Evaluation of the Efficacy of a Dentifrice Tablet to Prevent Dental Caries: A Microbial Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Featherstone, J.; Chaffee, B. The evidence for caries management by risk assessment (CAMBRA®). Adv. Dent. Res. 2018, 29, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Lawson, N.C. Current Evidence for Caries Prevention and Enamel Remineralization. Compend. Contin. Educ. Dent. (15488578) 2025, 46, 128. [Google Scholar]
- Simón-Soro, A.; Mira, A. Solving the etiology of dental caries. Trends Microbiol. 2015, 23, 76–82. [Google Scholar] [CrossRef]
- Philip, N. State of the art enamel remineralization systems: The next frontier in caries management. Caries Res. 2019, 53, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Cieplik, F.; Rupp, C.M.; Hirsch, S.; Muehler, D.; Enax, J.; Meyer, F.; Hiller, K.-A.; Buchalla, W. Ca2+ release and buffering effects of synthetic hydroxyapatite following bacterial acid challenge. BMC Oral Health 2020, 20, 85. [Google Scholar] [CrossRef]
- Fejerskov, O.; Nyvad, B.; Kidd, E. Dental Caries: The Disease and Its Clinical Management; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Walsh, T.; Worthington, H.V.; Glenny, A.M.; Marinho, V.C.; Jeroncic, A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst. Rev. 2019, 3, 1–239. [Google Scholar] [CrossRef] [PubMed]
- Wierichs, R.; Zelck, H.; Doerfer, C.; Appel, P.; Paris, S.; Esteves-Oliveira, M.; Meyer-Lückel, H. Effects of dentifrices differing in fluoride compounds on artificial enamel caries lesions in vitro. Odontology 2017, 105, 36–45. [Google Scholar] [CrossRef]
- Moynihan, P.; Kelly, S. Effect on caries of restricting sugars intake: Systematic review to inform WHO guidelines. J. Dent. Res. 2014, 93, 8–18. [Google Scholar] [CrossRef]
- Nobre, C.M.; König, B.; Pütz, N.; Hannig, M. Hydroxyapatite-based solution as adjunct treatment for biofilm management: An in situ study. Nanomaterials 2021, 11, 2452. [Google Scholar] [CrossRef]
- Marinho, V.C.; Chong, L.Y.; Worthington, H.V.; Walsh, T. Fluoride toothpastes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev. 2016, 7, CD002284. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Clarkson, J.; Glenny, A.-M.; Lo, E.; Marinho, V.; Tsang, B.; Walsh, T.; Worthington, H. Cochrane reviews on the benefits/risks of fluoride toothpastes. J. Dent. Res. 2011, 90, 573–579. [Google Scholar] [CrossRef]
- Ekambaram, M.; Itthagarun, A.; King, N.M. Ingestion of fluoride from dentifrices by young children and fluorosis of the teeth-a literature review. J. Clin. Pediatr. Dent. 2011, 36, 111–122. [Google Scholar] [CrossRef]
- Green, R.; Lanphear, B.; Hornung, R.; Flora, D.; Martinez-Mier, E.A.; Neufeld, R.; Ayotte, P.; Muckle, G.; Till, C. Association between maternal fluoride exposure during pregnancy and IQ scores in offspring in Canada. JAMA Pediatr. 2019, 173, 940–948. [Google Scholar] [CrossRef]
- Farmus, L.; Till, C.; Green, R.; Hornung, R.; Mier, E.A.M.; Ayotte, P.; Muckle, G.; Lanphear, B.P.; Flora, D.B. Critical windows of fluoride neurotoxicity in Canadian children. Environ. Res. 2021, 200, 111315. [Google Scholar] [CrossRef] [PubMed]
- Zohoori, F.; Maguire, A. Are there good reasons for fluoride labelling of food and drink? Br. Dent. J. 2018, 224, 215–217. [Google Scholar] [CrossRef]
- Enax, J.; Epple, M. Synthetic hydroxyapatite as a biomimetic oral care agent. Oral Health Prev. Dent. 2018, 16, 7. [Google Scholar] [PubMed]
- Limeback, H.; Enax, J.; Meyer, F. Biomimetic hydroxyapatite and caries prevention: A systematic review and meta-analysis. Can. J. Dent. Hyg. 2021, 55, 148. [Google Scholar]
- Nobre, C.M.G.; Pütz, N.; Hannig, M. Adhesion of hydroxyapatite nanoparticles to dental materials under oral conditions. Scanning 2020, 2020, 6065739. [Google Scholar] [CrossRef]
- Carella, F.; Degli Esposti, L.; Adamiano, A.; Iafisco, M. The use of calcium phosphates in cosmetics, state of the art and future perspectives. Materials 2021, 14, 6398. [Google Scholar] [CrossRef]
- Chen, L.; Al-Bayatee, S.; Khurshid, Z.; Shavandi, A.; Brunton, P.; Ratnayake, J. Hydroxyapatite in oral care products—A review. Materials 2021, 14, 4865. [Google Scholar] [CrossRef]
- Epple, M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater. 2018, 77, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Enax, J.; Fabritius, H.-O.; Fabritius-Vilpoux, K.; Amaechi, B.T.; Meyer, F. Modes of action and clinical efficacy of particulate hydroxyapatite in preventive oral health care-state of the art. Open Dent. J. 2019, 13, 274–287. [Google Scholar] [CrossRef]
- Kensche, A.; Holder, C.; Basche, S.; Tahan, N.; Hannig, C.; Hannig, M. Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ. Arch. Oral Biol. 2017, 80, 18–26. [Google Scholar] [CrossRef]
- Sudradjat, H.; Meyer, F.; Loza, K.; Epple, M.; Enax, J. In vivo effects of a hydroxyapatite-based oral care gel on the calcium and phosphorus levels of dental plaque. Eur. J. Dent. 2020, 14, 206–211. [Google Scholar] [CrossRef] [PubMed]
- O’Hagan-Wong, K.; Enax, J.; Meyer, F.; Ganss, B. The use of hydroxyapatite toothpaste to prevent dental caries. Odontology 2022, 110, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Cocco, F.; Salerno, C.; Wierichs, R.J.; Wolf, T.G.; Arghittu, A.; Cagetti, M.G.; Campus, G. Hydroxyapatite-Fluoride Toothpastes on Caries Activity: A Triple-Blind Randomized Clinical Trial. Int. Dent. J. 2025, 75, 632–642. [Google Scholar] [CrossRef]
- Grocholewicz, K.; Matkowska-Cichocka, G.; Makowiecki, P.; Droździk, A.; Ey-Chmielewska, H.; Dziewulska, A.; Tomasik, M.; Trybek, G.; Janiszewska-Olszowska, J. Effect of nano-hydroxyapatite and ozone on approximal initial caries: A randomized clinical trial. Sci. Rep. 2020, 10, 11192. [Google Scholar] [CrossRef]
- Paszynska, E.; Pawinska, M.; Gawriolek, M.; Kaminska, I.; Otulakowska-Skrzynska, J.; Marczuk-Kolada, G.; Rzatowski, S.; Sokolowska, K.; Olszewska, A.; Schlagenhauf, U. Impact of a toothpaste with microcrystalline hydroxyapatite on the occurrence of early childhood caries: A 1-year randomized clinical trial. Sci. Rep. 2021, 11, 2650. [Google Scholar] [CrossRef]
- Paszynska, E.; Pawinska, M.; Enax, J.; Meyer, F.; Schulze zur Wiesche, E.; May, T.W.; Amaechi, B.T.; Limeback, H.; Hernik, A.; Otulakowska-Skrzynska, J. Caries-preventing effect of a hydroxyapatite-toothpaste in adults: A 18-month double-blinded randomized clinical trial. Front. Public Health 2023, 11, 1199728. [Google Scholar] [CrossRef]
- Meyer, F.; Enax, J. Hydroxyapatite in oral biofilm management. Eur. J. Dent. 2019, 13, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.-L.; Zheng, G.; Lin, H.; Yang, M.; Zhang, Y.-D.; Han, J.-M. Network meta-analysis on the effect of desensitizing toothpastes on dentine hypersensitivity. J. Dent. 2019, 88, 103170. [Google Scholar] [CrossRef]
- Fabritius-Vilpoux, K.; Enax, J.; Mayweg, D.; Meyer, F.; Herbig, M.; Raabe, D.; Fabritius, H.-O. Ultrastructural changes of bovine tooth surfaces under erosion in presence of biomimetic hydroxyapatite. Bioinspired Biomim. Nanobiomater. 2021, 10, 132–145. [Google Scholar] [CrossRef]
- Lelli, M.; Putignano, A.; Marchetti, M.; Foltran, I.; Mangani, F.; Procaccini, M.; Roveri, N.; Orsini, G. Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: A comparative in vivo study. Front. Physiol. 2014, 5, 333. [Google Scholar] [CrossRef] [PubMed]
- Epple, M.; Meyer, F.; Enax, J. A critical review of modern concepts for teeth whitening. Dent. J. 2019, 7, 79. [Google Scholar] [CrossRef]
- Shang, R.; Kaisarly, D.; Kunzelmann, K.-H. Tooth whitening with an experimental toothpaste containing hydroxyapatite nanoparticles. BMC Oral Health 2022, 22, 331. [Google Scholar] [CrossRef]
- Amaechi, B.T.; Abdul Azees, P.A.; Farah, R.; Movaghari Pour, F.; Dillow, A.M.; Lin, C.-Y. Evaluation of an artificial mouth for dental caries development. Microorganisms 2023, 11, 628. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, R.; Amaechi, B.T.; Rawls, H.R.; Lee, V.A. Antimicrobial activity of nanoemulsion on cariogenic Streptococcus mutans. Arch. Oral Biol. 2011, 56, 437–445. [Google Scholar] [CrossRef]
- Ramalingam, K.; Amaechi, B.T.; Ralph, R.H.; Lee, V.A. Antimicrobial activity of nanoemulsion on cariogenic planktonic and biofilm organisms. Arch. Oral Biol. 2012, 57, 15–22. [Google Scholar] [CrossRef]
- Fabritius-Vilpoux, K.; Enax, J.; Herbig, M.; Raabe, D.; Fabritius, H.-O. Quantitative affinity parameters of synthetic hydroxyapatite and enamel surfaces in vitro. Bioinspired Biomim. Nanobiomater. 2019, 8, 141–153. [Google Scholar] [CrossRef]
- Hannig, M.; Hannig, C. Nanotechnology and its role in caries therapy. Adv. Dent. Res. 2012, 24, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, F.; Beasley, T.; Abraham, P. In vivo delivery of fluoride and calcium from toothpaste containing 2% hydroxyapatite. Int. Dent. J. 2009, 59, 321–324. [Google Scholar] [CrossRef]
- Sharif, M.O.; Ahmed, F.; Worthington, H.V. Xylitol-containing products for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2013, 9, 1–9. [Google Scholar]
- ALHumaid, J.; Bamashmous, M. Meta-analysis on the effectiveness of xylitol in caries prevention. J. Int. Soc. Prev. Community Dent. 2022, 12, 133–138. [Google Scholar] [CrossRef]
- Takahashi, N.; Washio, J. Metabolomic effects of xylitol and fluoride on plaque biofilm in vivo. J. Dent. Res. 2011, 90, 1463–1468. [Google Scholar] [CrossRef] [PubMed]
- Trahan, L. Xylitol: A review of its action on mutans streptococci and dental plaque--its clinical significance. Int. Dent. J. 1995, 45, 77–92. [Google Scholar]
- Vadeboncoeur, C.; Trahan, L.; Mouton, C.; Mayrand, D. Effect of xylitol on the growth and glycolysis of acidogenic oral bacteria. J. Dent. Res. 1983, 62, 882–884. [Google Scholar] [CrossRef]
- Sreenivasan, P.; Furgang, D.; Markowitz, K.; McKiernan, M.; Tischio-Bereski, D.; Devizio, W.; Fine, D. Clinical anti-microbial efficacy of a new zinc citrate dentifrice. Clin. Oral Investig. 2009, 13, 195–202. [Google Scholar] [CrossRef]
- Hu, D.; Sreenivasan, P.; Zhang, Y.; De Vizio, W. The effects of a zinc citrate dentifrice on bacteria found on oral surfaces. Oral Health Prev. Dent. 2010, 8, 47. [Google Scholar]
- Vranic, E.; Lacevic, A.; Mehmedagic, A.; Uzunovic, A. Formulation ingredients for toothpastes and mouthwashes. Bosn. J. Basic Med. Sci. 2004, 4, 51. [Google Scholar] [CrossRef]
- Amaechi, B.T.; AbdulAzees, P.A.; Alshareif, D.O.; Shehata, M.A.; Lima, P.P.d.C.S.; Abdollahi, A.; Kalkhorani, P.S.; Evans, V. Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children. BDJ Open 2019, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.; Pontefract, H.; Devine, D.; Shore, R.; Nattress, B.; Kirkham, J.; Robinson, C. Penetration of fluoride into natural plaque biofilms. J. Dent. Res. 2005, 84, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Tokura, T.; Robinson, C.; Watson, P.; Abudiak, H.; Nakano, T.; Higashi, K.; Naganawa, T.; Kato, K.; Fukuta, O.; Nakagaki, H. Effect of pH on fluoride penetration into natural human plaque. Pediatr. Dent. J. 2012, 22, 140–144. [Google Scholar] [CrossRef]
- Stoodley, P.; Wefel, J.; Gieseke, A.; DeBeer, D.; Von Ohle, C. Biofilm plaque and hydrodynamic effects on mass transfer, fluoride delivery and caries. J. Am. Dent. Assoc. 2008, 139, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
Product | Company | Composition |
---|---|---|
NanoHAP dentifrice tablets | BIOM LLC, 30 N Gould St, #40371, Sheridan, WY, USA | 5% Nanohydroxyapatite, Xylitol, Hydrated silica, Sodium Carbonate, Calcium Carbonate, Zinc Citrate, Sodium Cocoyl Isethionate, Peppermint, Menthol, Cellulose, Surfactant from coconut oil, Licorice Root Extract and Xanthan gum. |
Placebo dentifrice tablet | BIOM LLC, 30 N Gould St, #40371, Sheridan, WY, USA | Saccharose, Sucralose, Microcrystalline Cellulose, Calcium Carbonate, Sodium Cocoil Isethionate, Xanthan gum, Natural mint flavor. |
Sensodyne antisensitivity and anticavity toothpaste | GSK Consumer Healthcare, Warren, NJ, USA | 0.25% (0.15% W/V Fluoride Ion) Sodium fluoride, 5% Potasium nitrate, Sorbitol, water, Hydrated Silica, Glycerin, Cocamidopropyl betaine, flavor, Xanthan gum, Titanium Dioxide, Sodium Saccharin, Sodium hydroxide, Sucralose, Yellow 10, Blue 1. |
Day | Time | Treatment |
---|---|---|
Day 1 | 30 min | Acquired salivary pellicle formation. |
First 12 h | Bacteria-inoculated Todd Hewitt Broth (THB) was circulated for 12 h (adhesion phase). | |
Second 12 h | Circulation of bacteria-free THB. | |
Day 2–Day 5 | 7:00 | Toothpaste (2 min) treatment. |
7:02 | Circulation of bacteria-free THB re-starts. | |
8:00 | Sucrose circulation for 6 min. | |
8:06 | Circulation of bacteria-free THB re-starts. | |
12:00 | Sucrose circulation for 6 min. | |
12:06 | Circulation of bacteria-free THB re-starts. | |
16:00 | Toothpaste (2 min) treatment. | |
16:02 | Circulation of bacteria-free Todd Hewitt Broth (THB) re-starts. | |
17:00 | Sucrose circulation for 6 min. | |
17:06 until 7:00 am next day | Circulation of bacteria-free THB re-starts. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaechi, B.T.; Kanthaiah, K.; Farah, R.; Yang, K.; Obiefuna, A.C.; Abdul-Azees, P.A.; Vijayaraghavan, M. Evaluation of the Efficacy of a Dentifrice Tablet to Prevent Dental Caries: A Microbial Study. Dent. J. 2025, 13, 201. https://doi.org/10.3390/dj13050201
Amaechi BT, Kanthaiah K, Farah R, Yang K, Obiefuna AC, Abdul-Azees PA, Vijayaraghavan M. Evaluation of the Efficacy of a Dentifrice Tablet to Prevent Dental Caries: A Microbial Study. Dentistry Journal. 2025; 13(5):201. https://doi.org/10.3390/dj13050201
Chicago/Turabian StyleAmaechi, Bennett Tochukwu, Kannan Kanthaiah, Rayane Farah, Kelly Yang, Amos Chiedu Obiefuna, Parveez Ahamed Abdul-Azees, and Mahalakshmi Vijayaraghavan. 2025. "Evaluation of the Efficacy of a Dentifrice Tablet to Prevent Dental Caries: A Microbial Study" Dentistry Journal 13, no. 5: 201. https://doi.org/10.3390/dj13050201
APA StyleAmaechi, B. T., Kanthaiah, K., Farah, R., Yang, K., Obiefuna, A. C., Abdul-Azees, P. A., & Vijayaraghavan, M. (2025). Evaluation of the Efficacy of a Dentifrice Tablet to Prevent Dental Caries: A Microbial Study. Dentistry Journal, 13(5), 201. https://doi.org/10.3390/dj13050201