Nickel Ion Release in Nickel-Containing Orthodontics Archwires: A Narrative Review of In Vitro and In Vivo Studies
Abstract
:1. Introduction
1.1. Allergic Reactions to Nickel Released from Nickel-Containing Alloys
1.2. Influence of Saliva and Other Environmental Factors on Nickel Release
2. Scope and Sources of Reviewed Literature
3. Key Findings from the Literature
3.1. In Vitro Studies of Ni-Containing Archwires
Artificial Saliva Composition | References |
---|---|
PBS (phosphate buffer saline); 4.6 pH PBS + 0.001% NaF; 4.8 pH PBS + 0.01% NaF; 5 pH PBS + 0.1% NaF; 5.6 pH | [41] |
0.844 mg Sodium chloride; 1.2 mg Potassium chloride; 0.146 mg Calcium chloride anhydrous; 0.052 mg Magnesium chloride 6 H2O; 0.34 mg Potassium phosphate dibasic; 60 mg 70% Sorbitol solution; 2 mg Methyl paraben; 3.5 mg Hydroxyethyl cellulose | [48] [30] [17] |
Sodium chloride 0.4 g, potassium chloride 1.21 g, sodium hypo phosphate 0.78 g, sodium sulfide 0.005 g, urea-1 g, distilled water, and deionized water 1000 mL. | [33] [29] |
Neutral solution: 1.5 mM Ca (Calcium), 0.9 mM P (Phosphorus), 20 mM Tris buffer, and 150 mM potassium chloride, pH 7.0 Acid solution: 2 mM Ca, 2 mM P, and 74 mM acetate buffer, pH 4.3 | [32] |
0.4 g KCl; 0.4 g NaCl; 0.906 g CaCl2·2H2O; 0.69 g NaH2PO4·2H2O; 0.005 g Na2S·9H2O; 1 g CO(NH2)2 | [18] |
Sodium chloride (0.84 mg/100 mL), Potassium chloride (1.2 mg/100 mL), Magnesium chloride (0.052 mg/100 mL), Calcium chloride (0.146 mg/100 mL), Potassium dihydrogen phosphate (0.34 mg/100 mL), Sorbitol solution (70%) at a volume of 60 mL, and Hydroxyethyl cellulose (3.5 mg/100 mL) | [49] |
1.5 g/L KCl, 1.5 g/L NaHCO3, 0.5 g/L 0.5 g/L KSCN, and 0.9 g/L lactic acid | [37] [42] [46] |
7.69 g of K2HPO4, 2.46 g of KH2PO4, 5.3 g of NaCl, and 9.3 g of KCl added to 1000 mL of distilled water | [47] |
3.2. In Vivo Studies of Ni-Containing Archwires
Material | Brand and Manufacturer | Releasedions Studied | Study Media | Exposure Time | Method of Analysis | Reference |
---|---|---|---|---|---|---|
NiTi | Nitinol N Memory-Metalle 0.5 × 0.5 mm (GmbH, Weil am Rhein, Germany) Nitinol S Memory-Metalle foil 0.05 and 1 mm (GmbH, Weil am Rhein, Germany) Sentalloy standard 0.46 × 0.46 mm (GAC International Inc., Bohemia, NY, USA) Neo sentalloy standard 0.46 × 0.63 mm (GAC International Inc., Bohemia, NY, USA) | Ni | Artificial saliva (fluoridated and non-fluoridated) | 7 d | Thin layer activation X-ray photoelectron spectroscopy | [41] |
NiTi | Round and rectangular NiTi archwires 0.020 in round and 0.016 × 0.016 in rectangular (Ortho Technology, Tampa, FL, USA) | Ni, Ti | Artificial saliva | 1 h, 24 h, 7 d, 21 d | Inductively coupled plasma atomic emission spectrometry | [17] |
NiTi, TiMo | 17 × 25 in NiTi archwire a 17 × 25 inTMA archwire (Modern Orthodontics, Ludhiana, India) | Ni, Ti | Artificial saliva | 90 d | Atomic absorption spectrometry | [48] |
SS, NiTi, TiMo | SS (American Orthodontics, Sheboygan, WI, USA) NiTi (Neo Sentalloy, GAC, West Columbia, USA) TiMo (Beta Blue, Highland Metals, Bangkok, Thailand) | Ni, Ti | Mouthwashes (brands not specified) | 1 d, 4 d, 7 d, 14 d | Inductively coupled plasma mass spectrometry Scanning electron microscopy | [43] |
NiTi, CuNiTi | Ni titanium (Ti) Memory Wire 0.016 in (American Orthodontics) Damon Optimal-Force Cu Ni-Ti 0.016 in (Ormco) Tanzo Cu NiTi 0.016 in (American Orthodontics) Flexy NiTi Cu 0.016 in (Orthometric) | Ni, Cu | Neutral and acid solution | 7 d | Graphite furnace atomic absorption spectrometry Inductively coupled plasma atomic emission spectrometry | [32] |
NiTi, coated NiTi, SS, Ni-free SS, CoCr, TMA | BioForce Sentalloy (Dentsply GAC, New York, NY, USA) High Aesthetic (Dentsply GAC, New York, NY, USA) Remanium (Dentaurum, Ispringen, Germany) Noninium (Dentaurum, Ispringen, Germany) Elgiloy (Dentaurum, Ispringen, Germany) Rematitan Special (Dentaurum, Ispringen, Germany) | Ni, Ti | Artificial saliva | 3 d, 7 d, 14 d, 28 d | Inductively coupled plasma mass spectrometry | [46] |
NiTi, CuNiTi, SS | N/A | Ni | Artificial saliva | 3 d | Cyclic voltammetry electrochemical impedance spectroscopy polarization (Tafel) plot | [55] |
NiTi, Esthetic wires, SS | 0.019 × 0.025 in NiTi (Ormco, Glendora, CA, USA) 0.019 × 0.025 in FLI wire (Rocky Mountain Orthodontics Denver, CO, USA) 0.019 × 0.025 in Iconix (American Orthodontics Sheboygan, WI, USA) 0.019 × 0.025 in Bio-Active RC (GC Orthodontics TOMY Inc., Fuchu City, Tokyo) 0.019 × 0.025 in SS (3 M Unitek, St. Paul, MN, USA) | Ni, Cr | Buffer solutions with varying pH (4, 5.5, and 7) | 4 wks, 13 wks | Inductively coupled plasma mass spectrometry | [45] |
NiTi, SS | Rematitan® LITE ideal arches 0.43 × 0.64 mm (Dentaurum, PA, USA) | Fe, Ni, Cr, Mn, Al, Ti, Cu | Artificial saliva | 3 d, 7 d, 14 d | Scanning electron microscopy with energy dispersive spectroscopy Inductively coupled plasma mass spectrometry | [42] |
NiTi, SS | Wire SS Upper 016 Form III 0.016 × 0.016 Wire NiTi Form I Upper 016 0.016 × 0.016 Tanzo® Copper Nickel Titanium (Tanzo Low Wire Upper 016) 0.016 × 0.016 Tru-Arch® UM 0.016 × 0.016 (Ormco) Tru-Arch® CuNiTi 35 °C UL 0.016 × 0.022 (Ormco) | Ni, Mn, Cr, Mo, Ti | Artificial saliva | 7 d, 30 d | Inductively coupled plasma optical emission spectrometer | [44] |
NiTi, SS | SS (Fe-18Cr-8Ni) 0.010/0.014/0.016 × 0.022 in (3M Unitek, Monrovia, Calif) Heated activated Nitinol 0.016/ 0.016 × 0.022 in (3M Unitek, Monrovia, Calif) | Ni, Ti, Cr | Artificial saliva | 1 h, 24 h | Atomic absorption method | [49] |
NiTi, SS | NiTi 0.016 × 0.022 in (American orthodontics, Sheboygan, WI, USA) Stainless steel 0.016 × 0.022 in (American orthodontics, Sheboygan, WI, USA) Ion implanted NiTi 0.016 × 0.022 in (GAC international, Bohemia, NY, USA) Copper NiTi 0.016 × 0.022 in (Ormco) | Ni | Artificial saliva | 7 d, 14 d, 21 d | Atomic absorption method | [33] |
NiTi, SS | SS rectangular archwires 0.017 × 0.025 in (Ormco) NiTi rectangular archwires 0.017 × 0.025 in (Ormco) | Ni, Cr | Artificial saliva | 7 d, 14 d, 1 mo | Flame atomic absorption spectrometry | [29] |
NiTi, SS | Nitinol 0.4 mm (Dentaurum, Germany) SS304 0.4 mm (Tiger Ortho, Boston, MA, USA) | Ni, Ti, Cr, Mo, Mn | Fusayama–Meyer solution | N/A | Potentiodynamic and potentiostatic polarizations Energy dispersive X-ray atomic adsorption spectroscopy | [18] |
NiTi, SS | SS 0.018 in diameter (American Orthodontics, Sheboygan, WI, USA) NiTi 0.018 in diameter (American Orthodontics, Sheboygan, WI, USA) | Ni, Cr | Oral B®, Orthokin®, Artificial saliva (SaliLube®, Sinphar Pharmaceutical Co., Ltd., Taipei, Taiwan) | 1 h, 6 h, 24 h, 7 d | Atomic absorption method | [30] |
NiTi, SS | N/A | Ni, Cr | Oral B®, Oral B® 3D White Luxe, Listerine, Listerine Advanced White | 1 h, 6 h, 24 h, 168 h | Atomic absorption spectroscopy | [51] |
SS | N/A | Ni, Cr | Snakefruit extract (Salacca zalacca) | 24 h | Atomic absorption spectrophotometry | [50] |
SS | SS archwires 0.016 × 0.022 in (Dentarum, Germany) | Ni | Magnetically treated water, OrthoKin® | 24 h, 2 wks, 4 wks | Scanning electron microscopy Atomic absorption spectrometry | [52] |
NiCr (alloy) | N/A | Ni, Cr | Artificial saliva | 12 d, 24 d, 36 d | Atomic absorption spectroscopy | [47] |
Material | Brand and Manufacturer | Released Ions Studied | Study Media | Exposure Time | Method of Analysis | References |
---|---|---|---|---|---|---|
NiTi | NiTi Force I® 0.019 × 0.025 in (American Orthodontics, Sheboygan, WI, USA) Therma-Ti Lite® 0.019 × 0.025 in (American Orthodontics, Sheboygan, WI, USA) | Ni | Oral environment | 1 mo | Scanning electron microscopy Atomic force microscopy Atomic absorption spectrophotometry | [56] |
NiTi, CuNiTi | Superelastic (austenitic) NiTi 0.016 × 0.022 in Heat-activated NiTi 0.016 × 0.022 in Heat-activated CuNiTi 0.016 × 0.022 in | Ni | Oral environment | 6 wks, 8 wks | Energy dispersive X-ray Dynamic modeling | [62] |
NiTi, Rh-coated NiTi, SS | Heat-activated nitinol archwire (Abzil, São José do Rio Preto, SP, Brazil) Heat-activated nitinol archwire coated with rhodium polymer 0.014 in (BioActive, Crystal 3D, São Carlos, SP, Brazil) | Ni, Cr, Fe, Cu | Oral environment | 1–6 mo | Total reflection X-Ray fluorescence technique | [60] |
NiTi, SS | N/A | N/A | Oral environment | 3 mo | Nickel patch Gingival index Plaque index Intraoral photographs | [59] |
NiTi, SS | Ni–Ti heat-activated wires 0.016 in (3 M™ Unitek™ mark) Stainless steel wires 0.016 × 0.022 in (3 M™ Unitek™ mark) | Ni, Ti | Oral environment | 1 mo | Coupled plasma optical emission spectroscopy Scanning electronic microscopy | [57] |
NiTi, SS | Round thermoactive archwires 0.016 in (Equire Thermo-Aktive, Dentaurum, Germany) | Ni | Oral environment | 7 d, 1 mo, 2 mo | Atomic absorption spectrophotometry | [58] |
NiTi, SS | Stainless steel CrNi Superelastic (austenitic) NiTi Thermodynamic heat-activated NiTi Thermodynamic heat-activated CuNiTi TriTanium™ Bio-active™ | Ni | Oral environment | 6 wks, 8 wks | Scanning electron microscopy with energy dispersive spectroscopy Dynamic modeling | [63] |
NiTi, SS | Pre-adjusted roth stainless steel brackets 0.018 in (Discovery, Dentaurum, Pforzheim, Germany) Stainless steel orthodontic bands (Unitek/3M, Monrovia, CA, USA) Nitinol (Ormco Corporation, Orange, CA, USA) Stainless steel archwires (Remantium; Dentaurum) | Ni, Cr | Oral environment | 12–18 mo | Atomic absorption spectrophotometry | [61] |
4. Insights from the Literature
4.1. Biocompatibility and Short-Term Safety of NiTi Alloys
4.2. Influence of Fluorides, pH, and Saliva Dynamics
4.3. Role of Surface Morphology, Wire Shape, and Material Selection
4.4. Clinical Implications and Future Directions
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasprzak, K. Nickel Carcinogenesis. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2003, 533, 67–97. [Google Scholar] [CrossRef] [PubMed]
- Seilkop, S.K.; Oller, A.R. Respiratory Cancer Risks Associated with Low-Level Nickel Exposure: An Integrated Assessment Based on Animal, Epidemiological, and Mechanistic Data. Regul. Toxicol. Pharmacol. 2003, 37, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Sunderman, F.W.; Dingle, B.; Hopfer, S.M.; Swift, T. Acute Nickel Toxicity in Electroplating Workers Who Accidently Ingested a Solution of Nickel Sulfate and Nickel Chloride. Am. J. Ind. Med. 1988, 14, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Gillete, B. Nickel Named ‘Allergen of the Year’: ACDS Adds to List of Allergies Warranting Attention. Dermatol. Times 2008, 4, 15–16. [Google Scholar]
- Sivulka, D.J. Assessment of Respiratory Carcinogenicity Associated with Exposure to Metallic Nickel: A Review. Regul. Toxicol. Pharmacol. 2005, 43, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, H.; Hande, A.; Dasari, A.K.; Aileni, K.R.; AlZoubi, I.; Patil, S.R. Metal Ion Release from Orthodontic Appliances: Concerns Regarding Potential Carcinogenic Effects. Oral Oncol. Rep. 2024, 10, 100309. [Google Scholar] [CrossRef]
- Duda, A.; Błaszczyk, U. The Impact of Nickel on Human Health. J. Elem. 2008, 13, 685–696. [Google Scholar]
- Chainani, P.; Paul, P.; Shivlani, V. Recent Advances in Orthodontic Archwires: A Review. Cureus 2023, 15, e47633. [Google Scholar] [CrossRef]
- Sankar, H.; Ammayappan, P.; Ashok, T.; Varma, A.J. Orthodontic Archwires: An Update. J. Sci. Dent. 2023, 13, 19–24. [Google Scholar] [CrossRef]
- Mattick, C.R. Current Products and Practice Section: Religious, Cultural, and Ethical Dilemmas in Orthodontics. J. Orthod. 2003, 30, 88–92. [Google Scholar] [CrossRef]
- Chakravarthi, S.; Padmanabhan, S.; Chitharanjan, A. Allergy and Orthodontics. J. Orthod. Sci. 2012, 1, 83. [Google Scholar] [CrossRef] [PubMed]
- Schiff, N.; Grosgogeat, B.; Lissac, M.; Dalard, F. Influence of Fluoridated Mouthwashes on Corrosion Resistance of Orthodontics Wires. Biomaterials 2004, 25, 4535–4542. [Google Scholar] [CrossRef] [PubMed]
- Brantley, W.A.; Eliades, T. Orthodontic Materials: Scientific and Clinical Aspects; Thieme: Stuttgart, Germany; New York, NY, USA, 2001; ISBN 978-3-13-125281-4. [Google Scholar]
- Kapila, S.; Sachdeva, R. Mechanical Properties and Clinical Applications of Orthodontic Wires. Am. J. Orthod. Dentofac. Orthop. 1989, 96, 100–109. [Google Scholar] [CrossRef]
- Biedziak, B.D. Materiały i Techniki Ortodontyczne; Polskie Towarzystwo Ortodontyczne: Lublin, Poland, 2009; ISBN 978-83-928880-0-0. [Google Scholar]
- Lombardo, L.; Toni, G.; Stefanoni, F.; Mollica, F.; Guarneri, M.P.; Siciliani, G. The Effect of Temperature on the Mechanical Behavior of Nickel-Titanium Orthodontic Initial Archwires. Angle Orthod. 2013, 83, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Jamilian, A.; Nucci, F.; Kamali, Z.; Hosseinikhoo, N.; Perillo, L. Release of Metal Ions from Round and Rectangular NiTi Wires. Prog. Orthod. 2016, 17, 10. [Google Scholar] [CrossRef]
- Mirjalili, M.; Momeni, M.; Ebrahimi, N.; Moayed, M.H. Comparative Study on Corrosion Behaviour of Nitinol and Stainless Steel Orthodontic Wires in Simulated Saliva Solution in Presence of Fluoride Ions. Mater. Sci. Eng. C 2013, 33, 2084–2093. [Google Scholar] [CrossRef] [PubMed]
- Castro, S.M.; Ponces, M.J.; Lopes, J.D.; Vasconcelos, M.; Pollmann, M.C.F. Orthodontic Wires and Its Corrosion—The Specific Case of Stainless Steel and Beta-Titanium. J. Dent. Sci. 2015, 10, 1–7. [Google Scholar] [CrossRef]
- Salve, R.S.; Khatri, J.M. Allergies and Its Management in Orthodontics. Int. J. Appl. Dent. Sci. 2022, 8, 15–19. [Google Scholar] [CrossRef]
- Zigante, M.; Rincic Mlinaric, M.; Kastelan, M.; Perkovic, V.; Trinajstic Zrinski, M.; Spalj, S. Symptoms of Titanium and Nickel Allergic Sensitization in Orthodontic Treatment. Prog. Orthod. 2020, 21, 17. [Google Scholar] [CrossRef]
- Wever, D.J.; Veldhuizen, A.G.; Sanders, M.M.; Schakenraad, J.M.; Van Horn, J.R. Cytotoxic, Allergic and Genotoxic Activity of a Nickel-Titanium Alloy. Biomaterials 1997, 18, 1115–1120. [Google Scholar] [CrossRef]
- Urbutytė, K.; Barčiūtė, A.; Lopatienė, K. The Changes in Nickel and Chromium Ion Levels in Saliva with Fixed Orthodontic Appliances: A Systematic Review. Appl. Sci. 2023, 13, 4739. [Google Scholar] [CrossRef]
- Singh, R.K.; Gupta, N.; Goyal, V.; Singh, G.; Chaudhari, A. Allergies in Orthodontics: From Causes to Management. Orthod. J. Nepal 2019, 9, 71–76. [Google Scholar] [CrossRef]
- Kolokitha, O.-E.G.; Chatzistavrou, E. Allergic Reactions to Nickel-Containing Orthodontic Appliances: Clinical Signs and Treatment Alternatives. World J. Orthod. 2008, 9, 399–406. [Google Scholar] [PubMed]
- Di Spirito, F.; Amato, A.; Di Palo, M.P.; Ferraro, R.; Cannatà, D.; Galdi, M.; Sacco, E.; Amato, M. Oral and ExtraOral Manifestations of Hypersensitivity Reactions in Orthodontics: A Comprehensive Review. J. Funct. Biomater. 2024, 15, 175. [Google Scholar] [CrossRef] [PubMed]
- Mikulewicz, M.; Suski, P.; Tokarczuk, O.; Warzyńska-Maciejewska, M.; Pohl, P.; Tokarczuk, B. Metal Ion Release from Orthodontic Archwires: A Comparative Study of Biocompatibility and Corrosion Resistance. Molecules 2024, 29, 5685. [Google Scholar] [CrossRef]
- Haleem, R.; Shafiai, N.A.A.; Noor, S.N.F.M. An Assessment of the pH Changes and Metal Ions Released into Artificial Saliva by Fake Orthodontic Braces. BMC Oral Health 2023, 23, 669. [Google Scholar] [CrossRef]
- Aiswareya, G.; Verma, S.K.; Khan, S.; Owais, M.; Farooqi, I.H.; Naseem, S. Metal Release and Cytotoxicity of Different Orthodontic Bracket-Wire Combinations: An In Vitro Study. J. Int. Soc. Prev. Community Dent. 2023, 13, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Jamilian, A.; Moghaddas, O.; Toopchi, S.; Perillo, L. Comparison of Nickel and Chromium Ions Released from Stainless Steel and NiTi Wires after Immersion in Oral B®, Orthokin® and Artificial Saliva. J. Contemp. Dent. Pract. 2014, 15, 403–406. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Chojnacka, K. Release of Metal Ions from Orthodontic Appliances by In Vitro Studies: A Systematic Literature Review. Biol. Trace Elem. Res. 2011, 139, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Furlan, T.R.; Barbosa, J.; Basting, R. Nickel, Copper, and Chromium Release by CuNi-Titanium Orthodontic Archwires Is Dependent on the pH Media. J. Int. Oral Health 2018, 10, 224. [Google Scholar] [CrossRef]
- Senkutvan, R.; Jacob, S.; Charles, A.; Vadgaonkar, V.; Jatol-Tekade, S.; Gangurde, P. Evaluation of Nickel Ion Release from Various Orthodontic Arch Wires: An in Vitro Study. J. Int. Soc. Prev. Community Dent. 2014, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Ağaoğlu, G.; Arun, T.; Izgi, B.; Yarat, A. Nickel and Chromium Levels in the Saliva and Serum of Patients with Fixed Orthodontic Appliances. Angle Orthod. 2001, 71, 375–379. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Chojnacka, K. Trace Metal Release from Orthodontic Appliances by In Vivo Studies: A Systematic Literature Review. Biol. Trace Elem. Res. 2010, 137, 127–138. [Google Scholar] [CrossRef]
- Anuradha, P.; Varma, N.K.S.; Balakrishnan, A. Reliability Performance of Titanium Sputter Coated Ni–Ti Arch Wires: Mechanical Performance and Nickel Release Evaluation. Bio-Med. Mater. Eng. 2015, 26, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Katić, V.; Buljan, Z.I.; Špalj, S.; Ćurković, H.O. Corrosion Behavior of Coated and Uncoated Nickel-Titanium Orthodontic Wires in Artificial Saliva with Short-Term Prophylactic Fluoride Treatment. Int. J. Electrochem. Sci. 2018, 13, 4160–4170. [Google Scholar] [CrossRef]
- Mortazavi, S.M.J.; Paknahad, M.; Khaleghi, I.; Eghlidospour, M. Effect of Radiofrequency Electromagnetic Fields (RF-EMFS) from Mobile Phones on Nickel Release from Orthodontic Brackets: An in Vitro Study. Int. Orthod. 2018, 16, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalapathy, S.; Rajendran, R.; Thiyagarajan, B.; Jeevagan, S.; Chinnasamy, A.; Sivanandham, M. Effect of Mobile Phone with and without Earphones Usage on Nickel Ion Release from Fixed Orthodontic Appliance. J. Contemp. Dent. Pract. 2023, 24, 303–307. [Google Scholar] [CrossRef]
- Imani, M.; Mozaffari, H.; Ramezani, M.; Sadeghi, M. Effect of Fixed Orthodontic Treatment on Salivary Nickel and Chromium Levels: A Systematic Review and Meta-Analysis of Observational Studies. Dent. J. 2019, 7, 21. [Google Scholar] [CrossRef]
- Cioffi, M.; Gilliland, D.; Ceccone, G.; Chiesa, R.; Cigada, A. Electrochemical Release Testing of Nickel–Titanium Orthodontic Wires in Artificial Saliva Using Thin Layer Activation. Acta Biomater. 2005, 1, 717–724. [Google Scholar] [CrossRef]
- Petković Didović, M.; Jelovica Badovinac, I.; Fiket, Ž.; Žigon, J.; Rinčić Mlinarić, M.; Čanadi Jurešić, G. Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations. Materials 2023, 16, 4156. [Google Scholar] [CrossRef]
- Pastor, F.; Rodriguez, J.C.; Barrera, J.M.; García-Menocal, J.A.D.; Brizuela, A.; Puigdollers, A.; Espinar, E.; Gil, J. Effect of Fluoride Content of Mouthwashes on the Metallic Ion Release in Different Orthodontics Archwires. Int. J. Environ. Res. Public Health 2023, 20, 2780. [Google Scholar] [CrossRef] [PubMed]
- Ganidis, C.; Nikolaidis, A.K.; Gogos, C.; Koulaouzidou, E.A. Determination of Metal Ions Release from Orthodontic Archwires in Artificial Saliva Using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). Main Group Chem. 2023, 22, 201–212. [Google Scholar] [CrossRef]
- Laird, C.; Xu, X.; Yu, Q.; Armbruster, P.; Ballard, R. Nickel and chromium ion release from coated and uncoated orthodontic archwires under different pH levels and exposure times. J. Oral Biosci. 2021, 63, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Jusufi Osmani, Z.; Tariba Knežević, P.; Vučinić, D.; Alimani Jakupi, J.; Reka, A.A.; Can, M.; Kara, K.; Katić, V. Orthodontic Alloy Wires and Their Hypoallergenic Alternatives: Metal Ions Release in pH 6.6 and pH 5.5 Artificial Saliva. Materials 2024, 17, 5254. [Google Scholar] [CrossRef] [PubMed]
- Al-Jmmal, A. Metal Ion Release from Ni-Cr Alloy with Different Artificial Saliva Acidities. Al-Rafidain Dent. J. 2014, 14, 266–271. [Google Scholar] [CrossRef]
- Chikhale, R.; Akhare, P.; Umre, U.; Jawlekar, R.; Kalokhe, S.; Badole, N.; Beri, A. In Vitro Comparison to Evaluate Metal Ion Release: Nickel-Titanium vs. Titanium-Molybdenum Orthodontic Archwires. Cureus 2024, 16, e56595. [Google Scholar] [CrossRef]
- Kao, C.-T.; Ding, S.-J.; He, H.; Chou, M.Y.; Huang, T.-H. Cytotoxicity of Orthodontic Wire Corroded in Fluoride Solution in Vitro. Angle Orthod. 2007, 77, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Mikulewicz, M.; Chojnacka, K.; Wołowiec, P. Release of Metal Ions from Fixed Orthodontic Appliance: An in Vitro Study in Continuous Flow System. Angle Orthod. 2014, 84, 140–148. [Google Scholar] [CrossRef]
- Mirhashemi, A.; Jahangiri, S.; Kharrazifard, M. Release of nickel and chromium ions from orthodontic wires following the use of teeth whitening mouthwashes. Prog. Orthod. 2018, 19, 4. [Google Scholar] [CrossRef] [PubMed]
- Zubaidy, Z.N.A.; Hamdany, A.K.A. Evaluation of Nickel Ion Release and Surface Characteristics of Stainless Steel Orthodontic Archwires after Using Magnetically Treated Water as a Mouthrinse. J. Res. Med. Dent. Sci. 2022, 10, 197–202. [Google Scholar]
- Erwansyah, E.; Susilowati; Pratiwi, C. The effect of snakefruit extract (salacca zalacca) in inhibiting the release of chromium (Cr) and nickel (Ni) ion from stainless steel orthodontic wire to saliva. Int. J. Appl. Pharm. 2019, 11, 33–36. [Google Scholar]
- Durgo, K.; Orešić, S.; Rinčić Mlinarić, M.; Fiket, Ž.; Jurešić, G.Č. Toxicity of Metal Ions Released from a Fixed Orthodontic Appliance to Gastrointestinal Tract Cell Lines. Int. J. Mol. Sci. 2023, 24, 9940. [Google Scholar] [CrossRef] [PubMed]
- Thiyagarajan, A.; Magesha, V.; Sreenivasagan, S.; Sundramoorthy, A.K. Electroanalysis of Nickel Ions Released in Artificial Saliva from Three Orthodontic Arch Wires: Stainless Steel (SS), NiTi, and CuNiTi. Int. J. Health Sci. 2023, 7, 1737–1747. [Google Scholar] [CrossRef]
- Ghazal, A.R.A.; Hajeer, M.Y.; Al-Sabbagh, R.; Alghoraibi, I.; Aldiry, A. An Evaluation of Two Types of Nickel-Titanium Wires in Terms of Micromorphology and Nickel Ions’ Release Following Oral Environment Exposure. Prog. Orthod. 2015, 16, 9. [Google Scholar] [CrossRef]
- Velasco-Ibáñez, R.; Lara-Carrillo, E.; Morales-Luckie, R.A.; Romero-Guzmán, E.T.; Toral-Rizo, V.H.; Ramírez-Cardona, M.; García-Hernández, V.; Medina-Solís, C.E. Evaluation of the Release of Nickel and Titanium under Orthodontic Treatment. Sci. Rep. 2020, 10, 22280. [Google Scholar] [CrossRef] [PubMed]
- Almasry, R.; Kosyreva, T.F.; Skalny, A.A.; Katbeh, I.; Abakeliya, K.G.; Birukov, A.S.; Kamgang, W.N. Nickel Ions Release from Orthodontic Wires into the Oral Cavity during Orthodontic Treatment. Èndodontiâ Today 2022, 20, 79–84. [Google Scholar] [CrossRef]
- Bass, J.K.; Fine, H.; Cisneros, G.J. Nickel Hypersensitivity in the Orthodontic Patient. Am. J. Orthod. Dentofac. Orthop. 1993, 103, 280–285. [Google Scholar] [CrossRef]
- Lages, R.B.; Bridi, E.C.; Pérez, C.A.; Basting, R.T. Salivary Levels of Nickel, Chromium, Iron, and Copper in Patients Treated with Metal or Esthetic Fixed Orthodontic Appliances: A Retrospective Cohort Study. J. Trace Elem. Med. Biol. 2017, 40, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Amini, F.; Jafari, A.; Amini, P.; Sepasi, S. Metal Ion Release from Fixed Orthodontic Appliances--an in Vivo Study. Eur. J. Orthod. 2012, 34, 126–130. [Google Scholar] [CrossRef]
- Petrov, V.; Andreeva, L.; Petkov, G.; Gueorguieva, M.; Stoyanova-Ivanova, A.; Kalitzin, S. Modelling of Nickel Release Dynamics for Three Types of Nickel-Titan Orthodontic Wires: Nickel Release Dynamics Assessment. In Proceedings of the 2nd International Conference on Applications of Intelligent Systems, Las Palmas de Gran Canaria, Spain, 1–7 January 2019; ACM: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Georgieva, M.; Petkov, G.; Petrov, V.; Andreeva, L.; Martins, J.N.R.; Georgiev, V.; Stoyanova-Ivanova, A. Dynamic Reconstruction of the Nickel Ions’ Behavior in Different Orthodontic Archwires Following Clinical Application in an Intraoral Environment. Materials 2024, 18, 92. [Google Scholar] [CrossRef]
- Kovac, V.; Poljsak, B.; Bergant, M.; Scancar, J.; Mezeg, U.; Primozic, J. Differences in Metal Ions Released from Orthodontic Appliances in an In Vitro and In Vivo Setting. Coatings 2022, 12, 190. [Google Scholar] [CrossRef]
- Matusiewicz, H. Potential Release of Trace Metal Ions from Metallic Orthodontic Appliances and Dental Metal Implants: A Review of in Vitro and in Vivo Experimental Studies. World J. Adv. Res. Rev. 2023, 19, 032–090. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoyanova-Ivanova, A.; Georgiev, V.; Martins, J.N.R. Nickel Ion Release in Nickel-Containing Orthodontics Archwires: A Narrative Review of In Vitro and In Vivo Studies. Dent. J. 2025, 13, 206. https://doi.org/10.3390/dj13050206
Stoyanova-Ivanova A, Georgiev V, Martins JNR. Nickel Ion Release in Nickel-Containing Orthodontics Archwires: A Narrative Review of In Vitro and In Vivo Studies. Dentistry Journal. 2025; 13(5):206. https://doi.org/10.3390/dj13050206
Chicago/Turabian StyleStoyanova-Ivanova, Angelina, Velizar Georgiev, and Jorge N. R. Martins. 2025. "Nickel Ion Release in Nickel-Containing Orthodontics Archwires: A Narrative Review of In Vitro and In Vivo Studies" Dentistry Journal 13, no. 5: 206. https://doi.org/10.3390/dj13050206
APA StyleStoyanova-Ivanova, A., Georgiev, V., & Martins, J. N. R. (2025). Nickel Ion Release in Nickel-Containing Orthodontics Archwires: A Narrative Review of In Vitro and In Vivo Studies. Dentistry Journal, 13(5), 206. https://doi.org/10.3390/dj13050206