Root Canal Dentin Microhardness after Contact with Antibiotic Medications: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Sample Size Calculation and Teeth Collection
2.3. Specimen Preparation (Root Slice Fabrication and Treatment with Medication Pastes)
2.4. Microhardness Test (Before and After Treatment with Medications)
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
- -
- Ca (OH)2 is more appropriate to be used as intracanal medication for 20 days than antibiotic pastes (TAP or DAP) during regenerative procedures.
- -
- Ca (OH)2 reduced dentin microhardness significantly less compared to the reduction caused by the antibiotic pastes (TAP or DAP), which have chelating properties.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malu, K.; Khubchandani, M. Triple Antibiotic Paste: A Suitable Medicament for Intracanal Disinfection. Cureus 2022, 14, e29186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mittal, R.; Tandan, M.; Sukul, S. Comparative Evaluation of Antibacterial Efficacy of Three Intracanal Medicaments in Primary Endodontic Infections: A Randomized Clinical Trial. Conserv. Dent. Endod. J. 2020, 5, 5–10. [Google Scholar] [CrossRef]
- Ordinola-Zapata, R.; Noblett, W.C.; Perez-Ron, A.; Ye, Z.; Vera, J. Present status and future directions of intracanal medicaments. Int. Endod. J. 2022, 55 (Suppl. S3), 613–636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dalavai, P.; Nasreen, F.; Srinivasan, R.; Pramod, J.; Bhandary, S.; Penmatsa, C. To evaluate and compare the compressive strength of root dentin exposed to calcium hydroxide, mixed with various vehicles for a period of 30 days—An in vitro study. J. Conserv. Dent. 2021, 24, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.D.; Khatter, R.; Bal, R.B.; Bal, C.S. Intracanal Medications versus Placebo in Reducing Postoperative Endodontic Pain—A Double-Blind Randomized Clinical Trial. Braz. Dent. J. 2013, 24, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.S.; Martinho, F.C.; Cardoso, F.G.R.; Nascimento, G.G.; Carbalho, C.A.T.; Valera, M.C. Microbiological Profile Resistant to Different Intracanal Medications in Primary Endodontic Infections. J. Endod. 2015, 41, 824–830. [Google Scholar] [CrossRef]
- Arruda, M.E.F.; Neves, M.A.S.; Diogenes, A.; Mdala, I.; Guilherme, B.P.S.; Siqueira, S.F., Jr.; Rôças, I.N. Infection Control in Teeth with Apical Periodontitis Using a Triple Antibiotic Solution or Calcium Hydroxide with Chlorhexidine: A Randomized Clinical Trial. J. Endod. 2018, 44, 1474–1479. [Google Scholar] [CrossRef] [PubMed]
- Bučević Sojčić, P.; Horina, J.L.; Jurčević Lulić, T.; Bočkaj, N.; Jurić, H. Measurement of the Dentin Wall Thickness of the Maxillary Central Incisor in Relation to the Stage of Root Development: A Pilot Study. Acta Stomatol. Croat. 2023, 57, 206–215. [Google Scholar] [CrossRef]
- Lee, C.; Song, M. Failure of Regenerative Endodontic Procedures: Case Analysis and Subsequent Treatment Options. J. Endod. 2022, 48, 1137–1145. [Google Scholar] [CrossRef]
- Ribeiro, M.B.; Vasconcelos, R.A.; Soares, A.J.; Zaia, A.A.; Ferraz, C.C.R.; Almeida, J.F.A.; Gomes, B.P.F.A. Effectiveness of calcium hydroxide-based intracanal medication on infectious/inflammatory contents in teeth with post-treatment apical periodontitis. Clin. Oral Investig. 2019, 23, 2759–2766. [Google Scholar] [CrossRef]
- Staffoli, S.; Plotino, G.; Torrijos, B.G.N.; Grande, N.M.; Bossù, M.; Gambarini, G.; Polimeni, A. Regenerative Endodontic Procedures Using Contemporary Endodontic Materials. Materials 2019, 12, 908. [Google Scholar] [CrossRef] [PubMed]
- Cehreli, Z.C.; Unverdi, G.E.; Ballikaya, E. Deciduous Tooth Pulp Autotransplantation for the Regenerative Endodontic Treatment of Permanent Teeth with Pulp Necrosis: A Case Series. J. Endod. 2022, 48, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Banchs, F.; Trope, M. Revascularization of immature permanent teeth with apical periodontitis: New treatment protocol? J. Endod. 2004, 30, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, K.M.; Diogenes, A.; Teixeira, F.B. Treatment options: Biological basis of regenerative endodontic procedures. J. Endod. 2013, 39 (Suppl. S3), S30–S43. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.V.; Silveira, F.F.; Nunes, E. Apexification in non-vital teeth with immature roots: Report of two cases. Iran. Endod. J. 2015, 10, 79–81. [Google Scholar] [PubMed]
- Caleza-Jiménez, C.; Ribas-Pérez, D.; Biedma-Perea, M.; Solano-Mendoza, B.; Mendoza-Mendoza, A. Radiographic differences observed following apexification vs revascularization in necrotic immature molars and incisors: A follow-up study of 18 teeth. Eur. Arch. Paediatr. Dent. 2022, 23, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Botero, T.M.; Tang, X.; Gardner, R.; Hu, J.C.C.; Boynton, J.R.; Holland, G.R. Clinical evidence for regenerative endodontic procedures: Immediate versus delayed induction? J. Endod. 2017, 43 (Suppl. S9), S75–S81. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.; Kohli, M.R.; Setzer, F.; Karabucak, B. Outcome of Revascularization Procedure: A Retrospective Case Series. J. Endod. 2016, 42, 1752–1759. [Google Scholar] [CrossRef]
- Kahler, B.; Mistry, S.; Moule, A.; Ringsmuth, A.K.; Case, P.; Thomson, A.; Holcombe, T. Revascularization outcomes: A prospective analysis of 16 consecutive cases. J. Endod. 2014, 40, 333–338. [Google Scholar] [CrossRef]
- Rizk, H.M.; Salah Al-Deen, M.S.M.; Emam, A.A. Comparative evaluation of Platelet Rich Plasma (PRP) versus Platelet Rich Fibrin (PRF) scaffolds in regenerative endodontic treatment of immature necrotic permanent maxillary central incisors: A double blinded randomized controlled trial. Saudi Dent. J. 2020, 32, 224–231. [Google Scholar] [CrossRef]
- Silujjai, J.; Linsuwanont, P. Treatment Outcomes of Apexification or Revascularization in Nonvital Immature Permanent Teeth: A Retrospective Study. J. Endod. 2017, 43, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Cao, Y.; Shin, S.J.; Shon, W.J.; Chugal, N.; Kim, R.H.; Kim, E.; Kang, M.K. Revascularization-associated Intracanal Calcification: Assessment of Prevalence and Contributing Factors. J. Endod. 2017, 43, 2025–2033. [Google Scholar] [CrossRef] [PubMed]
- Chaniotis, A. Treatment Options for Failing Regenerative Endodontic Procedures: Report of 3 Cases. J. Endod. 2017, 43, 1472–1478. [Google Scholar] [CrossRef]
- Lin, L.M.; Shimizu, E.; Gibbs, J.L.; Loghin, S.; Ricucci, D. Histologic and histobacteriologic observations of failed revascularization/revitalization therapy: A case report. J. Endod. 2014, 40, 291–295. [Google Scholar] [CrossRef]
- Lin, L.M.; Kim, S.G.; Martin, G.; Kahler, B. Continued root maturation despite persistent apical periodontitis of immature permanent teeth after failed regenerative endodontic therapy. Aust. Endod. J. 2018, 44, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, H. The capability of regenerative endodontics to promote the complete root formation in immature permanent teeth with different initial pre-operative conditions. Clin. Oral Investig. 2023, 28, 6. [Google Scholar] [CrossRef]
- Žižka, R.; Buchta, T.; Voborná, I.; Harvan, L.; Šedý, J. Root Maturation in Teeth Treated by Unsuccessful Revitalization: 2 Case Reports. J. Endod. 2016, 42, 724–729. [Google Scholar] [CrossRef]
- Rahul, M.; Garima, J.; Tewari, N.; Lokade, A.; Mathur, V.; Bansal, K. Critical Analysis Using Kaplan-Meier Survival to Evaluate the Influence of Various Factors on the Failures of Regenerative Endodontic Therapy. J. Endod. 2023, 49, 96–97. [Google Scholar] [CrossRef]
- Zhang, Y.R.; Du, W.; Zhou, X.D.; Yu, H.Y. Review of research on the mechanical properties of the human tooth. Int. J. Oral Sci. 2014, 6, 61–69. [Google Scholar] [CrossRef]
- Gúzman, S.; Caccia, M.; Cortés, O.; Bolarin, J.M.; Requena, A.; Garcia-Godoy, A.; Garcia-Godoy, F.; Boj, J.R. Human root dentin microhardness and degradation by triple antibiotic paste and calcium hydroxide. Am. J. Dent. 2022, 35, 205–211. [Google Scholar] [PubMed]
- Serdar Eymirli, P.; Eymirli, A.; Uzunoğlu Özyürek, E. The effect of intracanal medication variations on microhardness of simulated immature root dentin. Aust. Endod. J. 2021, 47, 616–623. [Google Scholar] [CrossRef]
- Yassen, G.H.; Vail, M.M.; Chu, T.G.; Platt, J.A. The effect of medicaments used in endodontic regeneration on root fracture and microhardness of radicular dentine. Int. Endod. J. 2013, 46, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, S.; Dumani, A.; Yoldas, O. The effect of antibiotic pastes on microhardness of dentin. Dent. Traumatol. 2016, 32, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Daneswari, M.; Reddy, N.V.; Chris, P.A.; Reddy, V.N.; Kondamadugu, S.; Niharika, P. A Comparative Evaluation of Microhardness and Chemical Structure of Radicular Dentin with Two Combinations of TAP and MTAP: An In Vitro Study. Int. J. Clin. Pediatr. Dent. 2022, 15 (Suppl. S2), S151–S157. [Google Scholar]
- Prather, B.T.; Ehrlich, Y.; Spolnik, K.; Platt, J.A.; Yassen, G.H. Effects of two combinations of triple antibiotic paste used in endodontic regeneration on root microhardness and chemical structure of radicular dentine. J. Oral Sci. 2014, 56, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, B.R.; Revankar, B.; Karale, R.; Moogi, P.P.; Mangala, M.G.; Sahoo, A.K. Comparative assessment of nanosized intracanal medicaments on penetration and fracture resistance of root dentin—An in vitro study. J. Conserv. Dent. Endod. 2024, 27, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Bakland, L.K.; Andreasen, J.O. Will mineral trioxide aggregate replace calcium hydroxide in treating pulpal and periodontal healing complications subsequent to dental trauma? A review. Dent. Traumatol. 2012, 28, 25–32. [Google Scholar] [CrossRef]
- Batur, Y.B.; Erdemir, U.; Sancakli, H.S. The long-term effect of calcium hydroxide application on dentin fracture strength of endodontically treated teeth. Dent. Traumatol. 2013, 29, 461–464. [Google Scholar] [CrossRef]
- Available online: https://www.studocu.com/tw/document/chung-yuan-christian-university/engineering-materials/18astm-e384-22-astm-e384-22/72041066 (accessed on 1 February 2024).
- Muana, H.L.; Nassar, M.; Dargham, A.; Hiraishi, N.; Tagami, J. Effect of smear layer removal agents on the microhardness and roughness of radicular dentin. Saudi Dent. J. 2021, 33, 661–665. [Google Scholar] [CrossRef]
- Khan, A.M.; Gangoo, I.K.A.; Ali, N.A.; Khan, M.; Javed, M.Q.; Al-Attas, M.H.; Abulhamael, A.M.; Bahammam, H.A.; Alsofi, L.; Yahya, R.S.A. The Effect of Calcium Hydroxide, Triple Antibiotic Paste and Chlorhexidine on Pain in Teeth with Symptomatic Apical Periodontitis: A Randomised Controlled Trial. Int. J. Environ. Res. Public Health 2023, 20, 3091. [Google Scholar] [CrossRef]
- Zancan, R.F.; Cavenago, B.C.; Oda, D.F.; Bramante, C.M.; Andrade, F.B.; Duarte, M.A.H. Antimicrobial activity and physicochemical properties of antibiotic pastes used in regenerative endodontics. Braz. Dent. J. 2019, 30, 536–541. [Google Scholar] [CrossRef]
- Dessai, A.; Shetty, N.; Saralaya, V.; Natarajan, S.; Mala, K. Carnosic Acid as an intracanal medicament performs better than triple antibiotic paste and calcium hydroxide to eradicate Enterococcus faecalis from root canal: An in vitro confocal laser scanning microscopic study. J. Cons. Dent. (JCD) 2022, 25, 20–25. [Google Scholar]
- Zahran, S.; Mannocci, F.; Koller, G. Impact of an Enhanced Infection Control Protocol on the Microbial Community Profile in Molar Root Canal Treatment: An in Vivo NGS Molecular Study. J. Endod. 2022, 48, 1352–1360.e3. [Google Scholar] [CrossRef]
- Qamar, S.; Jayanna, R.; Ahuja, V.R. Comparative Evaluation of Antimicrobial Efficacy of Calcium Hydroxide, Chlorhexidine, and Triple Antibiotic Paste in Different Combination Forms as Intracanal Medicaments against Enterococcus faecalis in Primary Teeth: An In Vivo Randomized Clinical Trial. Int. J. Clin. Pediat. Dent. 2023, 16, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ye, Z.; Zhang, A.; Lin, F.; Fu, J.; Fok, A.S.L. Effects of concentration of sodium hypochlorite as an endodontic irrigant on the mechanical and structural properties of root dentine: A laboratory study. Int. Endod. J. 2022, 55, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Lovelace, T.W.; Henry, M.A.; Hargreaves, K.M.; Diogenes, A. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J. Endod. 2011, 37, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Van Gorp, G.; Declerck, D. Long-term Outcome of Endodontically Treated Traumatized Immature Upper Incisors. J. Endod. 2023, 49, 1106–1119. [Google Scholar] [CrossRef] [PubMed]
- Trope, M. Treatment of the immature tooth with a non- vital pulp and apical periodontitis. Dent. Clin. N. Am. 2010, 54, 313–324. [Google Scholar] [CrossRef]
- Diogenes, A.; Henry, M.A.; Teixeira, F.B.; Hargreaves, K.M. An update on clinical regenerative endodontics. Endod. Top. 2013, 28, 2–23. [Google Scholar] [CrossRef]
- Wigler, R.; Kaufman, A.Y.; Lin, S.; Steinbock, N.; Hazan-Molina, H.; Torneck, C.D. Revascularization: A treatment for permanent teeth with necrotic pulp and incomplete root development. J. Endod. 2013, 39, 319–326. [Google Scholar] [CrossRef]
- Nosrat, A.; Homayounfar, N.; Oloomi, K. Drawbacks and unfavorable outcomes of regenerative endodontic treatments of necrotic immature teeth: A literature review and report of a case. J. Endod. 2012, 38, 1428–1434. [Google Scholar] [CrossRef]
- Sahebi, S.; Moazami, F.; Abbott, P. The effects of short-term calcium hydroxide application on the strength of dentine. Dent. Traumatol. 2010, 26, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Whitbeck, E.R.; Quinn, G.D.; Quinn, J.B. Effect of Calcium Hydroxide on the Fracture Resistance of Dentin. J. Res. Natl. Inst. Stand. Technol. 2011, 116, 743–749. [Google Scholar] [CrossRef]
- Asgary, S.; Fayazi, S. Endodontic Surgery of a Symptomatic Overfilled MTA Apical Plug: A Histological and Clinical Case Report. Iran. Endod. J. 2017, 12, 376–380. [Google Scholar] [PubMed]
- Jeeruphan, T.; Jantarat, J.; Yanpiset, K.; Suwannapan, L.; Khewsawai, P.; Hargreaves, K.M. Mahidol study 1: Comparison of radiographic and survival outcomes of immature teeth treated with either regenerative endodontic or apexification methods: A retrospective study. J. Endod. 2012, 38, 1330–1336. [Google Scholar] [CrossRef]
- Nerness, A.Z.; Ehrlich, Y.; Spolnik, K.; Platt, J.A.; Yassen, G.H. Effect of triple antibiotic paste with or without ethylenediaminetetraacetic acid on surface loss and surface roughness of radicular dentine. Odontology 2016, 104, 170–175. [Google Scholar] [CrossRef]
- Farge, P.; Alderete, L.; Ramos, S.M. Dentin wetting by three adhesive systems: Influence of etching time, temperature and relative humidity. J. Dent. 2010, 38, 698–706. [Google Scholar] [CrossRef]
- Yaghmoor, R.B.; Platt, J.A.; Spolnik, K.J.; Chu, T.M.G.; Yassen, G.H. Effect of hydrogel-based antibiotic intracanal medicaments on crown discoloration. Restor. Dent. Endod. 2021, 46, e52. [Google Scholar] [CrossRef] [PubMed]
- Shokouhinejad, N.; Nekoofar, M.H.; Iravani, A.; Kharrazifard, M.J.; Dummer, P.M. Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate. J. Endod. 2010, 36, 871–874. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Shen, Y.; Haapasalo, M. Acidic pH weakens the microhardness and microstructure of three tricalcium silicate materials. Int. Endod. J. 2015, 48, 323–332. [Google Scholar] [CrossRef]
- Haapasalo, M.; Shen, Y.; Wang, Z.; Gao, Y. Irrigation in endodontics. Br. Dent. J. 2014, 216, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Amonkar, A.D.; Dhaded, N.S.; Doddwad, P.K.; Patil, A.C.; Hugar, S.M.; Bhandi, S.; Raj, A.T.; Patil, S.; Zanza, A.; Testarelli, L. Evaluation of the Effect of Long-term Use of Three Intracanal Medicaments on the Radicular Dentin Microhardness and Fracture Resistance: An in vitro study. Acta Stomatol. Croat. 2021, 55, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Maezono, H.; Shen, Y.; Haapasalo, M. Evaluation of Root Canal Dentin Erosion after Different Irrigation Methods Using Energy-dispersive X-ray Spectroscopy. J. Endod. 2016, 42, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Komabayashi, T.; Nonomura, G.; Watanabe, L.G.; Marshall, G.W., Jr.; Marshall, S.J. Dentin tubule numerical density variations below the CEJ. J. Dent. 2008, 36, 953–958. [Google Scholar] [CrossRef]
- Nagendrababu, V.; Murray, P.E.; Ordinola-Zapata, R.; Peters, O.A.; Rôças, I.N.; Siqueira, J.F.; Priya, E., Jr.; Jayaraman, J.; Pulikkotil, S.J.; Suresh, N.; et al. PRILE 2021 guidelines for reporting laboratory studies in Endodontology: Explanation and elaboration. Int. Endod. J. 2021, 54, 1491–1515. [Google Scholar] [CrossRef]
- Chieruzzi, M.; Rallini, M.; Pagano, S.; Eramo, S.; D’Errico, P.; Torre, L.; Kenny, J.M. Mechanical effect of static loading on endodontically treated teeth restored with fiber-reinforced posts. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 384–394. [Google Scholar] [CrossRef] [PubMed]
Baseline without Medication (Day-0) Dentin Microhardness | |||
---|---|---|---|
25 µm | 50 µm | 100 µm | |
TAP | 51.6 ± 23.4 A | 50.5 ± 16.7 A | 52.7 ± 19.9 A |
DAP | 48.8 ± 16.6 A | 48.9 ± 15.5 A | 49.6 ± 16.0 A |
Ca(OH)2 | 55.1 ± 24.6 A | 50.8 ± 17.8 A | 55.7 ± 19.1 A |
After-Medication (Day-20) Dentin Microhardness | |||
---|---|---|---|
25 µm | 50 µm | 100 µm | |
TAP | 28.0 ± 4.5 A | 29.5 ± 9.1 A | 28.9 ± 9.5 A |
DAP | 29.8 ± 7.7 A | 30.2 ± 6.1 A | 29.6 ± 5.5 A |
Ca(OH)2 | 44.2 ± 24.4 B | 41.7 ± 24.5 B | 39.9 ± 18.8 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, A.P.A.; Grazziotin-Soares, R.; Leal, A.M.M.; Freitas Júnior, S.A.G.; Gonçalves, B.L.L.; Bauer, J.; Ferreira, M.C.; Carvalho, C.N. Root Canal Dentin Microhardness after Contact with Antibiotic Medications: An In Vitro Study. Dent. J. 2024, 12, 201. https://doi.org/10.3390/dj12070201
Nogueira APA, Grazziotin-Soares R, Leal AMM, Freitas Júnior SAG, Gonçalves BLL, Bauer J, Ferreira MC, Carvalho CN. Root Canal Dentin Microhardness after Contact with Antibiotic Medications: An In Vitro Study. Dentistry Journal. 2024; 12(7):201. https://doi.org/10.3390/dj12070201
Chicago/Turabian StyleNogueira, Amanda Palmeira Arruda, Renata Grazziotin-Soares, Adriana Marques Mesquita Leal, Sérgio Alves Guida Freitas Júnior, Bruna Laís Lins Gonçalves, José Bauer, Meire Coelho Ferreira, and Ceci Nunes Carvalho. 2024. "Root Canal Dentin Microhardness after Contact with Antibiotic Medications: An In Vitro Study" Dentistry Journal 12, no. 7: 201. https://doi.org/10.3390/dj12070201
APA StyleNogueira, A. P. A., Grazziotin-Soares, R., Leal, A. M. M., Freitas Júnior, S. A. G., Gonçalves, B. L. L., Bauer, J., Ferreira, M. C., & Carvalho, C. N. (2024). Root Canal Dentin Microhardness after Contact with Antibiotic Medications: An In Vitro Study. Dentistry Journal, 12(7), 201. https://doi.org/10.3390/dj12070201