Synergistic Effects of Polyphenols and Stannous Ions on Pellicle Modification and Erosion Protection In Situ
Abstract
1. Introduction
- -
- Is tannic acid or stannous fluoride/chloride more potent in its pellicle modifying effect?
- -
- Is there a difference in the rinsing order if tannic acid or stannous fluoride/chloride is used first?
- -
- Is there a synergistic effect if individuals rinse with a combination of tannic acid and stannous fluoride or chloride?
2. Materials and Methods
2.1. Subjects
2.2. Specimens
2.3. Test Solutions
2.4. Pellicle Formation In Situ
2.5. Determination of In Vitro Erosion
2.6. Microscopy Analyses: DAPI Combined with Concanavalin A (ConA) Staining
2.7. BacLightTM Viability Assay
2.8. Ultrastructural Investigation of the In Situ Formed Pellicle (TEM)
2.9. Statistics
3. Results
3.1. Fluorescence Microscopic Assays
3.1.1. DAPI Staining; 8 h Oral Exposition
3.1.2. Concanavalin A Staining; 8 h Oral Exposition
3.1.3. BacLight Staining; 8 h Oral Exposition
3.1.4. DAPI Staining; 48 h Oral Exposition
3.1.5. Concanavalin A Staining; 48 h Oral Exposition
3.1.6. BacLight Staining; 48 h Oral Exposition
3.2. Dissociation of Calcium Ions
3.2.1. Calcium Release 120 s, pH 2.0
3.2.2. Calcium Release 120 s, pH 2.3
3.2.3. Calcium Release 120 s, pH 3.0
3.3. Transmission Electron Microscopy
4. Discussion
4.1. Antibacterial Mechanisms of Tannin
4.2. Protective Mechanisms of Stannous Ions
4.3. Synergistic Effects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SnF2 | Stannous Fluoride |
SnCl2 | Stannous chloride |
TEM | Transmission electronic microscopy |
EDX | Electron dispersive x-ray |
DAPI | 4′,6-Diamidin-2-phenylindol |
Con A | Concanavalin A |
References
- Gambon, D.L.; Brand, H.S.; Veerman, E.C. Dental erosion in the 21st century: What is happening to nutritional habits and lifestyle in our society? Br. Dent. J. 2012, 213, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Schestakow, A.; Rasputnis, W.; Hannig, M. Effect of Polyphenols on the Ultrastructure of the Dentin Pellicle and Subsequent Erosion. Caries Res. 2024, 58, 77–85. [Google Scholar] [CrossRef]
- Flemming, J.; Meyer-Probst, C.T.; Speer, K.; Kölling-Speer, I.; Hannig, C.; Hannig, M. Preventive Applications of Polyphenols in Dentistry-A Review. Int. J. Mol. Sci. 2021, 22, 4892. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, S.H.; Baumann, T.; Lussi, A.; Scaramucci, T.; Carvalho, T.S. Plant extracts have dual mechanism on the protection against dentine erosion: Action on the dentine substrate and modification of the salivary pellicle. Sci. Rep. 2023, 13, 7089. [Google Scholar] [CrossRef] [PubMed]
- Baumann, T.; Niemeyer, S.H.; Lussi, A.; Scaramucci, T.; Carvalho, T.S. Rinsing solutions containing natural extracts and fluoride prevent enamel erosion in vitro. J. Appl. Oral Sci. 2023, 31, e20230108. [Google Scholar] [CrossRef]
- Hannig, M.; Joiner, A. The structure, function and properties of the acquired pellicle. Monogr. Oral Sci. 2006, 19, 29–64. [Google Scholar] [CrossRef]
- Hannig, M.; Hannig, C. The pellicle and erosion. Monogr. Oral Sci. 2014, 25, 206–214. [Google Scholar] [CrossRef]
- Schestakow, A.; Nekrashevych, Y.; Hoth-Hannig, W.; Hannig, M. Influence of periodic polyphenol treatment on the anti-erosive potential of the acquired enamel pellicle-A qualitative exploratory study. J. Dent. 2022, 124, 104236. [Google Scholar] [CrossRef]
- Weber, M.T.; Hannig, M.; Potschke, S.; Hohne, F.; Hannig, C. Application of Plant Extracts for the Prevention of Dental Erosion: An in situ/in vitro Study. Caries Res. 2015, 49, 477–487. [Google Scholar] [CrossRef]
- Hertel, S.; Potschke, S.; Basche, S.; Delius, J.; Hoth-Hannig, W.; Hannig, M.; Hannig, C. Effect of Tannic Acid on the Protective Properties of the in situ Formed Pellicle. Caries Res. 2016, 51, 34–45. [Google Scholar] [CrossRef]
- Kirsch, J.; Jung, A.; Hille, K.; König, B.; Hannig, C.; Kölling-Speer, I.; Speer, K.; Hannig, M. Effect of fragaria vesca, hamamelis and tormentil on the initial bacterial colonization in situ. Arch. Oral Biol. 2020, 118, 104853. [Google Scholar] [CrossRef]
- Haslam, E. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. J. Nat. Prod. 1996, 59, 205–215. [Google Scholar] [CrossRef]
- Xi, Q.; Hoth-Hannig, W.; Deng, S.; Jin, X.; Fu, B.; Hannig, M. The effect of polyphenol-containing solutions on in situ biofilm formation on enamel and dentin. J. Dent. 2020, 102, 103482. [Google Scholar] [CrossRef]
- Schestakow, A.; Hannig, M. Effects of Experimental Agents Containing Tannic Acid or Chitosan on the Bacterial Biofilm Formation in Situ. Biomolecules 2020, 10, 1315. [Google Scholar] [CrossRef]
- Hannig, C.; Spitzmüller, B.; Al-Ahmad, A.; Hannig, M. Effects of Cistus-tea on bacterial colonization and enzyme activities of the in situ pellicle. J. Dent. 2008, 36, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Kandra, L.; Gyémánt, G.; Zajácz, A.; Batta, G. Inhibitory effects of tannin on human salivary alpha-amylase. Biochem. Biophys. Res. Commun. 2004, 319, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
- Jean-Gilles, D.; Li, L.; Vaidyanathan, V.G.; King, R.; Cho, B.; Worthen, D.R.; Chichester, C.O., 3rd; Seeram, N.P. Inhibitory effects of polyphenol punicalagin on type-II collagen degradation in vitro and inflammation in vivo. Chem. Biol. Interact. 2013, 205, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, A.; Kanda, T.; Tanabe, M.; Matsudaira, F.; Oliveira Cordeiro, J.G. Inhibitory effects of apple polyphenols and related compounds on cariogenic factors of mutans streptococci. J. Agric. Food Chem. 2000, 48, 5666–5671. [Google Scholar] [CrossRef]
- Wittpahl, G.; Kölling-Speer, I.; Basche, S.; Herrmann, E.; Hannig, M.; Speer, K.; Hannig, C. The Polyphenolic Composition of Cistus incanus Herbal Tea and Its Antibacterial and Anti-adherent Activity against Streptococcus mutans. Planta Med. 2015, 81, 1727–1735. [Google Scholar] [CrossRef]
- Chung, K.-T.; Jr, S.E.S.; Lin, W.-F.; Wei, C.I. Growth inhibition of selected food-borne bacteria by tannic acid, propyl gallate and related compounds. Lett. Appl. Microbiol. 1993, 17, 29–32. [Google Scholar] [CrossRef]
- Hertel, S.; Graffy, L.; Pötschke, S.; Basche, S.; Al-Ahmad, A.; Hoth-Hannig, W.; Hannig, M.; Hannig, C. Effect of Inula viscosa on the pellicle’s protective properties and initial bioadhesion in-situ. Arch. Oral Biol. 2016, 71, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Ganss, C.; Klimek, J.; Schäffer, U.; Spall, T. Effectiveness of two fluoridation measures on erosion progression in human enamel and dentine in vitro. Caries Res. 2001, 35, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Lussi, A.; Carvalho, T.S. The future of fluorides and other protective agents in erosion prevention. Caries Res. 2015, 49 (Suppl. S1), 18–29. [Google Scholar] [CrossRef] [PubMed]
- Scholz, K.J.; Federlin, M.; Hiller, K.A.; Ebensberger, H.; Ferstl, G.; Buchalla, W. EDX-analysis of fluoride precipitation on human enamel. Sci. Rep. 2019, 9, 13442. [Google Scholar] [CrossRef]
- Ganss, C.; Neutard, L.; von Hinckeldey, J.; Klimek, J.; Schlueter, N. Efficacy of a tin/fluoride rinse: A randomized in situ trial on erosion. J. Dent. Res. 2010, 89, 1214–1218. [Google Scholar] [CrossRef]
- Kensche, A.; Buschbeck, E.; Konig, B.; Koch, M.; Kirsch, J.; Hannig, C.; Hannig, M. Effect of fluoride mouthrinses and stannous ions on the erosion protective properties of the in situ pellicle. Sci. Rep. 2019, 9, 5336. [Google Scholar] [CrossRef]
- Schlueter, N.; Klimek, J.; Ganss, C. In vitro efficacy of experimental tin- and fluoride-containing mouth rinses as anti-erosive agents in enamel. J. Dent. 2009, 37, 944–948. [Google Scholar] [CrossRef]
- Flemming, J.; Hannig, C.; Hannig, M. Caries Management-The Role of Surface Interactions in De- and Remineralization-Processes. J. Clin. Med. 2022, 11, 7044. [Google Scholar] [CrossRef]
- Kirsch, J.; Hannig, M.; Winkel, P.; Basche, S.; Leis, B.; Putz, N.; Kensche, A.; Hannig, C. Influence of pure fluorides and stannous ions on the initial bacterial colonization in situ. Sci. Rep. 2019, 9, 18499. [Google Scholar] [CrossRef]
- Hara, A.T.; Lippert, F.; Zero, D.T. Interplay between experimental dental pellicles and stannous-containing toothpaste on dental erosion-abrasion. Caries Res. 2013, 47, 325–329. [Google Scholar] [CrossRef]
- De Carvalho, A.J.D.; Paranhos, L.R.; Oliveira, M.B.; Novais, V.R. Oral care and the use of fluoride in the prevention of radiation-related caries: A scoping review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2023, 136, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Washio, J.; Abiko, Y.; Zhang, L.; Takahashi, N. Green Tea-Derived Catechins Suppress the Acid Productions of Streptococcus mutans and Enhance the Efficiency of Fluoride. Caries Res. 2023, 57, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Johannes, N.; Hertel, S.; Stoffel, V.; Hannig, C.; Basche, S.; Schmitt, V.; Flemming, J.; Hannig, M. Impact of pH-adjusted fluoride and stannous solutions on the protective properties on the pellicle layer in vitro and in situ. Sci. Rep. 2024, 14, 3378. [Google Scholar] [CrossRef] [PubMed]
- Flemming, J.; Meyer-Probst, C.T.; Hille, K.; Basche, S.; Speer, K.; Kölling-Speer, I.; Hannig, C.; Hannig, M. Olive Oil as a Transport Medium for Bioactive Molecules of Plants?-An In Situ Study. Molecules 2023, 28, 3803. [Google Scholar] [CrossRef]
- Kensche, A.; Kirsch, J.; Mintert, S.; Enders, F.; Potschke, S.; Basche, S.; Konig, B.; Hannig, C.; Hannig, M. Impact of customary fluoride rinsing solutions on the pellicle’s protective properties and bioadhesion in situ. Sci. Rep. 2017, 7, 16584. [Google Scholar] [CrossRef]
- Hannig, C.; Gaeding, A.; Basche, S.; Richter, G.; Helbig, R.; Hannig, M. Effect of conventional mouthrinses on initial bioadhesion to enamel and dentin in situ. Caries Res. 2013, 47, 150–161. [Google Scholar] [CrossRef]
- Kensche, A.; Basche, S.; Bowen, W.H.; Hannig, M.; Hannig, C. Fluorescence microscopic visualization of non cellular components during initial bioadhesion in situ. Arch. Oral Biol. 2013, 58, 1271–1281. [Google Scholar] [CrossRef]
- Martínez-Hernández, M.; Reyes-Grajeda, J.P.; Hannig, M.; Almaguer-Flores, A. Salivary pellicle modulates biofilm formation on titanium surfaces. Clin. Oral Investig. 2023, 27, 6135–6145. [Google Scholar] [CrossRef]
- Kardum, N.; Glibetic, M. Polyphenols and Their Interactions with Other Dietary Compounds: Implications for Human Health. Adv. Food Nutr. Res. 2018, 84, 103–144. [Google Scholar] [CrossRef]
- Tinanoff, N.; Brady, J.M.; Gross, A. The effect of NaF and SnF2 mouthrinses on bacterial colonization of tooth enamel: TEM and SEM studies. Caries Res. 1976, 10, 415–426. [Google Scholar] [CrossRef]
- Zameck, R.L.; Tinanoff, N. Effects of NaF and SnF2 on growth, acid and glucan production of several oral streptococci. Arch. Oral Biol. 1987, 32, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Attramadal, A.; Svatun, B. In vivo antibacterial effect of tin on the oral microflora. Scand. J. Dent. Res. 1984, 92, 161–164. [Google Scholar] [CrossRef]
- Gross, A.; Tinanoff, N. Effect of SnF2 mouthrinse on initial bacterial colonization of tooth enamel. J. Dent. Res. 1977, 56, 1179–1183. [Google Scholar] [CrossRef]
- Adriaens, P.A.; De Boever, J.A.; Loesche, W.J. Bacterial invasion in root cementum and radicular dentin of periodontally diseased teeth in humans. A reservoir of periodontopathic bacteria. J. Periodontol. 1988, 59, 222–230. [Google Scholar] [CrossRef]
- Satou, R.; Oka, S.; Sugihara, N. Risk assessment of fluoride daily intake from preference beverage. J. Dent. Sci. 2021, 16, 220–228. [Google Scholar] [CrossRef]
- Onisi, M.; Ozaki, F.; Yoshino, F.; Murakami, Y. An experimental evidence of caries preventive activity of non-fluoride component in tea. Koku Eisei Gakkai Zasshi 1981, 31, 158–162. [Google Scholar] [CrossRef]
- Yu, H.; Oho, T.; Tagomori, S.; Morioka, T. Anticariogenic effects of green tea. Fukuoka Igaku Zasshi 1992, 83, 174–180. [Google Scholar]
- Yu, H.; Oho, T.; Xu, L.X. Effects of several tea components on acid resistance of human tooth enamel. J. Dent. 1995, 23, 101–105. [Google Scholar] [CrossRef]
- Carvalho, T.S.; Pham, K.; Rios, D.; Niemeyer, S.; Baumann, T. Synergistic effect between plant extracts and fluoride to protect against enamel erosion: An in vitro study. PLoS ONE 2022, 17, e0277552. [Google Scholar] [CrossRef] [PubMed]
- Schestakow, A.; Guth, M.S.; Eisenmenger, T.A.; Hannig, M. Evaluation of Anti-Biofilm Activity of Mouthrinses Containing Tannic Acid or Chitosan on Dentin In Situ. Molecules 2021, 26, 1351. [Google Scholar] [CrossRef] [PubMed]
- Buzalaf, M.A.; Hannas, A.R.; Kato, M.T. Saliva and dental erosion. J. Appl. Oral Sci. 2012, 20, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Hertel, S.; Basche, S.; Schmidt, V.; Staszyk, C.; Hannig, C.; Sterzenbach, T.; Hannig, M. Erosion behaviour of human, bovine and equine dental hard tissues. Sci. Rep. 2023, 13, 19617. [Google Scholar] [CrossRef]
Pure Substance | Solution Volume | Weighed Quantity | Measured pH Value |
---|---|---|---|
Stannous fluoride (Honeywell Speciality Chemicals GmbH, Seelze, Germany) | 8 mL | 16.5 mg dissolved in double-distilled water | 4.5 |
Stannous chloride (Honeywell Speciality Chemicals GmbH, Seelze, Germany) | 23.768 mg dissolved in double-distilled water | 2.5 | |
Tannic acid (pharmaceutically pure, Caelo, Caesar & Lorentz GmbH, Hilden, Germany) | 13.6 mg dissolved in double-distilled water | 3.9 | |
Combination of tannic acid and stannous fluoride Relation 1:1 | 6.8 mg TA and 8.25 mg SnF2 dissolved in double-distilled water | 3.2 | |
Combination of tannic acid and stannous chloride Relation 1:1 | 6.8 mg TA and 11.884 mg SnCl2 dissolved in double-distilled water | 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flemming, J.; Meier, M.; Schmitt, V.; Hannig, C.; Hannig, M. Synergistic Effects of Polyphenols and Stannous Ions on Pellicle Modification and Erosion Protection In Situ. Dent. J. 2025, 13, 442. https://doi.org/10.3390/dj13100442
Flemming J, Meier M, Schmitt V, Hannig C, Hannig M. Synergistic Effects of Polyphenols and Stannous Ions on Pellicle Modification and Erosion Protection In Situ. Dentistry Journal. 2025; 13(10):442. https://doi.org/10.3390/dj13100442
Chicago/Turabian StyleFlemming, Jasmin, Melina Meier, Vanessa Schmitt, Christian Hannig, and Matthias Hannig. 2025. "Synergistic Effects of Polyphenols and Stannous Ions on Pellicle Modification and Erosion Protection In Situ" Dentistry Journal 13, no. 10: 442. https://doi.org/10.3390/dj13100442
APA StyleFlemming, J., Meier, M., Schmitt, V., Hannig, C., & Hannig, M. (2025). Synergistic Effects of Polyphenols and Stannous Ions on Pellicle Modification and Erosion Protection In Situ. Dentistry Journal, 13(10), 442. https://doi.org/10.3390/dj13100442