evolution, and enhanced mechanical properties for biomedical applications. J. Alloys Compd. 2025, 1035, 181587. [Google Scholar] [CrossRef]
- Moon, S.; Ji, S.; Ko, Y.; Lee, M.S.; Jun, T.S.; Kim, D.I.; Yeo, J.S. Effects of spatial uniformity of continuous and pulse laser irradiation on the microstructure and mechanical properties of Ti-6Al-4V in powder bed fusion. Mater. Today Commun. 2025, 46, 112880. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Tang, X.F.; Guo, W.J.; Gao, J.S.; Yu, J.X.; Yin, X.M.; Wang, Y.; Dong, Y.H.; Jiang, Z.W.; Zheng, Z.P. A short review of the post-processing of titanium alloys processed by selective laser melting. Int. J. Adv. Manuf. Technol. 2025, 138, 4121–4136. [Google Scholar] [CrossRef]
- Tyagi, S.; Manjaiah, M.; Das, R. Effect of electropolishing post-treatment on additively manufactured Ti6Al4V lattice structures. Int. J. Mech. Sci. 2025, 297–298, 110370. [Google Scholar] [CrossRef]
- Loiodice, L.; Stopka, K.S.; Sangid, M.D. Pore defects’ influence on the local, near threshold fatigue crack growth behavior of additively manufactured Ti-6Al-4V. J. Mech. Phys. Solids 2025, 202, 106173. [Google Scholar] [CrossRef]
- Li, T.R.; Xu, M.Y.; Yao, J.Z.; Deng, L.P.; Wang, B.S. Preparation and post-processing of three-dimensional printed porous titanium alloys. Materials 2025, 18, 1864. [Google Scholar] [CrossRef]
- Abdesselam, K.A.; Gaudez, S.; Van Petegem, S.; Honkimäki, V.; Hallais, S.; Cornet, L.; Vallet, M.; Upadhyay, M.V. Altering microstructure and enhancing mechanical properties during direct energy deposition of Ti-6Al-4V via in-process laser heat treatments. Mater. Des. 2025, 254, 113997. [Google Scholar] [CrossRef]
- Squillaci, L.; Neikter, M.; Hansson, T.; Pederson, R.; Moverare, J. Microstructure and mechanical properties of Ti-6Al-4V alloy fabricated using powder bed fusion-laser beam additive manufacturing process: Effect of hot isostatic pressing. Mater. Sci. Eng. A 2025, 931, 148226. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z.; Chen, X.; Zhang, C.; Zhang, G.; Xu, Z. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J. Prosthet. Dent. 2014, 112, 1088–1095.e1. [Google Scholar] [CrossRef]
- Vasylyev, M.O.; Mordyuk, B.M.; Voloshko, S.M.; Gurin, P.O. Physiological corrosion and ion release in dental Co-Cr-Mo alloys fabricated using additive manufacturing. Prog. Phys. Met. 2025, 26, 120–145. [Google Scholar] [CrossRef]
- Noorbakhsh Nezhad, A.H.; Mohammadi Zahrani, E.; Mousavinasab, S.F.; Alfantazi, A.M. A comprehensive review of additively manufactured biomedical titanium alloys for bone tissue engineering: Biocorrosion, biomechanical, and biological properties. J. Mater. Res. Technol. 2025, 36, 9113–9157. [Google Scholar] [CrossRef]
- Pradíes, G.; Morón-Conejo, B.; Martínez-Rus, F.; Salido, M.P.; Berrendero, S. Current applications of 3D printing in dental implantology: A scoping review mapping the evidence. Clin. Oral Implant. Res. 2024, 35, 1011–1032. [Google Scholar] [CrossRef]
- Alageel, O. Three-dimensional printing technologies for dental prosthesis: A review. Rapid Prototyp. J. 2022, 28, 1764–1778. [Google Scholar] [CrossRef]
- Revilla-León, M.; Meyer, M.J.; Özcan, M. Metal additive manufacturing technologies: Literature review of current status and prosthodontic applications. Int. J. Comput. Dent. 2019, 22, 55–67. [Google Scholar]
- Tarba, C.I.; Cristache, M.A.; Baciu, I.M.; Cristache, C.M.; Burlacu Vatamanu, O.E.B.; Oancea, L. Advancements in digital workflows for 3d-printed maxillofacial soft prostheses: Exploring design and materials in direct additive manufacturing: A scoping review. Appl. Sci. 2025, 15, 1701. [Google Scholar] [CrossRef]
- Dragos, B.; Bratu, D.C.; Popa, G.; Luca, M.M.; Bratu, R.C.; Sinescu, C. Mechanical properties of 3d printed and milled space maintainers used in preventive orthodontics. Rom. J. Oral Rehabil. 2024, 16, 666–673. [Google Scholar] [CrossRef]
- Qasim, S.S.B.; Zafar, M.S.; Niazi, F.H.; Alshahwan, M.; Omar, H.; Daood, U. Functionally graded biomimetic biomaterials in dentistry: An evidence-based update. J. Biomater. Sci. Polym. Ed. 2020, 31, 1144–1162. [Google Scholar] [CrossRef] [PubMed]
- Tsolakis, I.A.; Gizani, S.; Tsolakis, A.I.; Panayi, N. Three-dimensional-printed customized orthodontic and pedodontic appliances: A critical review of a new era for treatment. Children 2022, 9, 1107. [Google Scholar] [CrossRef]
- De Riu, G.; Biglio, A.; Baj, A.; Maniaci, A.; Lechien, J.R.; Vaira, L.A. Primary reconstruction of total maxillectomy defect with additively manufactured subperiosteal implant and fibula free flap: A case report. Oral Maxillofac. Surg. 2025, 29, 86. [Google Scholar] [CrossRef]
- Grecchi, F.; Zecca, P.A.; Macchi, A.; Mangano, A.; Riva, F.; Grecchi, E.; Mangano, C. Full-digital workflow for fabricating a custom-made direct metal laser sintering (DMLS) mandibular implant: A case report. Int. J. Environ. Res. Public Health 2020, 17, 2693. [Google Scholar] [CrossRef]
- Onică, C.A.; Lupu, C.I.; Baciu, E.R.; Gelețu, G.L.; Murariu, A.; Budală, D.G.; Luchian, I.; Onică, N. Customized titanium plates for preventing mandibular fractures in lower third molar extractions. J. Funct. Biomater. 2025, 16, 64. [Google Scholar] [CrossRef]
- Lobo, S.; Argolinha, I.; Machado, V.; Botelho, J.; Rua, J.; Li, J.; Mendes, J.J. Advances in Digital Technologies in Dental Medicine: Enhancing Precision in Virtual Articulators. J. Clin. Med. 2025, 14, 1495. [Google Scholar] [CrossRef] [PubMed]
- Patel, N. Integrating three-dimensional digital technologies for comprehensive implant dentistry. J. Am. Dent. Assoc. 2010, 141 (Suppl. 2), 20s–24s. [Google Scholar] [CrossRef]
- Laubach, M.; Hartmann, H.; Holzapfel, B.M.; Mayer-Wagner, S.; Schenke-Layland, K.; Hutmacher, D.W. 3D printing in surgery: Relevance of technology maturity assessment in bioprinting research studies. Chirurgie 2025, 96, 306–315. [Google Scholar] [CrossRef]
- Dixit, A.; Kumar, A.; Pathak, D.K. (Eds.) Additive Manufacturing for Biomedical Applications: Recent Trends and Challenges; Springer: Singapore, 2024; p. 489. [Google Scholar]
- Stanco, D.; Urbán, P.; Tirendi, S.; Ciardelli, G.; Barrero, J. 3D bioprinting for orthopaedic applications: Current advances, challenges and regulatory considerations. Bioprinting 2020, 20, e00103. [Google Scholar] [CrossRef]
- Baskin, N.; Yuce, C. Effect of process parameters on the mechanical behavior of Ti6Al4V alloys fabricated by laser powder bed fusion method. J. Mater. Res. Technol. 2024, 30, 7006–7019. [Google Scholar] [CrossRef]
- Sinha, P.; Lahare, P.; Sahu, M.; Cimler, R.; Schnitzer, M.; Hlubenova, J.; Hudak, R.; Singh, N.; Gupta, B.; Kuca, K. Concept and Evolution in 3d printing for excellence in healthcare. Curr. Med. Chem. 2025, 32, 831–879. [Google Scholar] [CrossRef] [PubMed]
- Bhise, M.G.; Patel, L.; Patel, K. 3D Printed Medical Devices: Regulatory standards and technological advancements in the USA, Canada and Singapore-A cross-national study. Int. J. Pharm. Investig. 2024, 14, 888–902. [Google Scholar] [CrossRef]
- Mamo, H.B.; Adamiak, M.; Kunwar, A. 3D printed biomedical devices and their applications: A review on state-of-the-art technologies, existing challenges, and future perspectives. J. Mech. Behav. Biomed. Mater. 2023, 143, 105930. [Google Scholar] [CrossRef] [PubMed]
- Lakkala, P.; Munnangi, S.R.; Bandari, S.; Repka, M. Additive manufacturing technologies with emphasis on stereolithography 3d printing in pharmaceutical and medical applications: A review. Int. J. Pharm. X 2023, 5, 100159. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A.; Bose, S.; Narayan, R. Translation of 3D printed materials for medical applications. MRS Bull. 2022, 47, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Maretto, L.; Faccio, M.; Battini, D. The adoption of digital technologies in the manufacturing world and their evaluation: A systematic review of real-life case studies and future research agenda. J. Manuf. Syst. 2023, 68, 576–600. [Google Scholar] [CrossRef]
- Baumers, M.; Beltrametti, L.; Gasparre, A.; Hague, R. Informing additive manufacturing technology adoption: Total cost and the impact of capacity utilisation. Int. J. Prod. Res. 2017, 55, 6957–6970. [Google Scholar] [CrossRef]
- Juneja, M.; Bajaj, D.; Thakur, N.; Jindal, P. Reproduction of human dental models using different 3D printing techniques. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2024. [Google Scholar] [CrossRef]
- Zhang, Q.R.; Guan, Y.C. Application of metal additive manufacturing in oral dentistry. Curr. Opin. Biomed. Eng. 2023, 25, 100441. [Google Scholar] [CrossRef]
- Onică, N.; Budală, D.G.; Baciu, E.R.; Onică, C.A.; Gelețu, G.L.; Murariu, A.; Balan, M.; Pertea, M.; Stelea, C. Long-term clinical outcomes of 3d-printed subperiosteal titanium implants: A 6-year follow-up. J. Pers. Med. 2024, 14, 541. [Google Scholar] [CrossRef]
Aspect | Conventional Methods | AM |
---|---|---|
Manufacturing method | Casting/Milling | SLM/DMLS/EBM |
Material waste | High (due to subtractive process) | Low (layer-by-layer building) |
Design complexity | Limited by tooling and molds | High (lattice, graded porosity, etc.) |
Customization level | Stock-based | Fully patient-specific from digital data |
Production time | Long (multi-step workflows) | Short (digital-to-print in one flow) |
Mechanical properties | Reliable but limited shape control | Tailored via printing parameters |
Biocompatibility enhancement | Relies on coating or polishing | Post-processable with advanced surfaces |
Common materials | Titanium alloys, Co-Cr alloys | Titanium alloys, Co-Cr, new alloys |
Application | Clinical Benefit | AM-Specific Feature |
---|---|---|
Custom implant abutments | Improved emergence profile and fit | Digital workflow, high-resolution fabrication |
Full-arch bars/ implant frameworks | Adaptation to complex edentulous cases | Single-piece fabrication with anatomical precision |
Anatomically accurate crowns and bridges | Enhanced esthetics and occlusal harmony | Data-driven design with occlusion matching |
Mandibular/maxillary reconstruction plates | Precise anatomical conformity post-trauma | 3D anatomical scanning + direct metal printing |
Functionally graded prostheses | Tailored stiffness/load distribution | Variable porosity and geometry in one build |
AI-assisted prosthesis design | Predictive design optimization | Integration of clinical datasets and AI models |
Digital twin archiving | Quick remakes, consistent patient data use | Reusable CAD models for future use |
Material | AM Method | Application | Key Findings | First Author (Year) | Reference Number |
---|---|---|---|---|---|
β-Ti alloy (GO-modified) | L-PBF | Implantology | Ultrafine grains, >1100 MPa strength, cytocompatibility | Dong (2024) | [23] |
316 L Stainless Steel | L-PBF | Corrosion analysis | Enhanced pitting and crevice corrosion resistance | Tsutsumi (2021) | [24] |
Titanium | SLM | Custom implants | Precise fit to gingival contour and emergence profile | Chen (2014) | [33] |
Co-Cr-Mo alloy | AM | Prosthodontics | Stable ion release, physiological corrosion behavior | Vasylyev (2025) | [34] |
Stainless Steel | 3D Printing | Orthodontics | Mechanical evaluation of printed appliances | Dragos (2024) | [40] |
Titanium | AM | Maxillofacial surgery | Subperiosteal implant for maxillary reconstruction | De Riu (2025) | [43] |
Titanium (AM implants) | AM | Implantology | 1-year retrospective clinical evaluation | Mafra (2024) | [11] |
Titanium | AM | Mandibular support | Custom fixation plates reduce fracture risk | Onică (2025) | [45] |
Various | Digital Integration | Virtual articulators | Improved digital precision and design workflow | Lobo (2025) | [46] |
Metal (General) | AM | Implant dentistry | Review of AM technologies and clinical status | Revilla-León (2020) | [6] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Yokoi, T.; Sun, Y.-S.; Yang, H.; Kanetaka, H. Emerging Metal Additive Manufacturing for Individualized Dental Therapies: A Narrative Review. Dent. J. 2025, 13, 424. https://doi.org/10.3390/dj13090424
Chen P, Yokoi T, Sun Y-S, Yang H, Kanetaka H. Emerging Metal Additive Manufacturing for Individualized Dental Therapies: A Narrative Review. Dentistry Journal. 2025; 13(9):424. https://doi.org/10.3390/dj13090424
Chicago/Turabian StyleChen, Peng, Taishi Yokoi, Ying-Sui Sun, Huiyong Yang, and Hiroyasu Kanetaka. 2025. "Emerging Metal Additive Manufacturing for Individualized Dental Therapies: A Narrative Review" Dentistry Journal 13, no. 9: 424. https://doi.org/10.3390/dj13090424
APA StyleChen, P., Yokoi, T., Sun, Y.-S., Yang, H., & Kanetaka, H. (2025). Emerging Metal Additive Manufacturing for Individualized Dental Therapies: A Narrative Review. Dentistry Journal, 13(9), 424. https://doi.org/10.3390/dj13090424