Evaluation of the Efficacy of a Dentifrice Tablet to Prevent Dental Caries: A Microbial Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Featherstone, J.; Chaffee, B. The evidence for caries management by risk assessment (CAMBRA®). Adv. Dent. Res. 2018, 29, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Lawson, N.C. Current Evidence for Caries Prevention and Enamel Remineralization. Compend. Contin. Educ. Dent. (15488578) 2025, 46, 128. [Google Scholar]
- Simón-Soro, A.; Mira, A. Solving the etiology of dental caries. Trends Microbiol. 2015, 23, 76–82. [Google Scholar] [CrossRef]
- Philip, N. State of the art enamel remineralization systems: The next frontier in caries management. Caries Res. 2019, 53, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Cieplik, F.; Rupp, C.M.; Hirsch, S.; Muehler, D.; Enax, J.; Meyer, F.; Hiller, K.-A.; Buchalla, W. Ca2+ release and buffering effects of synthetic hydroxyapatite following bacterial acid challenge. BMC Oral Health 2020, 20, 85. [Google Scholar] [CrossRef]
- Fejerskov, O.; Nyvad, B.; Kidd, E. Dental Caries: The Disease and Its Clinical Management; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Walsh, T.; Worthington, H.V.; Glenny, A.M.; Marinho, V.C.; Jeroncic, A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst. Rev. 2019, 3, 1–239. [Google Scholar] [CrossRef] [PubMed]
- Wierichs, R.; Zelck, H.; Doerfer, C.; Appel, P.; Paris, S.; Esteves-Oliveira, M.; Meyer-Lückel, H. Effects of dentifrices differing in fluoride compounds on artificial enamel caries lesions in vitro. Odontology 2017, 105, 36–45. [Google Scholar] [CrossRef]
- Moynihan, P.; Kelly, S. Effect on caries of restricting sugars intake: Systematic review to inform WHO guidelines. J. Dent. Res. 2014, 93, 8–18. [Google Scholar] [CrossRef]
- Nobre, C.M.; König, B.; Pütz, N.; Hannig, M. Hydroxyapatite-based solution as adjunct treatment for biofilm management: An in situ study. Nanomaterials 2021, 11, 2452. [Google Scholar] [CrossRef]
- Marinho, V.C.; Chong, L.Y.; Worthington, H.V.; Walsh, T. Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2016, 7, CD002284. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Clarkson, J.; Glenny, A.-M.; Lo, E.; Marinho, V.; Tsang, B.; Walsh, T.; Worthington, H. Cochrane reviews on the benefits/risks of fluoride toothpastes. J. Dent. Res. 2011, 90, 573–579. [Google Scholar] [CrossRef]
- Ekambaram, M.; Itthagarun, A.; King, N.M. Ingestion of fluoride from dentifrices by young children and fluorosis of the teeth-a literature review. J. Clin. Pediatr. Dent. 2011, 36, 111–122. [Google Scholar] [CrossRef]
- Green, R.; Lanphear, B.; Hornung, R.; Flora, D.; Martinez-Mier, E.A.; Neufeld, R.; Ayotte, P.; Muckle, G.; Till, C. Association between maternal fluoride exposure during pregnancy and IQ scores in offspring in Canada. JAMA Pediatr. 2019, 173, 940–948. [Google Scholar] [CrossRef]
- Farmus, L.; Till, C.; Green, R.; Hornung, R.; Mier, E.A.M.; Ayotte, P.; Muckle, G.; Lanphear, B.P.; Flora, D.B. Critical windows of fluoride neurotoxicity in Canadian children. Environ. Res. 2021, 200, 111315. [Google Scholar] [CrossRef] [PubMed]
- Zohoori, F.; Maguire, A. Are there good reasons for fluoride labelling of food and drink? Br. Dent. J. 2018, 224, 215–217. [Google Scholar] [CrossRef]
- Enax, J.; Epple, M. Synthetic hydroxyapatite as a biomimetic oral care agent. Oral Health Prev. Dent. 2018, 16, 7. [Google Scholar] [PubMed]
- Limeback, H.; Enax, J.; Meyer, F. Biomimetic hydroxyapatite and caries prevention: A systematic review and meta-analysis. Can. J. Dent. Hyg. 2021, 55, 148. [Google Scholar]
- Nobre, C.M.G.; Pütz, N.; Hannig, M. Adhesion of hydroxyapatite nanoparticles to dental materials under oral conditions. Scanning 2020, 2020, 6065739. [Google Scholar] [CrossRef]
- Carella, F.; Degli Esposti, L.; Adamiano, A.; Iafisco, M. The use of calcium phosphates in cosmetics, state of the art and future perspectives. Materials 2021, 14, 6398. [Google Scholar] [CrossRef]
- Chen, L.; Al-Bayatee, S.; Khurshid, Z.; Shavandi, A.; Brunton, P.; Ratnayake, J. Hydroxyapatite in oral care products—A review. Materials 2021, 14, 4865. [Google Scholar] [CrossRef]
- Epple, M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater. 2018, 77, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Enax, J.; Fabritius, H.-O.; Fabritius-Vilpoux, K.; Amaechi, B.T.; Meyer, F. Modes of action and clinical efficacy of particulate hydroxyapatite in preventive oral health care-state of the art. Open Dent. J. 2019, 13, 274–287. [Google Scholar] [CrossRef]
- Kensche, A.; Holder, C.; Basche, S.; Tahan, N.; Hannig, C.; Hannig, M. Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ. Arch. Oral Biol. 2017, 80, 18–26. [Google Scholar] [CrossRef]
- Sudradjat, H.; Meyer, F.; Loza, K.; Epple, M.; Enax, J. In vivo effects of a hydroxyapatite-based oral care gel on the calcium and phosphorus levels of dental plaque. Eur. J. Dent. 2020, 14, 206–211. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan-Wong, K.; Enax, J.; Meyer, F.; Ganss, B. The use of hydroxyapatite toothpaste to prevent dental caries. Odontology 2022, 110, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Cocco, F.; Salerno, C.; Wierichs, R.J.; Wolf, T.G.; Arghittu, A.; Cagetti, M.G.; Campus, G. Hydroxyapatite-Fluoride Toothpastes on Caries Activity: A Triple-Blind Randomized Clinical Trial. Int. Dent. J. 2025, 75, 632–642. [Google Scholar] [CrossRef]
- Grocholewicz, K.; Matkowska-Cichocka, G.; Makowiecki, P.; Droździk, A.; Ey-Chmielewska, H.; Dziewulska, A.; Tomasik, M.; Trybek, G.; Janiszewska-Olszowska, J. Effect of nano-hydroxyapatite and ozone on approximal initial caries: A randomized clinical trial. Sci. Rep. 2020, 10, 11192. [Google Scholar] [CrossRef]
- Paszynska, E.; Pawinska, M.; Gawriolek, M.; Kaminska, I.; Otulakowska-Skrzynska, J.; Marczuk-Kolada, G.; Rzatowski, S.; Sokolowska, K.; Olszewska, A.; Schlagenhauf, U. Impact of a toothpaste with microcrystalline hydroxyapatite on the occurrence of early childhood caries: A 1-year randomized clinical trial. Sci. Rep. 2021, 11, 2650. [Google Scholar] [CrossRef]
- Paszynska, E.; Pawinska, M.; Enax, J.; Meyer, F.; Schulze zur Wiesche, E.; May, T.W.; Amaechi, B.T.; Limeback, H.; Hernik, A.; Otulakowska-Skrzynska, J. Caries-preventing effect of a hydroxyapatite-toothpaste in adults: A 18-month double-blinded randomized clinical trial. Front. Public Health 2023, 11, 1199728. [Google Scholar] [CrossRef]
- Meyer, F.; Enax, J. Hydroxyapatite in oral biofilm management. Eur. J. Dent. 2019, 13, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.-L.; Zheng, G.; Lin, H.; Yang, M.; Zhang, Y.-D.; Han, J.-M. Network meta-analysis on the effect of desensitizing toothpastes on dentine hypersensitivity. J. Dent. 2019, 88, 103170. [Google Scholar] [CrossRef]
- Fabritius-Vilpoux, K.; Enax, J.; Mayweg, D.; Meyer, F.; Herbig, M.; Raabe, D.; Fabritius, H.-O. Ultrastructural changes of bovine tooth surfaces under erosion in presence of biomimetic hydroxyapatite. Bioinspired Biomim. Nanobiomater. 2021, 10, 132–145. [Google Scholar] [CrossRef]
- Lelli, M.; Putignano, A.; Marchetti, M.; Foltran, I.; Mangani, F.; Procaccini, M.; Roveri, N.; Orsini, G. Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: A comparative in vivo study. Front. Physiol. 2014, 5, 333. [Google Scholar] [CrossRef] [PubMed]
- Epple, M.; Meyer, F.; Enax, J. A critical review of modern concepts for teeth whitening. Dent. J. 2019, 7, 79. [Google Scholar] [CrossRef]
- Shang, R.; Kaisarly, D.; Kunzelmann, K.-H. Tooth whitening with an experimental toothpaste containing hydroxyapatite nanoparticles. BMC Oral Health 2022, 22, 331. [Google Scholar] [CrossRef]
- Amaechi, B.T.; Abdul Azees, P.A.; Farah, R.; Movaghari Pour, F.; Dillow, A.M.; Lin, C.-Y. Evaluation of an artificial mouth for dental caries development. Microorganisms 2023, 11, 628. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, R.; Amaechi, B.T.; Rawls, H.R.; Lee, V.A. Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch. Oral Biol. 2011, 56, 437–445. [Google Scholar] [CrossRef]
- Ramalingam, K.; Amaechi, B.T.; Ralph, R.H.; Lee, V.A. Antimicrobial activity of nanoemulsion on cariogenic planktonic and biofilm organisms. Arch. Oral Biol. 2012, 57, 15–22. [Google Scholar] [CrossRef]
- Fabritius-Vilpoux, K.; Enax, J.; Herbig, M.; Raabe, D.; Fabritius, H.-O. Quantitative affinity parameters of synthetic hydroxyapatite and enamel surfaces in vitro. Bioinspired Biomim. Nanobiomater. 2019, 8, 141–153. [Google Scholar] [CrossRef]
- Hannig, M.; Hannig, C. Nanotechnology and its role in caries therapy. Adv. Dent. Res. 2012, 24, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, F.; Beasley, T.; Abraham, P. In vivo delivery of fluoride and calcium from toothpaste containing 2% hydroxyapatite. Int. Dent. J. 2009, 59, 321–324. [Google Scholar] [CrossRef]
- Sharif, M.O.; Ahmed, F.; Worthington, H.V. Xylitol-containing products for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2013, 9, 1–9. [Google Scholar]
- ALHumaid, J.; Bamashmous, M. Meta-analysis on the effectiveness of xylitol in caries prevention. J. Int. Soc. Prev. Community Dent. 2022, 12, 133–138. [Google Scholar] [CrossRef]
- Takahashi, N.; Washio, J. Metabolomic effects of xylitol and fluoride on plaque biofilm in vivo. J. Dent. Res. 2011, 90, 1463–1468. [Google Scholar] [CrossRef] [PubMed]
- Trahan, L. Xylitol: A review of its action on mutans streptococci and dental plaque--its clinical significance. Int. Dent. J. 1995, 45, 77–92. [Google Scholar]
- Vadeboncoeur, C.; Trahan, L.; Mouton, C.; Mayrand, D. Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J. Dent. Res. 1983, 62, 882–884. [Google Scholar] [CrossRef]
- Sreenivasan, P.; Furgang, D.; Markowitz, K.; McKiernan, M.; Tischio-Bereski, D.; Devizio, W.; Fine, D. Clinical anti-microbial efficacy of a new zinc citrate dentifrice. Clin. Oral Investig. 2009, 13, 195–202. [Google Scholar] [CrossRef]
- Hu, D.; Sreenivasan, P.; Zhang, Y.; De Vizio, W. The effects of a zinc citrate dentifrice on bacteria found on oral surfaces. Oral Health Prev. Dent. 2010, 8, 47. [Google Scholar]
- Vranic, E.; Lacevic, A.; Mehmedagic, A.; Uzunovic, A. Formulation ingredients for toothpastes and mouthwashes. Bosn. J. Basic Med. Sci. 2004, 4, 51. [Google Scholar] [CrossRef]
- Amaechi, B.T.; AbdulAzees, P.A.; Alshareif, D.O.; Shehata, M.A.; Lima, P.P.d.C.S.; Abdollahi, A.; Kalkhorani, P.S.; Evans, V. Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children. BDJ Open 2019, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.; Pontefract, H.; Devine, D.; Shore, R.; Nattress, B.; Kirkham, J.; Robinson, C. Penetration of fluoride into natural plaque biofilms. J. Dent. Res. 2005, 84, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Tokura, T.; Robinson, C.; Watson, P.; Abudiak, H.; Nakano, T.; Higashi, K.; Naganawa, T.; Kato, K.; Fukuta, O.; Nakagaki, H. Effect of pH on fluoride penetration into natural human plaque. Pediatr. Dent. J. 2012, 22, 140–144. [Google Scholar] [CrossRef]
- Stoodley, P.; Wefel, J.; Gieseke, A.; DeBeer, D.; Von Ohle, C. Biofilm plaque and hydrodynamic effects on mass transfer, fluoride delivery and caries. J. Am. Dent. Assoc. 2008, 139, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
Product | Company | Composition |
---|---|---|
NanoHAP dentifrice tablets | BIOM LLC, 30 N Gould St, #40371, Sheridan, WY, USA | 5% Nanohydroxyapatite, Xylitol, Hydrated silica, Sodium Carbonate, Calcium Carbonate, Zinc Citrate, Sodium Cocoyl Isethionate, Peppermint, Menthol, Cellulose, Surfactant from coconut oil, Licorice Root Extract and Xanthan gum. |
Placebo dentifrice tablet | BIOM LLC, 30 N Gould St, #40371, Sheridan, WY, USA | Saccharose, Sucralose, Microcrystalline Cellulose, Calcium Carbonate, Sodium Cocoil Isethionate, Xanthan gum, Natural mint flavor. |
Sensodyne antisensitivity and anticavity toothpaste | GSK Consumer Healthcare, Warren, NJ, USA | 0.25% (0.15% W/V Fluoride Ion) Sodium fluoride, 5% Potasium nitrate, Sorbitol, water, Hydrated Silica, Glycerin, Cocamidopropyl betaine, flavor, Xanthan gum, Titanium Dioxide, Sodium Saccharin, Sodium hydroxide, Sucralose, Yellow 10, Blue 1. |
Day | Time | Treatment |
---|---|---|
Day 1 | 30 min | Acquired salivary pellicle formation. |
First 12 h | Bacteria-inoculated Todd Hewitt Broth (THB) was circulated for 12 h (adhesion phase). | |
Second 12 h | Circulation of bacteria-free THB. | |
Day 2–Day 5 | 7:00 | Toothpaste (2 min) treatment. |
7:02 | Circulation of bacteria-free THB re-starts. | |
8:00 | Sucrose circulation for 6 min. | |
8:06 | Circulation of bacteria-free THB re-starts. | |
12:00 | Sucrose circulation for 6 min. | |
12:06 | Circulation of bacteria-free THB re-starts. | |
16:00 | Toothpaste (2 min) treatment. | |
16:02 | Circulation of bacteria-free Todd Hewitt Broth (THB) re-starts. | |
17:00 | Sucrose circulation for 6 min. | |
17:06 until 7:00 am next day | Circulation of bacteria-free THB re-starts. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaechi, B.T.; Kanthaiah, K.; Farah, R.; Yang, K.; Obiefuna, A.C.; Abdul-Azees, P.A.; Vijayaraghavan, M. Evaluation of the Efficacy of a Dentifrice Tablet to Prevent Dental Caries: A Microbial Study. Dent. J. 2025, 13, 201. https://doi.org/10.3390/dj13050201
Amaechi BT, Kanthaiah K, Farah R, Yang K, Obiefuna AC, Abdul-Azees PA, Vijayaraghavan M. Evaluation of the Efficacy of a Dentifrice Tablet to Prevent Dental Caries: A Microbial Study. Dentistry Journal. 2025; 13(5):201. https://doi.org/10.3390/dj13050201
Chicago/Turabian StyleAmaechi, Bennett Tochukwu, Kannan Kanthaiah, Rayane Farah, Kelly Yang, Amos Chiedu Obiefuna, Parveez Ahamed Abdul-Azees, and Mahalakshmi Vijayaraghavan. 2025. "Evaluation of the Efficacy of a Dentifrice Tablet to Prevent Dental Caries: A Microbial Study" Dentistry Journal 13, no. 5: 201. https://doi.org/10.3390/dj13050201
APA StyleAmaechi, B. T., Kanthaiah, K., Farah, R., Yang, K., Obiefuna, A. C., Abdul-Azees, P. A., & Vijayaraghavan, M. (2025). Evaluation of the Efficacy of a Dentifrice Tablet to Prevent Dental Caries: A Microbial Study. Dentistry Journal, 13(5), 201. https://doi.org/10.3390/dj13050201