Clinical and Radiographic Outcomes of Autologous Platelet-Rich Products in Regenerative Endodontics: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Assessment of the Risk of Bias
2.5. Results Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of Included Studies
Quality Assessment of Included Studies
3.3. Clinical Outcomes
3.4. Radiographic Outcomes
4. Discussion
4.1. Comparison of PRP, PRF, and BCS
4.2. Outcome Assessment and Methodological Considerations
4.3. Variability in REP Protocols
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rafter, M. Apexification: A review. Dent. Traumatol. 2005, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Malek, M.; Sigurdsson, A.; Lin, L.; Kahler, B. Regenerative endodontics: A comprehensive review. Int. Endod. J. 2018, 51, 1367–1388. [Google Scholar] [CrossRef] [PubMed]
- Lovelace, T.W.; Henry, M.A.; Hargreaves, K.M.; Diogenes, A. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J. Endod. 2011, 37, 133–138. [Google Scholar] [CrossRef]
- Lolato, A.; Bucchi, C.; Taschieri, S.; Kabbaney, A.E.; Fabbro, M.D. Platelet concentrates for revitalization of immature necrotic teeth: A systematic review of the clinical studies. Platelets 2016, 27, 383–392. [Google Scholar] [CrossRef]
- Banchs, F.; Trope, M. Revascularization of immature permanent teeth with apical periodontitis: New treatment protocol? J. Endod. 2004, 30, 196–200. [Google Scholar] [CrossRef]
- Hargreaves, K.M.; Giesler, T.; Henry, M.; Wang, Y. Regeneration potential of the young permanent tooth: What does the future hold? Pediatr. Dent. 2008, 30, 253–260. [Google Scholar] [CrossRef]
- Jadhav, G.R.; Shah, N.; Logani, A. Platelet-rich plasma supplemented revascularization of an immature tooth associated with a periapical lesion in a 40-year-old man. Case Rep. Dent. 2014, 2014, 479584. [Google Scholar] [CrossRef]
- Haupt, J.L.; Donnelly, B.P.; Nixon, A.J. Effects of platelet-derived growth factor-BB on the metabolic function and morphologic features of equine tendon in explant culture. Am. J. Vet. Res. 2006, 67, 1595–1600. [Google Scholar] [CrossRef] [PubMed]
- Dohan, D.M.; Choukroun, J.; Diss, A.; Dohan, S.L.; Dohan, A.J.; Mouhyi, J.; Gogly, B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 101, e37–e44. [Google Scholar] [CrossRef]
- Everts, P.A.; Knape, J.T.; Weibrich, G.; Schönberger, J.P.; Hoffmann, J.; Overdevest, E.P.; Box, H.A.; Van Zundert, A. Platelet-rich plasma and platelet gel: A review. J. Extracorpor. Technol. 2006, 38, 174–187. [Google Scholar] [CrossRef]
- Del Fabbro, M.; Corbella, S.; Sequeira-Byron, P.; Tsesis, I.; Rosen, E.; Lolato, A.; Taschieri, S. Endodontic procedures for retreatment of periapical lesions. Cochrane Database Syst. Rev. 2016, 10, CD005511. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS peer review of electronic search strategies: 2015 guideline statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Shivashankar, V.Y.; Johns, D.A.; Maroli, R.K.; Sekar, M.; Chandrasekaran, R.; Karthikeyan, S.; Renganathan, S.K. Comparison of the effect of PRP, PRF and induced bleeding in the revascularization of teeth with necrotic pulp and open apex: A triple blind randomized clinical trial. J. Clin. Diagn. Res. JCDR 2017, 11, ZC34. [Google Scholar] [CrossRef] [PubMed]
- ElSheshtawy, A.; Nazzal, H.; El Shahawy, O.; El Baz, A.; Ismail, S.; Kang, J.; Ezzat, K. The effect of platelet-rich plasma as a scaffold in regeneration/revitalization endodontics of immature permanent teeth assessed using 2-dimensional radiographs and cone beam computed tomography: A randomized controlled trial. Int. Endod. J. 2020, 53, 905–921. [Google Scholar] [CrossRef] [PubMed]
- Elheeny, A.A.H.; Tony, G.E. Two-dimensional radiographs and cone-beam computed tomography assessment of concentrated growth factor and platelet-rich fibrin scaffolds in regenerative endodontic treatment of immature incisors with periapical radiolucency: A randomized clinical trial. J. Endod. 2024, 50, 792–806. [Google Scholar] [CrossRef]
- Bezgin, T.; Yilmaz, A.D.; Celik, B.N.; Kolsuz, M.E.; Sonmez, H. Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment. J. Endod. 2015, 41, 36–44. [Google Scholar] [CrossRef]
- Abo-Heikal, M.M.; El-Shafei, J.M.; Shouman, S.A.; Roshdy, N.N. Evaluation of the efficacy of injectable platelet-rich fibrin versus platelet-rich plasma in the regeneration of traumatized necrotic immature maxillary anterior teeth: A randomized clinical trial. Dent. Traumatol. 2024, 40, 61–75. [Google Scholar] [CrossRef]
- Ulusoy, A.T.; Turedi, I.; Cimen, M.; Cehreli, Z.C. Evaluation of blood clot, platelet-rich plasma, platelet-rich fibrin, and platelet pellet as scaffolds in regenerative endodontic treatment: A prospective randomized trial. J. Endod. 2019, 45, 560–566. [Google Scholar] [CrossRef]
- Rizk, H.M.; Al-Deen, M.S.S.; Emam, A.A. Pulp revascularization/revitalization of bilateral upper necrotic immature permanent central incisors with blood clot vs platelet-rich fibrin scaffolds—A split-mouth double-blind randomized controlled trial. Int. J. Clin. Pediatr. Dent. 2020, 13, 337. [Google Scholar] [CrossRef] [PubMed]
- Alagl, A.; Bedi, S.; Hassan, K.; AlHumaid, J. Use of platelet-rich plasma for regeneration in non-vital immature permanent teeth: Clinical and cone-beam computed tomography evaluation. J. Int. Med. Res. 2017, 45, 583–593. [Google Scholar] [CrossRef]
- Abd El-Hady, A.Y.; Badr, A.E.-S. The Efficacy of Advanced Platelet-rich Fibrin in Revascularization of Immature Necrotic Teeth. J. Contemp. Dent. Pract. 2022, 23, 725–732. [Google Scholar] [CrossRef]
- Rizk, H.M.; Al-Deen, M.S.S.; Emam, A.A. Regenerative endodontic treatment of bilateral necrotic immature permanent maxillary central incisors with platelet-rich plasma versus blood clot: A split mouth double-blinded randomized controlled trial. Int. J. Clin. Pediatr. Dent. 2019, 12, 332. [Google Scholar]
- Mattigatti, S.; Gharge, A. Regeneration of Open Root Apex in an Immature Anterior Teeth. J. Clin. Res. 2020, 7, 662–664. [Google Scholar] [CrossRef]
- Narang, I.; Mittal, N.; Mishra, N. A comparative evaluation of the blood clot, platelet-rich plasma, and platelet-rich fibrin in regeneration of necrotic immature permanent teeth: A clinical study. Contemp. Clin. Dent. 2015, 6, 63–68. [Google Scholar] [CrossRef]
- Sharma, S.; Mittal, N. A comparative evaluation of natural and artificial scaffolds in regenerative endodontics: A clinical study. Saudi Endod. J. 2016, 6, 9–15. [Google Scholar]
- Uppala, S. A comparative evaluation of PRF, blood clot and collagen scaffold in regenerative endodontics. Eur. J. Mol. Clin. Med. 2020, 7, 3401–3410. [Google Scholar]
- Ramachandran, N.; Singh, S.; Podar, R.; Kulkarni, G.; Shetty, R.; Chandrasekhar, P. A comparison of two pulp revascularization techniques using platelet-rich plasma and whole blood clot. J. Conserv. Dent. Endod. 2020, 23, 637–643. [Google Scholar] [CrossRef]
- Markandey, S.; Das Adhikari, H. Evaluation of blood clot, platelet-rich plasma, and platelet-rich fibrin-mediated regenerative endodontic procedures in teeth with periapical pathology: A CBCT study. Restor. Dent. Endod. 2022, 47, e41. [Google Scholar] [CrossRef]
- Ragab, R.A.; Lattif, A.E.A.E.; Dokky, N.A.E.W.E. Comparative study between revitalization of necrotic immature permanent anterior teeth with and without platelet rich fibrin: A randomized controlled trial. J. Clin. Pediatr. Dent. 2019, 43, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Nekoofar, M. Challenges in Regenerative Endodontics? In Proceedings of the 3rd National Festival and International Congress on Stem Cell and Regenerative Medicine, Tehran, Iran, 28 November–1 December 2018.
- Higgins, J.P.; Li, T.; Deeks, J.J. Choosing effect measures and computing estimates of effect. In Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 143–176. [Google Scholar]
- Welch, B.L. The generalization of ‘STUDENT’S’ problem when several different population varlances are involved. Biometrika 1947, 34, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Haralur, S.B.; Al-Qahtani, A.S.; Al-Qarni, M.M.; Al-Homrany, R.M.; Aboalkhair, A.E. Influence of remaining dentin wall thickness on the fracture strength of endodontically treated tooth. J. Conserv. Dent. Endod. 2016, 19, 63–67. [Google Scholar] [CrossRef]
- Grossmann, Y.; Sadan, A. The prosthodontic concept of crown-to-root ratio: A review of the literature. J. Prosthet. Dent. 2005, 93, 559–562. [Google Scholar] [CrossRef]
- Venkatesh, E.; Elluru, S.V. Cone beam computed tomography: Basics and applications in dentistry. J. Istanb. Univ. Fac. Dent. 2017, 51, 102–121. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Kawashima, N.; Ichinose, S.; Nara, K.; Noda, S.; Okiji, T. EDTA treatment for sodium hypochlorite–treated dentin recovers disturbed attachment and induces differentiation of mouse dental papilla cells. J. Endod. 2018, 44, 256–262. [Google Scholar] [CrossRef]
- Zeng, Q.; Nguyen, S.; Zhang, H.; Chebrolu, H.P.; Alzebdeh, D.; Badi, M.A.; Kim, J.R.; Ling, J.; Yang, M. Release of growth factors into root canal by irrigations in regenerative endodontics. J. Endod. 2016, 42, 1760–1766. [Google Scholar] [CrossRef]
Author (Year) | Study Design | Country | Teeth Type | Etiology of Pulp Necrosis | Scaffold | Number Participants (Number of Participants Lost to Follow-Up) | Number of Teeth (Number of Teeth Lost to Follow-Up) | Sex | Age Range (Years) | Follow-Up Protocol (Months) |
---|---|---|---|---|---|---|---|---|---|---|
Abo-Heikal et al. (2024) [19] | RCT, parallel | Egypt | Maxillary incisors | Dental trauma | PRF | 12(0) | 12(0) | 9M, 3F | 12–21 | 6, 12 |
PRP | 12(0) | 12(0) | 9M, 3F | |||||||
Elheeny et al. (2024) [17] | RCT, parallel | Egypt | Maxillary incisors | Dental trauma | PRF | 27(1) | 33(2) | 16M, 11F | 8–10 | 6, 12 |
CGF | 28(1) | 33(2) | 14M, 14F | |||||||
El-Hady et al. (2022) [23] | RCT, parallel | Egypt | Maxillary incisors | Dental trauma | PRF | NR(1) † | 10(1) | NR | 8–12 | 3, 6, 12 |
BCS | NR(1) † | 10(1) | NR | |||||||
ElSheshtawy et al. (2020) [16] | RCT, parallel | Egypt | Maxillary and mandibular incisors | Dental trauma/anomalies | PRP | 13(0) | 14(0) | 5M, 8F | 8–12 | 3, 6, 9, 12 |
BCS | 13(0) | 17(0) | 10M, 3F | |||||||
Rizk et al. (2020) [21] | RCT, split mouth | Egypt | Maxillary central incisors | Dental trauma | PRF | 13(1) | 13(1) | 6M, 6F ‡ | 9.1 ± 1.2 § | 3, 6, 9, 12 |
BCS | 13(1) | 13(1) | 6M, 6F ‡ | |||||||
Ulusoy et al. (2019) [20] | RCT, parallel | Turkey | Maxillary incisors | Dental trauma | PRP | 88(15) | 22(4) | 8M, 10F | 7–11 | Variable, ranged from 10 to 49 months |
PRF | 22(5) | 10M, 7F | ||||||||
BCS | 22(1) | 13M, 8F | ||||||||
Rizk et al. (2019) [24] | RCT, split mouth | Egypt | Maxillary central incisors | Dental trauma | PRP | 13(0) | 13(0) | 7M, 6F | 9.1 ± 1.0 § | 3, 6, 9, 12 |
BCS | 13(0) | 13(0) | 7M, 6F | |||||||
Alagl et al. (2017) [22] | RCT, split mouth | Saudi Arabia | Maxillary incisors and maxillary/mandibular premolars | Dental trauma /caries | PRP | 16(1) | 16(1) | 10M, 6F | 8–11 | 3, 6, 9, 12 |
BCS | 16(1) | 16(1) | 10M, 6F | |||||||
Shivashankar et al. (2017) [15] | RCT, parallel | India | Maxillary and mandibular incisors | Dental trauma /caries | PRF | 20(0) | 20(0) | 32M, 28F | 6–28 | 3, 6, 9, 18 |
PRP | 20(1) | 20(1) | ||||||||
BCS | 20(5) | 20(5) | ||||||||
Bezgin et al. (2015) [18] | RCT, parallel | Turkey | Maxillary incisors and maxillary/mandibular premolars | Dental trauma /caries | PRP | 11(1) | 11(1) | 7M, 3F | 7–12 | 3, 6, 9, 18 |
BCS | 11(1) | 11(1) | 4M, 6F |
Author (Year) | APC Scaffold | Blood Withdrawal | Anticoagulant | Centrifugation Procedure | Activation Agent/Anticoagulant Antagonist | Application of Scaffold |
---|---|---|---|---|---|---|
Abo-Heikal et al. (2024) [19] | PRP | 10 mL of intravenous blood from the antecubital vein | Di-Potassium EDTA | Two rounds (2400 rpm for 10 min and 3600 rpm for 15 min) | 10% calcium chloride | Injected into canal up to CEJ. |
Injectable–PRF | N/A | 700 rpm for 3 min | 10% calcium chloride | Injected into canal up to CEJ. | ||
Elheeny et al. (2024) [17] | PRF | 10 mL intravenous blood from antecubital vein | N/A | 3000 rpm for 10 min | N/A | Fractions were inserted via hand small plugger up to 3 mm below the CEJ |
CGF | N/A | Acceleration for 30 s, 2 min at 2700 rpm, 4 min at 2400 rpm, 4 min at 2700 rpm, 3 min at 3000 rpm, | N/A | |||
El-Hady et al. (2022) [23] | PRF | Standard venipuncture withdrawn from medial cubital vein | N/A | 1400 rpm for 14 min | N/A | PRF scaffold fragmented and placed in canal with a finger plugger. |
ElSheshtawy et al. (2020) [16] | PRP | Intravenous blood | Calcium citrate | NR | NR | Injected into canal up to CEJ. |
Rizk et al. (2020) [21] | PRF | 5 mL intravenous blood from antecubital vein | N/A | 2400 rpm for 12 min | N/A | Fractions were inserted via hand small plugger up to the CEJ |
Ulusoy et al. (2019) [20] | PRP | 20 mL intravenous blood | 15 mL citrate | 1250 rpm for 15 min | NR | PRP placed into canal to a level 3 mm below CEJ. |
PRF | 10 mL intravenous blood from antecubital vein | N/A | 3000 rpm for 10 min | N/A | Fractions were inserted via hand small plugger up to 3 mm below the CEJ. | |
Rizk et al. (2019) [24] | PRP | 4.5 mL of intravenous blood from the antecubital vein | 0.5 mL acid citrate dextrose | 2400 rpm for 10 min, followed by 3600 rpm for 15 min | 10% calcium chloride | PRP soaked on sterile collagen sponge and pushed beyond apical region and flush with the CEJ. |
Alagl et al. (2017) [22] | PRP | Intravenous blood withdrawn † | Not stated † | Two rounds of centrifugation † | 100 U/mL bovine thrombin/10% calcium chloride | Injected into canal up to CEJ. |
Shivashankar et al. (2017) [15] | PRP | 10 mL of intravenous blood | NR | NR | NR | NR |
PRF | N/A | NR | NR | NR | ||
Bezgin et al. (2015) [18] | PRP | Intravenous blood | NR | NR | 10% calcium chloride | Injected into canal up to CEJ. |
Author (Year) | Canal Disinfection | Blood Clot Scaffold Production | |
---|---|---|---|
Irrigant | Antibiotic | ||
Abo-Heikal et al. (2024) [19] | 20 mL 1.5% NaOCl, 20 mL sterile saline, 10 mL 17% EDTA | No antibiotics were used. | No blood clot. |
Elheeny et al. (2024) [17] | 20 mL 1.5% NaOCl for 5 min, 20 mL sterile saline for 5 min, 10 mL 17% EDTA | No antibiotics were used. | No blood clot. |
El-Hady et al. (2022) [23] | 20 mL 1.5% NaOCl for 5 min, 20 mL saline for 5 min | No antibiotics were used. | Size 25# K-file rotated 2 mm past apical foramen to induce bleeding up to CEJ. |
ElSheshtawy et al. (2020) [16] | 20 mL 2.5% NaOCl, 20 mL sterile saline, 10 mL 17% EDTA | 0.1 mg/mL mixture of 1:1:1: metronidazole, ciprofloxacin, minocycline | Size 20# K-file rotated 2 mm past apical foramen. |
Rizk et al. (2020) [21] | 2% NaOCl, 17% EDTA | 0.1 mg/mL mixture of 1:1:1: metronidazole, ciprofloxacin, minocycline | Unknown sized file used past periapical area to induce bleeding slightly below CEJ. |
Ulusoy et al. (2019) [20] | 20 mL 1.25% NaOCl | 60 mg/mL mixture of 1:1:1 clindamycin: ciprofloxacin, metronidazole | Size 15# K-file passed 1–2 mm beyond apex to induce bleeding to at least 3 mm below CEJ. The tooth was allowed to clot for 10 min. |
Rizk et al. (2019) [24] | 20 mL 2% NaOCl for 5 min, 20 mL 17% EDTA for 5 min | 0.1 mg/mL mixture of 1:1:1: metronidazole, ciprofloxacin, minocycline | Unknown sized file used to irritate periapical tissues to induce bleeding up to a point 2 mm below CEJ. The blood was allowed to clot for 10–15 min. |
Alagl et al. (2017) [22] | 20 mL 2.5% NaOCl, 20 mL sterile saline, 10 mL 0.12% chlorhexidine | 0.1 mg/mL mixture of 1:1:1: metronidazole, ciprofloxacin, minocycline | Size 20# K-file rotated 2 mm past apical foramen to induce bleeding up to CEJ. Blood was allowed to clot. |
Shivashankar et al. (2017) [15] | 5.25% NaOCl | 0.1 mg/mL mixture of 1:1:1: metronidazole, ciprofloxacin, minocycline | Size 20# K-file rotated 2 mm past apical foramen. |
Bezgin et al. (2015) [18] | 20 mL 2.5% NaOCl, 20 mL sterile saline, 10 mL 5% EDTA, 10 mL 0.12% chlorhexidine | 0.1 mg/mL mixture of 1:1:1: metronidazole, ciprofloxacin, minocycline | Size 20# K-file rotated past apical foramen. |
Study | Pre-Operative Periapical Diagnosis * | Clinical Success Rate (%) During Follow-Up | Complete Apical Closure (%) | Positive % Pulp Sensibility Response at 6 Months | Positive % Pulp Sensibility Response at 12 Months |
---|---|---|---|---|---|
Abo-Heikal et al. (2024) [19] | Healthy: 4.2%, chronic apical periodontitis: 29.2%, chronic periapical abscess: 20.8%, acute exacerbation of a chronic periapical lesion: 45.8% | PRF: 100 PRP: 100 | NR | PRF: 27.3 PRP: 18.2 | PRF: 36.4 PRP: 27.3 |
Elheeny et al. (2024) [17] | Symptomatic apical periodontitis: 47.5%, chronic apical abscess: 50.5% | PRF: 93.9 CGF: 93.9 | PRF: 96.9 CGF: 100 | NR | PRF: 48.5 CGF: 57.6 |
El-Hady et al. (2022) [23] | NR | PRF: 100 BCS: 100 | NR | NR | PRF: 33.3 BCS: 22.2 |
ElSheshtawy et al. (2020) [16] | NR | PRP: 85.7 BCS: 88 | NR | PRP: 0 BCS: 0 | PRP: 0 BCS: 0 |
Rizk et al. (2020) [21] | NR | PRF: 100 BCS: 100 | NR | PRF: 0 BCS: 0 | PRF: 0 BCS: 0 |
Ulusoy et al. (2019) [20] | NR | PRP: 100 PRF: 100 BCS: 100 | PRP: 66.7 PRF: 70.6 BCS: 76.2 | PRP: 61.1 PRF: 72.2 BCS: 42.8 | PRP: 72.2 PRF: 88.8 BCS: 68.1 |
Rizk et al. (2019) [24] | NR | PRF: 100 BCS: 100 | NR | PRF: 0 BCS: 0 | PRF: 0 BCS: 0 |
Alagl et al. (2017) [22] | NR | PRP: 100 BCS: 100 | PRP: 93 BCS: 50 | NR | PRP: 86.6 BCS: 40 |
Shivashankar et al. (2017) [15] | NR | PRP: 100 PRF: 90 BCS: 100 | NR | NR | PRP: 15.8 PRF: 15 BCS: 13.3 |
Bezgin et al. (2015) [18] | NR | PRP: 100 BCS: 90 | PRP: 70 BCS: 60 | NR | PRP: 50 BCS: 20 |
Author (Year) | APC Scaffold | Radiographic Imaging Modality | Summary Statistic | Results at 12 Months |
---|---|---|---|---|
Abo-Heikal et al. (2024) [19] | PRF, PRP | CBCT scan, intraoral periapical radiographs | Mean % increase in average root length | PRF: 3.61 ± 1.73, PRP: 3.17 ± 1.66, p = 0.54 |
Mean % decrease in average apical canal diameter | PRF: 18.52 ± 4.25, PRP: 13.62 ± 3.70, p = 0.008 | |||
Elheeny et al. (2024) [17] | PRF, CGF | CBCT scan, intraoral periapical radiographs | Mean (SD) absolute increase in root length (mm) | PRF: 1.16 (0.83) CGF: 2.42 (0.98), p < 0.001 |
El-Hady et al. (2022) [23] | PRF | Intraoral periapical radiographs | Mean (SD) absolute increase in root length (mm) | PRF: 1.5 (1.8 †), BCS: 1.9 (1.6 †) Mean (SE) difference = 0.4 (0.8), p = 0.69 ‡ |
Mean (SD) percentage increase in root length (%) | PRF: 9 (3), BCS: 15 (6) Mean (SE) difference = 5 (2), p = 0.10 | |||
ElSheshtawy et al. (2020) [16] | PRP | CBCT scan, intraoral periapical radiographs | Mean change in root length | No difference between groups |
Rizk et al. (2020) [21] | PRF | Intraoral periapical radiographs | Mean (SD) absolute increase in root length (mm) | BCS: 0.6 (0.2), PRF: 1.2 (0.5) Mean difference (SE) = 0.6 (0.2), p = 0.005 |
Mean (SD) percentage increase in root length (%) | BCS: 4 (1), PRF: 8 (4) Mean difference (SE) = 4 (1), p = 0.005 | |||
Ulusoy et al. (2019) [20] | PRF, PRP | Intraoral periapical radiographs | Mean (SD) percentage increase in root length (%) § | PRP: 5 (1), PRF: 7 (1), BCS: 5 (1) Mean difference (SE) for PRP vs. BCS = 0 (0.4), p > 0.05 Mean difference (SE) for PRF vs. BCS = 2 (0.5), p > 0.05 |
Rizk et al. (2019) [24] | PRP | Intraoral periapical radiographs | Mean (SD) absolute increase in root length (mm) | BCS: 0.7 (0.4), PRP: 1.5 (0.4) Mean difference (SE): 0.8 (0.2), p < 0.001 |
Mean (SD) percentage increase in root length (%) | BCS: 5 (3), PRP: 10 (3) Mean difference (SE): 5 (1), p < 0.001 | |||
Alagl et al. (2017) [22] | PRP | CBCT scan | Mean (SD) absolute increase in root length (mm) | BCS: 0.5 (0.4), PRP: 1.1 (0.6) Mean difference (SE) = 0.6 (0.2), p = 0.004 |
Shivashankar et al. (2017) [15] | PRF, PRP | Intraoral periapical radiographs | Mean (SD) percentage increase in root length (%) | PRF: Not reported, PRP: not reported |
Bezgin et al. (2015) [18] | PRP | Intraoral periapical radiographs | Increase in root area | PRP: 9.86%, BCS: 12.6%, p > 0.05 |
Study | APC Scaffold | Radiographic Imaging Modality | Summary Statistic | Results at 12 Months |
---|---|---|---|---|
Abo-Heikal et al. (2024) [19] | PRF, PRP | CBCT scan, intraoral periapical radiographs | Mean % increase in average root thickness | PRF: 3.61 ± 1.58, PRP: 3.09 ± 1.44, p = 0.375 |
Elheeny et al. (2024) [17] | PRF, CGF | CBCT scan, intraoral periapical radiographs | Root dentin thickness (mm) | PRF: 5.71, CGF: 5.99 |
El-Hady et al. (2022) [23] | PRF PRP | Intraoral periapical radiographs | Mean (SD) absolute increase in root thickness at 1/3 of root thickness (mm) | PRF: 0.7 (0.6 †), BCS: 0.7 (0.5 †) Mean difference (SE) = 0 (0.3), p = 0.50 ‡ |
Mean (SD) percentage increase in root thickness at 1/3 of root thickness (%) | PRF: 24 (7), BCS: 17 (5) Mean difference (SE) = 7 (3), p = 0.08 | |||
Mean (SD) absolute increase in root thickness at 2/3 of root thickness (mm) | PRF: 0.7 (0.4 †), BCS: 0.6 (0.5 †) Mean difference (SE) = 0.1 (0.2), p = 0.32 ‡ | |||
Mean (SD) percentage increase in root thickness at 2/3 of root thickness (%) | PRF: 28 (12), BCS: 18 (6) Mean difference (SE) = 10 (5), p = 0.14 | |||
ElSheshtawy et al. (2020) [16] | PRF | Intraoral periapical radiographs | Mean change in root dentinal thickness | No difference between groups |
Rizk et al. (2020) [21] | PRF | Intraoral periapical radiographs | Mean (SD) absolute increase in root thickness (mm) | PRF: 0.9 (0.4), BCS: 0.7 (0.5) Mean difference (SE) = 0.2 (0.2), p= 0.117 |
Ulusoy et al. (2019) [20] | PRF, PRP | Intraoral periapical radiographs | Mean (SD) percentage increase in root thickness (%) § | PRP: 19 (4), PRF: 11 (4), BCS: 12 (4) Mean difference (SE) for PRP vs. BCS = 7 (1), p > 0.05 Mean difference (SE) for PRF vs. BCS = −1 (1), p > 0.05 |
Rizk et al. (2019) [24] | PRP | Intraoral periapical radiographs | Mean (SD) absolute increase in root thickness (mm) | PRP: 1.0 (0.8), BCS: 0.7 (0.7) Mean difference (SE) = 0.3 (0.3), p = 0.002 |
Mean (SD) percentage increase in root thickness (%) | PRP: 39 (32), BCS: 26 (27) Mean difference (SE) = 14 (12), p = 0.002 | |||
Bezgin et al. (2015) [18] | PRP | Intraoral periapical radiographs | Increase in root area | PRP: 9.86%, BCS: 12.6%, p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Chen, W.; Fang, M.; Peters, O.A.; Hosseinpour, S. Clinical and Radiographic Outcomes of Autologous Platelet-Rich Products in Regenerative Endodontics: A Systematic Review and Meta-Analysis. Dent. J. 2025, 13, 236. https://doi.org/10.3390/dj13060236
Huang R, Chen W, Fang M, Peters OA, Hosseinpour S. Clinical and Radiographic Outcomes of Autologous Platelet-Rich Products in Regenerative Endodontics: A Systematic Review and Meta-Analysis. Dentistry Journal. 2025; 13(6):236. https://doi.org/10.3390/dj13060236
Chicago/Turabian StyleHuang, Raewyn, Wei Chen, Matthew Fang, Ove A. Peters, and Sepanta Hosseinpour. 2025. "Clinical and Radiographic Outcomes of Autologous Platelet-Rich Products in Regenerative Endodontics: A Systematic Review and Meta-Analysis" Dentistry Journal 13, no. 6: 236. https://doi.org/10.3390/dj13060236
APA StyleHuang, R., Chen, W., Fang, M., Peters, O. A., & Hosseinpour, S. (2025). Clinical and Radiographic Outcomes of Autologous Platelet-Rich Products in Regenerative Endodontics: A Systematic Review and Meta-Analysis. Dentistry Journal, 13(6), 236. https://doi.org/10.3390/dj13060236