Influence of SLM-, SLS-, and DMLS-Manufactured Titanium Meshes on Bone Gain Parameters and Complications: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Study Selection, Data Collection, and Data Items
2.5. Risk of Bias Assessment
3. Results
Risk of Bias Assessment
4. Discussion
4.1. Method of Mesh Production
4.1.1. Selective Laser Sintering
4.1.2. Selective Laser Melting
4.1.3. Direct Metal Laser Sintering
4.2. Complication Rate
- Class 1—small membrane exposure (<3 mm) without purulent exudate;
- Class 2—large membrane exposure (>3 mm) without purulent exudate;
- Class 3—membrane exposure with purulent exudate;
- Class 4—abscess formation without membrane exposure.
- Flap damage;
- Neurologic complication;
- Vascular complication.
4.3. Type of Bone Graft Material
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAD | Computer-aided design |
CAM | Computer-aided manufacturing |
AM | Additive manufacturing |
PBF | Powder bed fusion |
LPBF | Laser powder bed fusion |
EBM | Electron beam melting |
DED | Direct energy deposition |
SLS | Selective laser sintering |
SLM | Selective laser melting |
DMLS | Direct metal laser sintering |
OSF | Open science framework |
References
- Do, T.A.; Le, H.S.; Shen, Y.W.; Huang, H.L.; Fuh, L.J. Risk Factors related to Late Failure of Dental Implant—A Systematic Review of Recent Studies. Int. J. Environ. Res. Public Health 2020, 17, 3931. [Google Scholar] [CrossRef]
- Göçmen, G.; Bayrakçıoğlu, A.; Bayram, F. Effect of the level of alveolar atrophy on implant placement accuracy in guided surgery for full-arch restorations supported by four implants: An in vitro study. Head Face Med. 2023, 19, 40. [Google Scholar] [CrossRef]
- Malchiodi, L.; Ghensi, P.; Cucchi, A.; Pieroni, S.; Bertossi, D. Peri-implant conditions around sintered porous-surfaced (SPS) implants. A 36-month prospective cohort study. Clin. Oral Implant. Res. 2015, 26, 212–219. [Google Scholar] [CrossRef] [PubMed]
- De Santis, D.; Cucchi, A.; Rigoni, G.; Longhi, C. Short implants with oxidized surface in posterior areas of atrophic jaws: 3- to 5-year results of a multicenter study. Clin. Implant Dent. Relat. Res. 2015, 17, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Chiapasco, M.; Casentini, P.; Zaniboni, M. Bone augmentation procedures in implant dentistry. Int. J. Oral Maxillofac. Implant. 2009, 24, 237–259. [Google Scholar]
- Hämmerle, C.H.; Jung, R.E.; Feloutzis, A. A systematic review of the survival of implants in bone sites augmented with barrier membranes (guided bone regeneration) in partially edentulous patients. J. Clin. Periodontol. 2002, 29, 226–233. [Google Scholar] [CrossRef]
- Dahlin, C.; Linde, A.; Gottlow, J.; Nyman, S. Healing of bone defects by guided tissue regeneration. Plast. Reconstr. Surg. 1988, 81, 672–676. [Google Scholar] [CrossRef]
- Hämmerle, C.H.; Schmid, J.; Olah, A.J.; Lang, N.P. A novel model system for the study of experimental guided bone formation in humans. Clin. Oral Implant. Res. 1996, 7, 38–47. [Google Scholar] [CrossRef]
- Nyman, S.R.; Lang, N.P. Guided tissue regeneration and dental implants. Periodontology 2000 1994, 4, 109–118. [Google Scholar] [CrossRef]
- Aceves-Argemí, R.; Roca-Millan, E.; González-Navarro, B.; Marí-Roig, A.; Velasco-Ortega, E.; López-López, J. Titanium Meshes in Guided Bone Regeneration: A Systematic Review. Coatings 2021, 11, 316. [Google Scholar] [CrossRef]
- Rakhmatia, Y.D.; Ayukawa, Y.; Furuhashi, A.; Koyano, K. Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodont. Res. 2013, 57, 3–14. [Google Scholar] [CrossRef]
- Rasia-dal Polo, M.; Poli, P.P.; Rancitelli, D.; Beretta, M.; Maiorana, C. Alveolar ridge reconstruction with titanium meshes: A systematic review of the literature. Med. Oral Patol. Oral Cir. Bucal 2014, 19, e639–e646. [Google Scholar] [CrossRef]
- Her, S.; Kang, T.; Fien, M.J. Titanium mesh as an alternative to a membrane for ridge augmentation. J. Oral Maxillofac. Surg. 2012, 70, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Corinaldesi, G.; Pieri, F.; Sapigni, L.; Marchetti, C. Evaluation of survival and success rates of dental implants placed at the time of or after alveolar ridge augmentation with an autogenous mandibular bone graft and titanium mesh: A 3- to 8-year retrospective study. Int. J. Oral Maxillofac. Implant. 2009, 24, 1119–1128. [Google Scholar]
- Machtei, E.E. The effect of membrane exposure on the outcome of regenerative procedures in humans: A meta-analysis. J. Periodontol. 2001, 72, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Salmi, M. Additive Manufacturing Processes in Medical Applications. Materials 2021, 14, 191. [Google Scholar] [CrossRef]
- Huang, S.; Wei, H.; Li, D. Additive manufacturing technologies in the oral implant clinic: A review of current applications and progress. Front. Bioeng. Biotechnol. 2023, 11, 1100155. [Google Scholar] [CrossRef]
- Abduo, J.; Lyons, K.; Bennamoun, M. Trends in computer-aided manufacturing in prosthodontics: A review of the available streams. Int. J. Dent. 2014, 2014, 783948. [Google Scholar] [CrossRef]
- Zhou, L.; Miller, J.; Vezza, J.; Mayster, M.; Raffay, M.; Justice, Q.; Al Tamimi, Z.; Hansotte, G.; Sunkara, L.D.; Bernat, J. Additive Manufacturing: A Comprehensive Review. Sensors 2024, 24, 2668. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, J. Application of 3D Printing Technology in Dentistry: A Review. Polymers 2025, 17, 886. [Google Scholar] [CrossRef]
- Wang, C.; Hu, Y.; Zhong, C.; Lan, C.; Li, W.; Wang, X. Microstructural evolution and mechanical properties of pure Zn fabricated by selective laser melting. Mater. Sci. Eng. A 2022, 846, 143276. [Google Scholar] [CrossRef]
- Kouhi, M.; de Souza Araújo, I.J.; Asa’ad, F.; Zeenat, L.; Bojedla, S.S.R.; Pati, F.; Zolfagharian, A.; Watts, D.C.; Bottino, M.C.; Bodaghi, M. Recent advances in additive manufacturing of patient-specific devices for dental and maxillofacial rehabilitation. Dent. Mater. 2024, 40, 700–715. [Google Scholar] [CrossRef]
- Khaing, M.W.; Fuh, J.Y.H.; Lu, L. Direct metal laser sintering for rapid tooling: Processing and characterisation of EOS parts. J. Mater. Process. Technol. 2001, 113, 269–272. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; Catalá-López, F.; Aromataris, E.; Lockwood, C. How to properly use the PRISMA statement. Syst. Rev. 2021, 10, 117. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Qureshi, R.; Mattis, P.; Lisy, K.; et al. Chapter 7: Systematic reviews of etiology and risk. In JBI Manual for Evidence Synthesis; Aromataris, E., Munn, Z., Eds.; JBI: Adelaide, South Australia, 2020; Available online: https://synthesismanual.jbi.global (accessed on 14 June 2025).
- Munn, Z.; Barker, T.H.; Moola, S.; Tufanaru, C.; Stern, C.; McArthur, A.; Stephenson, M.; Aromataris, E. Methodological quality of case series studies: An introduction to the JBI critical appraisal tool. JBI Evid. Synth. 2020, 18, 2127–2133. [Google Scholar] [CrossRef]
- Ciocca, L.; Fantini, M.; De Crescenzio, F.; Corinaldesi, G.; Scotti, R. Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med. Biol. Eng. Comput. 2011, 49, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Ciocca, L.; Lizio, G.; Baldissara, P.; Sambuco, A.; Scotti, R.; Corinaldesi, G. Prosthetically CAD-CAM-Guided Bone Augmentation of Atrophic Jaws Using Customized Titanium Mesh: Preliminary Results of an Open Prospective Study. J. Oral Implantol. 2018, 44, 131–137. [Google Scholar] [CrossRef]
- Cucchi, A.; Bianchi, A.; Calamai, P.; Rinaldi, L.; Mangano, F.; Vignudelli, E.; Corinaldesi, G. Clinical and volumetric outcomes after vertical ridge augmentation using computer-aided-design/computer-aided manufacturing (CAD/CAM) customized titanium meshes: A pilot study. BMC Oral Health 2020, 20, 219. [Google Scholar] [CrossRef]
- Chiapasco, M.; Casentini, P.; Tommasato, G.; Dellavia, C.; Del Fabbro, M. Customized CAD/CAM titanium meshes for the guided bone regeneration of severe alveolar ridge defects: Preliminary results of a retrospective clinical study in humans. Clin. Oral Implant. Res. 2021, 32, 498–510. [Google Scholar] [CrossRef]
- Cucchi, A.; Vignudelli, E.; Franceschi, D.; Randellini, E.; Lizio, G.; Fiorino, A.; Corinaldesi, G. Vertical and horizontal ridge augmentation using customized CAD/CAM titanium mesh with versus without resorbable membranes. A randomized clinical trial. Clin. Oral Implant. Res. 2021, 32, 1411–1424. [Google Scholar] [CrossRef]
- Dellavia, C.; Canciani, E.; Pellegrini, G.; Tommasato, G.; Graziano, D.; Chiapasco, M. Histological assessment of mandibular bone tissue after guided bone regeneration with customized computer-aided design/computer-assisted manufacture titanium mesh in humans: A cohort study. Clin. Implant Dent. Relat. Res. 2021, 23, 600–611. [Google Scholar] [CrossRef]
- Gelețu, G.L.; Burlacu, A.; Murariu, A.; Andrian, S.; Golovcencu, L.; Baciu, E.-R.; Maftei, G.; Onica, N. Customized 3D-Printed Titanium Mesh Developed for an Aesthetic Zone to Regenerate a Complex Bone Defect Resulting after a Deficient Odontectomy: A Case Report. Medicina 2022, 58, 1192. [Google Scholar] [CrossRef]
- Kurtiş, B.; Şahin, S.; Gürbüz, S.; Yurduseven, S.; Altay, C.; Kurtiş, B.; Ayyıldız, S.; Barış, E. Vertical Bone Augmentation with Customized CAD/CAM Titanium Mesh for Severe Alveolar Ridge Defect in the Posterior Mandible: A Case Letter. J. Oral Implantol. 2023, 49, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, A.; Bettini, S.; Tedeschi, L.; Urban, I.; Franceschi, D.; Fiorino, A.; Corinaldesi, G. Complication, vertical bone gain, volumetric changes after vertical ridge augmentation using customized reinforced PTFE mesh or Ti-mesh. A non-inferiority randomized clinical trial. Clin. Oral Implant. Res. 2024, 35, 1616–1639. [Google Scholar] [CrossRef] [PubMed]
- Giragosyan, K.; Chenchev, I.; Ivanova, V. Linear bone gain and healing complication rate comparative outcomes following ridge augmentation with custom 3D printed titanium mesh vs Ti-reinforced dPTFE. A randomized clinical trial. Folia Med. 2024, 66, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Fontana, F.; Maschera, E.; Rocchietta, I.; Simion, M. Clinical classification of complications in guided bone regeneration procedures by means of a nonresorbable membrane. Int. J. Periodontics Restor. Dent. 2011, 31, 265–273. [Google Scholar]
- Ferraz, M.P. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials. Materials 2023, 16, 4117. [Google Scholar] [CrossRef]
- Yotsova, R.; Peev, S. Biological Properties and Medical Applications of Carbonate Apatite: A Systematic Review. Pharmaceutics 2024, 16, 291. [Google Scholar] [CrossRef]
- Battafarano, G.; Rossi, M.; De Martino, V.; Marampon, F.; Borro, L.; Secinaro, A.; Del Fattore, A. Strategies for Bone Regeneration: From Graft to Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 1128. [Google Scholar] [CrossRef]
- Ishikawa, K. Carbonate apatite bone replacement: Learn from the bone. J. Ceram. Soc. Jpn. 2019, 127, 595–601. [Google Scholar] [CrossRef]
- Zecha, P.J.; Schortinghuis, J.; van der Wal, J.E.; Nagursky, H.; van den Broek, K.C.; Sauerbier, S.; Vissink, A.; Raghoebar, G.M. Applicability of equine hydroxyapatite collagen (eHAC) bone blocks for lateral augmentation of the alveolar crest. A histological and histomorphometric analysis in rats. Int. J. Oral Maxillofac. Surg. 2011, 40, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, Z.; Doukarsky-Marx, T.; Nasatzky, E.; Goultschin, J.; Ranly, D.M.; Greenspan, D.C.; Sela, J.; Boyan, B.D. Differential effects of bone graft substitutes on regeneration of bone marrow. Clin. Oral Implant. Res. 2008, 19, 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- Iezzi, G.; Degidi, M.; Piattelli, A.; Mangano, C.; Scarano, A.; Shibli, J.A.; Perrotti, V. Comparative histological results of different biomaterials used in sinus augmentation procedures: A human study at 6 months. Clin. Oral Implant. Res. 2012, 23, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Bannister, S.R.; Powell, C.A. Foreign body reaction to anorganic bovine bone and autogenous bone with platelet-rich plasma in guided bone regeneration. J. Periodontol. 2008, 79, 1116–1120. [Google Scholar] [CrossRef]
- Oryan, A.; Alidadi, S.; Moshiri, A.; Maffulli, N. Bone regenerative medicine: Classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014, 9, 18. [Google Scholar] [CrossRef]
- Titsinides, S.; Agrogiannis, G.; Karatzas, T. Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. Jpn. Dent. Sci. Rev. 2019, 55, 26–32. [Google Scholar] [CrossRef]
- Goutam, M.; Batra, N.; Jyothirmayee, K.; Bagrecha, N.; Deshmukh, P.; Malik, S. A Comparison of Xenograft Graft Material and Synthetic Bioactive Glass Allograft in Immediate Dental Implant Patients. J. Pharm. Bioallied Sci. 2022, 14, S980–S982. [Google Scholar] [CrossRef]
- Yazdi, F.K.; Mostaghni, E.; Moghadam, S.A.; Faghihi, S.; Monabati, A.; Amid, R. A comparison of the healing capabilities of various grafting materials in critical-size defects in guinea pig calvaria. Int. J. Oral Maxillofac. Implant. 2013, 28, 1370–1376. [Google Scholar] [CrossRef]
- Sohn, H.S.; Oh, J.K. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater. Res. 2019, 23, 9. [Google Scholar] [CrossRef] [PubMed]
- Félix Lanao, R.P.; Leeuwenburgh, S.C.; Wolke, J.G.; Jansen, J.A. In vitro degradation rate of apatitic calcium phosphate cement with incorporated PLGA microspheres. Acta Biomater. 2011, 7, 3459–3468. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, F.; Gehrke, S.A.; Alla, I.; Tari, S.R.; Scarano, A. The Early Exposure Rate and Vertical Bone Gain of Titanium Mesh for Maxillary Bone Regeneration: A Systematic Review and Meta-Analysis. Dent. J. 2025, 13, 52. [Google Scholar] [CrossRef] [PubMed]
Authors | Sample Size | Vertical Bone Gain (VBG) | Horizontal Bone Gain (HBG) | Type of Bone Graft |
---|---|---|---|---|
Ciocca et al., 2011 [29] | 1 patient | 2.57 mm | 3.41 mm | Autologous bone with alloplastic material 1:1 ratio |
Ciocca et al., 2018 [30] | 9 patients | 1.72 mm to 4.1 mm in mandible, 2.14 mm to 6.88 mm in maxilla | n.i. | Autologous bone with an organic bovine bone 1:1 |
Cucchi et al., 2020 [31] | 10 patients | 4.5 ± 1.8 mm | n.i. | Autologous bone and xenograft with peripheral venous blood 1:1 ratio |
Chiapasco et al., 2021 [32] | 41 patients | 4.78 mm | 6.35 mm | Autologous bone with bovine bone material 1:1 ratio |
Cucchi et al., 2021 [33] | 30 patients | 4.74 mm in the group where customized titanium mesh was solely applied, 6.36 mm in the group where the mesh was covered with collagen membrane | n.i. | Autologous bone and xenograft with peripheral venous blood 1:1 ratio, with or without collagen membrane |
Dellavia et al., 2021 [34] | 20 patients | 5.20 mm | 6.80 mm | Autologous bone with DBBM with collagen membrane |
Geletu et al., 2022 [35] | 1 patient | 11.63 mm length | 10.34 mm width | Allograft bone with pure mineral bovine bone 1:1 ratio |
Kurtis et al., 2023 [36] | 1 patient | 6.9 mm | 1.6 mm | Autologous bone with DBBM in a 50:50 ratio and i-PRF |
Cucchi et al., 2024 [37] | 48 patients | 5.18 ± 1.61 mm | n.i. | Autologous bone and xenograft with peripheral venous blood 1:1 ratio |
Giragosyan et al., 2024 [38] | 20 patients | 3.65 ± 1.73 mm | 2.48 ± 1.03 mm | Autologous bone with xenograft 1:1 ratio |
Authors | Sample Size | Healing Time | Surgical Complications | Healing Complications |
---|---|---|---|---|
Ciocca et al., 2011 [29] | 1 patient | 8 months | No complication | No complication |
Ciocca et al., 2018 [30] | 9 patients | 6 ÷ 8 months | n.i. | 3 premature exposure, 3 delayed exposure, 1 removed with infection |
Cucchi et al., 2020 [31] | 10 patients | 6 ÷ 8 months | 30% (one permanent paresthesia, one temporary paresthesia, one hematoma) | 10% (early exposure without infection) |
Chiapasco et al., 2021 [32] | 41 patients | 5 ÷ 12 months (average 7.3 months) | n.i. | In 11 out of 53 sites (ca. 21%; 3 sites with limited exposure, 3 sites with exposure and minimal bone loss, 3 sites with partial bone loss, 1 site with early mesh removal, one site with failed restoration) |
Cucchi et al., 2021 [33] | 30 patients | 6 months | 4 neurological lesions (paresthesia), 3 technical complications (2 partial mesh fractures and 1 partial mesh misfitting) 13.3% the group where customized titanium mesh was solely applied; 26.7% in the group where the mesh was covered with collagen membrane | 5 mesh exposures (3 early and 2 late exposures) and 2 infections without exposure Healing complications did not show statistical differences between the two study groups |
Dellavia et al., 2021 [34] | 20 patients | 9 months | n.i. | 3 mesh exposures (2 early exposures, 1 late exposure) without infection |
Geletu et al., 2022 [35] | 1 patient | 6 months | No complications | No complications |
Kurtis et al., 2023 [36] | 1 patient | 9 months | No complications | No complications |
Cucchi et al., 2024 [37] | 48 patients | 6 months—mandible 9 months—maxilla | 12% (one flap perforation and two temporary paresthesia) | 8.3% (one case of point-like exposure with exudate, one case of late abscess without exposure) |
Giragosyan et al., 2024 [38] | 20 patients | At least 6 months | n.i. | 33.3% |
JBI Checklist Questionnaire | Geletu et al., 2022 [35] | Ciocca et al., 2011 [29] | Kurtis et al., 2023 [36] |
---|---|---|---|
1. Were patient’s demographic characteristics clearly described? | Yes | Yes | Yes |
2. Was the patient’s history clearly described and presented as a timeline? | Yes | Yes | Yes |
3. Was the current clinical condition of the patient on presentation clearly described? | Yes | Yes | Yes |
4. Were diagnostic tests or assessment methods and the results clearly described? | Yes | Yes | Yes |
5. Was the intervention(s) or treatment procedure(s) clearly described? | Yes | Yes | Yes |
6. Was the post-intervention clinical condition clearly described? | Yes | Yes | Yes |
7. Were adverse events (harms) or unanticipated events identified and described? | Yes | Unclear | Yes |
8. Does the case report provide takeaway lessons? | Yes | Yes | Yes |
JBI for Case Series | Dellavia et al., 2021 [34] |
---|---|
Were there clear criteria for inclusion in the case series? | Yes |
Was the condition measured in a standard, reliable way for all participants included in the case series? | Yes |
Were valid methods used for identification of the condition for all participants included in the case series? | Yes |
Did the case series have consecutive inclusion of participants? | Unclear |
Did the case series have complete inclusion of participants? | Yes |
Was there clear reporting of the demographics of the participants in the study? | Yes |
Was there clear reporting of clinical information of the participants? | Yes |
Were the outcomes or follow-up results of cases clearly reported? | Yes |
Was there clear reporting of the presenting site(s)/clinic(s) demographic information? | Yes |
Was statistical analysis appropriate? | Yes |
Method | Reference | Bone Gain | Average |
---|---|---|---|
DMLS | Cucchi et al., 2020 [31] | 4.5 ± 1.8 mm VBG | 3.62 mm VBG 3.41 mm HBG |
Ciocca et al., 2011 [29] | 2.57 mm VBG 3.41 mm HBG | ||
Ciocca el al., 2018 [30] | 1.72 mm to 4.1 mm in mandible 2.14 mm to 6.88 mm in maxilla | ||
SLS | Cucchi et al., 2024 [37] | 5.18 ± 1.61 mm VBG | 3.402 VBG 4.415 ± 1.03 HBG |
Chiapasco et al., 2021 [32] | 4.78 mm VBG 6.35 mm HBG | ||
Giragosyan et al., 2024 [38] | 3.65 ± 1.73 mm VBG 2.48 ± 1.03 mm HBG | ||
Dellavia et al., 2021 [34] | 5.20 mm VBG 6.80 mm HBG | ||
SLM | Geletu et al., 2022 [35] | 11.63 mm length 10.34 mm width | 7.407 VBG 5.97 HBG |
Kurtis et al., 2023 [36] | 6.9 mm VBG 1.6 mm HBG | ||
Cucchi et al., 2021 [33] | 4.74 mm VBG in group M− 6.36 mm VBG in group M+ |
Method | Reference | Complication Rate | Average |
---|---|---|---|
DMLS | Cucchi et al., 2020 [31] | 10% due to early exposure without infection 30% surgical complication rate | 25.3% exposure 10% complication rate 3.66% removed with purulent infection |
Ciocca et al., 2011 [29] | No complications | ||
Ciocca et al., 2018 [30] | 3 premature exposures 3 delayed exposures 1 removed with purulent infection | ||
SLS | Cucchi et al., 2024 [37] | 8.3% healing complication 12% surgical complications | 19.8% complication rate |
Chiapasco et al., 2021 [32] | Complications in 11 out of 53 sites occurred 15 to 150 days after the surgery | ||
Giragosyan et al., 2024 [38] | 33.3% complication rate | ||
Dellavia et al., 2021 [34] | 3 mesh exposures (2 early and 1 delayed exposure) | ||
SLM | Cucchi et al., 2021 [33] | 3 early exposures 2 late exposures 2 infections without exposure 3 technical complications | 11.111% complication rate |
Kurtis et al., 2023 [36] | No complications | ||
Geletu et al., 2022 [35] | No complications |
Method | Reference | Type of Bone Graft | Average |
---|---|---|---|
DMLS | Cucchi et al., 2020 [31] | Autologous bone and xenograft with peripheral venous blood 1:1 ratio | 100% autologous bone in combination with a secondary grafting material in a 1:1 ratio |
Ciocca et al., 2011 [29] | Autologous bone with alloplastic material 1:1 ratio | ||
Ciocca et al., 2018 [30] | Autologous bone with an organic bovine bone 1:1 | ||
SLS | Cucchi et al., 2024 [37] | Autologous bone and xenograft with peripheral venous blood 1:1 ratio | 100% autologous bone in combination with a xenograft in a 1:1 ratio |
Chiapasco et al., 2021 [32] | Autologous bone with bovine bone material 1:1 ratio | ||
Giragosyan et al., 2024 [38] | Autologous bone with xenograft 1:1 ratio | ||
Dellavia et al., 2021 [34] | Autologous bone with DBBM with collagen membrane | ||
SLM | Cucchi et al., 2021 [33] | Autologous bone and xenograft with peripheral venous blood 1:1 ratio, with or without collagen membrane | 66.66% autologus bone with 1:1 xenograft 33.33% allograft with xenograft |
Kurtis et al., 2023 [36] | Autologous bone with DBBM in a 50:50 ratio and i-PRF | ||
Geletu et al., 2022 [35] | Allograft bone with pure mineral bovine bone 1:1 ratio |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savov, V.; Peev, S.; Yotsova, R.; Rogova, V.-V. Influence of SLM-, SLS-, and DMLS-Manufactured Titanium Meshes on Bone Gain Parameters and Complications: A Systematic Review. Dent. J. 2025, 13, 387. https://doi.org/10.3390/dj13090387
Savov V, Peev S, Yotsova R, Rogova V-V. Influence of SLM-, SLS-, and DMLS-Manufactured Titanium Meshes on Bone Gain Parameters and Complications: A Systematic Review. Dentistry Journal. 2025; 13(9):387. https://doi.org/10.3390/dj13090387
Chicago/Turabian StyleSavov, Viktor, Stefan Peev, Ralitsa Yotsova, and Varvara-Velika Rogova. 2025. "Influence of SLM-, SLS-, and DMLS-Manufactured Titanium Meshes on Bone Gain Parameters and Complications: A Systematic Review" Dentistry Journal 13, no. 9: 387. https://doi.org/10.3390/dj13090387
APA StyleSavov, V., Peev, S., Yotsova, R., & Rogova, V.-V. (2025). Influence of SLM-, SLS-, and DMLS-Manufactured Titanium Meshes on Bone Gain Parameters and Complications: A Systematic Review. Dentistry Journal, 13(9), 387. https://doi.org/10.3390/dj13090387