Ablative and Expansive Protocols for Bone Osteotomy in Rabbits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Design
2.3. Experimental Groups
2.4. Sample Size and Animals
2.5. Randomization and Allocation Concealment
2.6. Anesthetic Procedures
2.7. Surgical Procedure
- -
- lanceolate drill (Figure 1A);
- -
- 2.0 mm drill at implant length (Figure 1B);
- -
- 2–3 mm step drill (Figure 1C);
- -
- 3.65 mm drill removing the cortical bone (Figure 1D);
- -
- specially designed osteotome with the implant body diameter for cancellous bone (Figure 2A,B);
- -
- An implant was installed into the osteotomy with the coronal margin at the level of the cortical layer (Figure 2C,D).
- -
- 2.0 mm drill at implant length;
- -
- 2–3 mm step drill;
- -
- 3.2 mm drill at implant length.
2.8. Animal Maintenance
2.9. Euthanasia
2.10. Histological Preparation
2.11. Histological Examination
2.12. Statistical Analyses
3. Results
3.1. Clinical Outcomes
3.2. Descriptive Histological Evaluation
3.3. Histological Assessments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Javed, F.; Romanos, G.E. The role of primary stability for successful immediate loading of dental implants. A literature review. J. Dent. 2010, 38, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Tettamanti, L.; Andrisani, C.; Bassi, M.A.; Vinci, R.; Silvestre-Rangil, J.; Tagliabue, A. Immediate loading implants: Review of the critical aspects. Oral Implantol. 2017, 10, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Romero-Serrano, M.; Romero-Ruiz, M.M.; Herrero-Climent, M.; Rios-Carrasco, B.; Gil-Mur, J. Correlation between Implant Surface Roughness and Implant Stability: A Systematic Review. Dent. J. 2024, 12, 276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kotsu, M.; Urbizo Velez, J.; Bengazi, F.; Tumedei, M.; Fujiwara, S.; Kato, S.; Botticelli, D. Healing at implants installed from ~ 70- to < 10-Ncm insertion torques: An experimental study in dogs. Oral Maxillofac. Surg. 2021, 25, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Lekholm, U.; Zarb, G.A. Patient selection and preparation. In Tissue Integrated Prostheses: Osseointegration in Clinical Dentistry; Branemark, P.-I., Zarb, G.A., Albrektsson, T., Eds.; Quintessence Publishing Company: Chicago, IL, USA, 1985; pp. 199–209. [Google Scholar]
- Eriksson, A.; Albrektsson, T.; Grane, B.; McQueen, D. Thermal injury to bone. A vital-microscopic description of heat effects. Int. J. Oral Surg. 1982, 11, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, A.R.; Albrektsson, T. Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. J. Prosthet. Dent. 1983, 50, 101–107. [Google Scholar] [CrossRef]
- Delgado-Ruiz, R.A.; Velasco Ortega, E.; Romanos, G.E.; Gerhke, S.; Newen, I.; Calvo-Guirado, J.L. Slow drilling speeds for single-drill implant bed preparation. Experimental in vitro study. Clin. Oral Investig. 2018, 22, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Pellicer-Chover, H.; Peñarrocha-Oltra, D.; Aloy-Prosper, A.; Sanchis-Gonzalez, J.C.; Peñarrocha-Diago, M.A.; Peñarrocha-Diago, M. Comparison of peri-implant bone loss between conventional drilling with irrigation versus low-speed drilling without irrigation. Med. Oral Patol. Oral Cir. Bucal 2017, 22, e730–e736. [Google Scholar] [CrossRef]
- Fraguas de San José, L.; Ruggeri, F.M.; Rucco, R.; Zubizarreta-Macho, Á.; Alonso Pérez-Barquero, J.; RiadDeglow, E.; Hernández Montero, S. Influence of drilling technique on the radiographic, thermographic, and geomorphometric effects of dental implant drills and osteotomy site preparations. J. Clin. Med. 2020, 9, 3631. [Google Scholar] [CrossRef]
- Seo, D.U.; Kim, S.G.; Oh, J.S.; Lim, S.C. Comparative study on early osseointegration of implants according to various drilling speeds in the mandible of dogs. Implant. Dent. 2017, 26, 841–847. [Google Scholar] [CrossRef]
- Landazuri-Del Barrio, R.A.; Nunes de Paula, W.; Spin-Neto, R.; Chaves de Souza, J.A.; Pimentel Lopes de Oliveira, G.J.; Marcantonio-Junior, E. Effect of 2 different drilling speeds on the osseointegration of implants placed with flapless guided surgery: A study in rabbits. Implant. Dent. 2017, 26, 882–887. [Google Scholar] [CrossRef]
- Scarano, A.; Piattelli, A.; Assenza, B.; Carinci, F.; Di Donato, L.; Romani, G.L.; Merla, A. Infrared thermographic evaluation of temperature modifications induced during implant site preparation with cylindrical versus conical drills. Clin. Implant. Dent. Relat. Res. 2011, 13, 319–323. [Google Scholar] [CrossRef]
- Salimov, F.; Ozcan, M.; UcakTurer, O.; Haytac, C.M. The effects of repeated usage of implant drills on cortical bone temperature, primary/secondary stability and bone healing: A preclinical in vivo micro-CT study. Clin. Oral Implants Res. 2020, 31, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Stelzle, F.; Frenkel, C.; Riemann, M.; Knipfer, C.; Stockmann, P.; Nkenke, E. The effect of load on heat production, thermal effects and expenditure of time during implant site preparation- an experimental ex vivo comparison between piezosurgery and conventional drilling. Clin. Oral Implants Res. 2014, 5, e140–e148. [Google Scholar] [CrossRef] [PubMed]
- Di Fiore, A.; Sivolella, S.; Stocco, E.; Favero, V.; Stellini, E. Experimental analysis of temperature differences during implant site preparation: Continuous drilling technique versus intermittent drilling technique. J. Oral Implantol. 2018, 44, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Abboud, M.; Delgado-Ruiz, R.A.; Kucine, A.; Rugova, S.; Balanta, J.; Calvo-Guirado, J.L. Multistepped drill design for single stage implant site preparation: Experimental study in type 2 bone. Clin. Implant. Dent. Relat. Res. 2015, 17 (Suppl. S2), e472–e485. [Google Scholar] [CrossRef]
- Stocchero, M.; Toia, M.; Jinno, Y.; Cecchinato, F.; Becktor, J.P.; Naito, Y.; Halldin, A.; Jimbo, R. Influence of different drilling preparation on cortical bone: A biomechanical, histological, and micro-CT study on sheep. Clin. Oral Implants Res. 2018, 29, 707–715. [Google Scholar] [CrossRef]
- Strbac, G.D.; Unger, E.; Donner, R.; Bijak, M.; Watzek, G.; Zechner, W. Thermal effects of a combined irrigation method during implant site drilling. A standardized in vitro study using a bovine rib model. Clin. Oral Implants Res. 2014, 25, 665–674. [Google Scholar] [CrossRef]
- Koo, K.T.; Kim, M.H.; Kim, H.Y.; Wikesjö, U.M.; Yang, J.H.; Yeo, I.S. Effects of implant drill wear, irrigation, and drill materials on heat generation in osteotomy sites. J. Oral Implantol. 2015, 41, e19–e23. [Google Scholar] [CrossRef]
- Sindel, A.; Dereci, Ö.; Hatipoğlu, M.; Altay, M.A.; Özalp, Ö.; Öztürk, A. The effects of irrigation volume to the heat generation during implant surgery. Med. Oral Patol. Oral Cir. Bucal 2017, 22, e506–e511. [Google Scholar] [CrossRef]
- Watanabe, F.; Tawada, Y.; Komatsu, S.; Hata, Y. Heat distribution in bone during preparation of implant sites: Heat analysis by real-time thermography. Int. J. Oral Maxillofac. Implants 1992, 7, 212–219. [Google Scholar]
- Horton, J.E.; Tarpley, T.M., Jr.; Wood, L.D. The healing of surgical defects in alveolar bone produced with ultrasonic instrumentation, chisel, and rotary bur. Oral Surg. Oral Med. Oral Pathol. 1975, 39, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Bassi, F.; Cicciù, M.; Di Lenarda, R.; Galindo Moreno, P.; Galli, F.; Herford, A.S.; Jokstad, A.; Lombardi, T.; Nevins, M.; Sennerby, L.; et al. Piezoelectric bone surgery compared with conventional rotary instruments in oral surgery and implantology: Summary and consensus statements of the International Piezoelectric Surgery Academy Consensus Conference 2019. Int. J. Oral Implantol. 2020, 13, 235–239. [Google Scholar] [PubMed]
- Agabiti, I.; Capparè, P.; Gherlone, E.F.; Mortellaro, C.; Bruschi, G.B.; Crespi, R. New surgical technique and distraction osteogenesis for ankylosed dental movement. J. Craniofacial Surg. 2014, 25, 828–830. [Google Scholar] [CrossRef] [PubMed]
- Agabiti, I.; Bernardello, F.; Nevins, M.; Wang, H.L. Impacted canine extraction by ridge expansion using air scaler surgical instruments: A case report. Int. J. Periodontics Restor. Dent. 2014, 34, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.Y.; Gu, Y.X.; Zhuang, L.F.; Lai, H.C. Survival of Implants Using the Osteotome Technique With or Without Grafting in the Posterior Maxilla: A Systematic Review. Int. J. Oral Maxillofac. Implants. 2016, 31, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Albassal, A.; Al-Khanati, N.M.; Harfouch, M. Utilization of magnetic mallet during dental implantation in narrow mandibular alveolar ridge: A case report. Int. J. Surg. Case Rep. 2024, 126, 110679. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, A.; Meijer, G.J.; Wolke, J.G.; Jansen, J.A. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: A laboratory study. Clin. Oral Implants Res. 2010, 21, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.Y.; Pereira, M.D.; Smith, A.A.; Houschyar, K.S.; Yin, X.; Mouraret, S.; Brunski, J.B.; Helms, J.A. Multiscale analyses of the bone-implant interface. J. Dent. Res. 2015, 94, 482–490. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abrahamsson, I.; Berglundh, T.; Linder, E.; Lang, N.P.; Lindhe, J. Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin. Oral Implants Res. 2004, 15, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Salvi, G.E.; Bosshardt, D.D.; Lang, N.P.; Abrahamsson, I.; Berglundh, T.; Lindhe, J.; Ivanovski, S.; Donos, N. Temporal sequence of hard and soft tissue healing around titanium dental implants. Periodontol. 2000 2015, 68, 135–152. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Iacono, R.; Pires Godoy, E.; Punzo, A.; Cavicchia, A.; Gianfreda, F.; Bollero, P. Hybrid Funnel Technique: A Novel Approach for Implant Site Preparation: A Pilot Study. Dent. J. 2022, 10, 157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Soto-Peñaloza, D.; Caneva, M.; Viña-Almunia, J.; Martín-de-Llano, J.J.; Peñarrocha-Oltra, D.; Peñarrocha-Diago, M. Bone-Healing Pattern on the Surface of Titanium Implants at Cortical and Marrow Compartments in Two Topographic Sites: An Experimental Study in Rabbits. Materials 2018, 12, 85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreira Balan, V.; Ferri, M.; Pires Godoy, E.; Artioli, L.G.; Botticelli, D.; Silva, E.R.; Xavier, S.P. Controlled Lateral Pressure on Cortical Bone Using Blade-Equipped Implants: An Experimental Study in Rabbits. Bioengineering 2024, 11, 835. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kanayama, M.; Ferri, M.; Guzon, F.M.M.; Asano, A.; Alccayhuaman, K.A.A.; Rossi, E.F.; Botticelli, D. Influence on marginal bone levels at implants equipped with blades aiming to control the lateral pressure on the cortical bone. An experimental study in dogs. Oral Maxillofac. Surg. 2024, 28, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Botticelli, D.; Lang, N.P. Dynamics of osseointegration in various human and animal models—A comparative analysis. Clin. Oral Implants Res. 2017, 28, 742–748. [Google Scholar] [CrossRef] [PubMed]
Femur | Tibia | |||
---|---|---|---|---|
Funnel | Drill | Funnel | Drill | |
Cervical | 52.5 ± 10.2 # | 49.7 ± 14.7 | 39.9 ± 11.6 # | 43.7 ± 10.7 |
Marrow | 6.9 ± 9.9 | 16.6 ± 13.3 | 8.8 ± 5.3 | 6.3 ± 6.4 |
Apical | 34.9 ± 17.9 | 39.3 ± 12.4 | 51.8 ± 9.6 | 42.3 ± 7.3 |
Femur | Tibia | |||
---|---|---|---|---|
Funnel | Drill | Funnel | Drill | |
Cervical | 48.7 ± 10.8 # | 53.5 ± 10.7 # | 35.7 ± 9.0 # | 31.7 ± 7.2 # |
Marrow | 14.5 ± 11.0 | 14.4 ± 14.8 | 6.7 ± 8.6 | 6.8 ± 9.6 |
Apical | 33.6 ± 10.7 # | 38.7 ± 8.9 # | 57.7 ± 19.4 # | 60.9 ± 7.2 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuwano, K.; Canullo, L.; Botticelli, D.; Xavier, S.P.; Silva, E.R.; Kusano, K.; Baba, S. Ablative and Expansive Protocols for Bone Osteotomy in Rabbits. Dent. J. 2025, 13, 118. https://doi.org/10.3390/dj13030118
Kuwano K, Canullo L, Botticelli D, Xavier SP, Silva ER, Kusano K, Baba S. Ablative and Expansive Protocols for Bone Osteotomy in Rabbits. Dentistry Journal. 2025; 13(3):118. https://doi.org/10.3390/dj13030118
Chicago/Turabian StyleKuwano, Kazuhisa, Luigi Canullo, Daniele Botticelli, Samuel Porfirio Xavier, Erick Ricardo Silva, Kaoru Kusano, and Shunsuke Baba. 2025. "Ablative and Expansive Protocols for Bone Osteotomy in Rabbits" Dentistry Journal 13, no. 3: 118. https://doi.org/10.3390/dj13030118
APA StyleKuwano, K., Canullo, L., Botticelli, D., Xavier, S. P., Silva, E. R., Kusano, K., & Baba, S. (2025). Ablative and Expansive Protocols for Bone Osteotomy in Rabbits. Dentistry Journal, 13(3), 118. https://doi.org/10.3390/dj13030118