Potential Impact of Microbial Variations After Peri-Implantitis Treatment on Peri-Implant Clinical, Radiographic, and Crevicular Parameters: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
- -
- -
- Intervention (I): all surgical and non-surgical approaches for the treatment of peri-implantitis in combination with sampling and analysis of supra-/sub-mucosal peri-implantitis-associated microbiota before (baseline) and after treatment;
- -
- Comparison (C): data from partially vs. totally edentulous subjects and from treated sites with peri-implant mucositis vs. peri-implantitis;
- -
- Outcomes (O): variations in microbial total biofilm load and predominant pathogen counts and in clinical, radiographic, and crevicular peri-implant parameters after (any) peri-implantitis treatment.
2.2. Search Strategy
- -
- Web of Science and Scopus: “languages”, English; “document type”, article.
- -
- MEDLINE/PubMed: “article language”, English; “article type”, not review and not systematic review.
2.3. Study Selection
2.4. Eligibility Criteria
2.5. Data Extraction and Collection
- -
- Studies: author (first), year and journal of publication, study design and quality, funding (if any);
- -
- Population: number of participants, mean age, and gender ratio; number of treated peri-implantitis sites and of supported restoration, dental implant design, and position;
- -
- Intervention: peri-implantitis treatment approach (surgical or non-surgical), procedure(s), number of sessions, timings, and the methods and timings of microbiological sampling and analysis;
- -
- Outcome(s): variations in peri-implant total biofilm microbial load and predominant pathogens’ counts and of clinical, radiographic, and crevicular peri-implant parameters after (any) peri-implantitis treatment.
2.6. Data Analysis
2.7. Risk Assessment
3. Results
3.1. Study Selection and Description
3.2. Outcome Reporting
3.3. Peri-Implantitis-Associated Microbiota Variations over Time After Peri-Implantitis Treatment
3.3.1. Total and Anaerobic Load
3.3.2. Predominant Pathogens
3.4. Concomitant Trend Variations in Clinical Peri-Implant Parameters over Time After Peri-Implantitis Treatment
3.4.1. Plaque Index (PI), Modified Plaque Index (mPI/mPII), and Full Mouth Plaque Score (FMPS)
3.4.2. Bleeding on Probing (BoP), Papilla Bleeding Index (PBI), Modified Sulcus Bleeding Index (mSBI), and Full Mouth Bleeding Score (FMBS)
3.4.3. Suppuration on Probing (SoP)
3.4.4. Probing Depth (PD)
3.4.5. Clinical Attachment Level (CAL)
3.5. Concomitant Trend Variations in Radiographic Peri-Implant Parameters over Time After Peri-Implantitis Treatment
3.6. Concomitant Trend Variations in Crevicular Peri-Implant Parameters over Time After Peri-Implantitis Treatment
3.7. Quality Assessment
4. Discussion
4.1. Peri-Implantitis-Associated Microbiota Variations over Time After Peri-Implantitis Treatment
4.2. Concomitant Trend Variations in Clinical Peri-Implant Parameters over Time After Peri-Implantitis Treatment
4.2.1. Potential Impact of Microbial Variations After Peri-Implantitis Treatment on PI
4.2.2. Potential Impact of Microbial Variations After Peri-Implantitis Treatment on BoP
4.2.3. Potential Impact of Microbial Variations After Peri-Implantitis Treatment on PD
4.3. Strengths, Limits, and Future Perspectives
4.4. Clinical Relevance
- Mechanical debridement alone or with adjunctive treatment failed to eradicate predominant pathogens and other species from the peri-implantitis sites, which were likely to be recolonized.
- The potential impact of microbial variations after peri-implantitis treatment on PI is evident in changes in the total peri-implant biofilm microbial load, but not in the counts of predominant species. Indeed, variations in PI values over time do not consistently mirror the timing and direction of changes in predominant pathogenic species, and the discrepancy is particularly notable at the 1-month follow-up, where the trends in PI and predominant pathogens diverge.
- Considering that the data were recorded as means of the more severe and/or refractory peri-implantitis sites in the original studies, which may account for sites with a higher rate of progression (tissue destruction exceeding expectations based on biofilm deposits), as graded for periodontitis, this observation suggests that dysbiosis, characterized by the presence of specific pathogenic species rather than the total microbial load, plays a crucial role in peri-implantitis.
- Both surgical and non-surgical methods for peri-implant mechanical debridement, even when supplemented with various chemical or physical adjunctive therapies, often have limited efficacy against tissue-invasive bacterial species that remain localized [83]. This is further demonstrated by the minimal reduction in Fusobacterium nucleatum levels following treatment. These observations underscore the necessity for innovative therapeutic approaches capable of effectively addressing and controlling persistent pathogens in the peri-implant environment.
- The potential impact of microbial variations after peri-implantitis treatment on BoP is evident in the early changes in the counts of predominant species rather than the total peri-implant biofilm microbial load. Indeed, biofilm control and the initial shifts in the microbial community can lead to transient increases in inflammation, as evidenced by peri-implant crevicular metabolic profiles and the increased BoP observed at the one-month follow-up. However, over time, changes in BoP values tend to align with the timing and direction of concomitant trends in predominant pathogenic species rather than the total microbial load, as seen at the three-month follow-up. Thus, the trend in BoP at treated peri-implantitis sites may reflect short-term variations in counts of predominant pathogens and their influence on inflammation.
- The potential impact of microbial variations after peri-implantitis treatment on PD can be observed in the medium to long term (6- and 12-month follow-ups). Over time, variations in PD values tend to retrace or follow the trend of concomitant changes in predominant pathogenic species, particularly evident at the 3- and 6-month follow-ups, indicating that PD is a parameter that changes more slowly compared to PI and BoP.
- However, rather than reflecting immediate microbial load, PD might influence the microenvironment of the peri-implant niche [80] in a way that favors the predominant pathogenic species. Therefore, PD, along with BoP, provides crucial clinical evidence for measuring treatment efficacy and determining indications for treatment and retreatment [76].
- Targeted and timely therapeutic approaches should be explored to effectively manage the overall microbial load and persistent dominant pathogens in peri-implantitis sites.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwarz, F.; Ramanauskaite, A. It Is All About Peri-Implant Tissue Health. Periodontol. 2000 2022, 88, 9–12. [Google Scholar] [CrossRef]
- Tomasi, C.; Derks, J. Etiology, Occurrence, and Consequences of Implant Loss. Periodontol. 2000 2022, 88, 13–35. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant Diseases and Conditions: Consensus Report of Workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45, S286–S291. [Google Scholar] [CrossRef]
- Munshi, M.; Alshahrani, S.; Alalawi, A.; Dera, S.A.; Albalawi, S.; Alkuhl, M.; Alsolami, A.; Altheban, I.; Aldakheel, F.; Aljameel, K. The Prevalence, Diagnosis, Management and Prognosis of PeriImplantitis. J. Healthc. Sci. 2023, 3, 382–393. [Google Scholar] [CrossRef]
- Sedghi, L.; DiMassa, V.; Harrington, A.; Lynch, S.V.; Kapila, Y.L. The Oral Microbiome: Role of Key Organisms and Complex Networks in Oral Health and Disease. Periodontol. 2000 2021, 87, 107–131. [Google Scholar] [CrossRef]
- Lafaurie, G.I.; Sabogal, M.A.; Castillo, D.M.; Rincón, M.V.; Gómez, L.A.; Lesmes, Y.A.; Chambrone, L. Microbiome and Microbial Biofilm Profiles of Peri-Implantitis: A Systematic Review. J. Periodontol. 2017, 88, 1066–1089. [Google Scholar] [CrossRef]
- Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L. Microbial Complexes in Subgingival Plaque. J. Clin. Periodontol. 1998, 25, 134–144. [Google Scholar] [CrossRef]
- Tanner, A.C.R.; Kent, R.; Kanasi, E.; Lu, S.C.; Paster, B.J.; Sonis, S.T.; Murray, L.A.; Van Dyke, T.E. Clinical Characteristics and Microbiota of Progressing Slight Chronic Periodontitis in Adults. J. Clin. Periodontol. 2007, 34, 917–930. [Google Scholar] [CrossRef]
- Socransky, S.S.; Haffajee, A.D. Periodontal Microbial Ecology. Periodontol. 2000 2005, 38, 135–187. [Google Scholar] [CrossRef]
- Misch, C.E.; Perel, M.L.; Wang, H.-L.; Sammartino, G.; Galindo-Moreno, P.; Trisi, P.; Steigmann, M.; Rebaudi, A.; Palti, A.; Pikos, M.A.; et al. Implant Success, Survival, and Failure: The International Congress of Oral Implantologists (ICOI) Pisa Consensus Conference. Implant. Dent. 2008, 17, 5–15. [Google Scholar] [CrossRef]
- Sahrmann, P.; Gilli, F.; Wiedemeier, D.B.; Attin, T.; Schmidlin, P.R.; Karygianni, L. The Microbiome of Peri-Implantitis: A Systematic Review and Meta-Analysis. Microorganisms 2020, 8, 661. [Google Scholar] [CrossRef] [PubMed]
- Khoury, F.; Keeve, P.L.; Ramanauskaite, A.; Schwarz, F.; Koo, K.-T.; Sculean, A.; Romanos, G. Surgical Treatment of Peri-Implantitis—Consensus Report of Working Group 4. Int. Dent. J. 2019, 69, 18–22. [Google Scholar] [CrossRef]
- Renvert, S.; Hirooka, H.; Polyzois, I.; Kelekis-Cholakis, A.; Wang, H.-L. Diagnosis and Non-Surgical Treatment of Peri-Implant Diseases and Maintenance Care of Patients with Dental Implants—Consensus Report of Working Group 3. Int. Dent. J. 2019, 69, 12–17. [Google Scholar] [CrossRef]
- Persson, G.R.; Renvert, S. Cluster of Bacteria Associated with Peri-Implantitis. Clin. Implant. Dent. Relat. Res. 2014, 16, 783–793. [Google Scholar] [CrossRef]
- Del Amo, F.S.L.; Yu, S.-H.; Sammartino, G.; Sculean, A.; Zucchelli, G.; Rasperini, G.; Felice, P.; Pagni, G.; Iorio-Siciliano, V.; Grusovin, M.G.; et al. Peri-Implant Soft Tissue Management: Cairo Opinion Consensus Conference. Int. J. Environ. Res. Public Health 2020, 17, 2281. [Google Scholar] [CrossRef]
- Boccia, G.; Di Spirito, F.; D’Ambrosio, F.; Di Palo, M.P.; Giordano, F.; Amato, M. Local and Systemic Antibiotics in Peri-Implantitis Management: An Umbrella Review. Antibiotics 2023, 12, 114. [Google Scholar] [CrossRef]
- Amato, M.; Di Spirito, F.; D’Ambrosio, F.; Boccia, G.; Moccia, G.; De Caro, F. Probiotics in Periodontal and Peri-Implant Health Management: Biofilm Control, Dysbiosis Reversal, and Host Modulation. Microorganisms 2022, 10, 2289. [Google Scholar] [CrossRef]
- Zannella, C.; Shinde, S.; Vitiello, M.; Falanga, A.; Galdiero, E.; Fahmi, A.; Santella, B.; Nucci, L.; Gasparro, R.; Galdiero, M.; et al. Antibacterial Activity of Indolicidin-Coated Silver Nanoparticles in Oral Disease. Appl. Sci. 2020, 10, 1837. [Google Scholar] [CrossRef]
- Baima, G.; Citterio, F.; Romandini, M.; Romano, F.; Mariani, G.M.; Buduneli, N.; Aimetti, M. Surface Decontamination Protocols for Surgical Treatment of Peri-implantitis: A Systematic Review with Meta-analysis. Clin. Oral Implant. Res. 2022, 33, 1069–1086. [Google Scholar] [CrossRef]
- Dos Santos Martins, B.G.; Fernandes, J.C.H.; Martins, A.G.; de Moraes Castilho, R.; de Oliveira Fernandes, G.V. Surgical and Nonsurgical Treatment Protocols for Peri-implantitis: An Overview of Systematic Reviews. Int. J. Oral Maxillofac. Implant. 2022, 37, 660–676. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, G.; Signoriello, A.; Marincola, M.; Bonfante, E.A.; Díaz-Caballero, A.; Tomizioli, N.; Pardo, A.; Zangani, A. Five-Year Follow-Up of 8 and 6 mm Locking-Taper Implants Treated with a Reconstructive Surgical Protocol for Peri-Implantitis: A Retrospective Evaluation. Prosthesis 2023, 5, 1322–1342. [Google Scholar] [CrossRef]
- Donnarumma, G.; De Gregorio, V.; Fusco, A.; Farina, E.; Baroni, A.; Esposito, V.; Contaldo, M.; Petruzzi, M.; Pannone, G.; Serpico, R. Inhibition of HSV-1 Replication by Laser Diode-Irradiation: Possible Mechanism of Action. Int. J. Immunopathol. Pharmacol. 2010, 23, 1167–1176. [Google Scholar] [CrossRef]
- Cieplik, F.; Deng, D.; Crielaard, W.; Buchalla, W.; Hellwig, E.; Al-Ahmad, A.; Maisch, T. Antimicrobial Photodynamic Therapy—What We Know and What We Don’t. Crit. Rev. Microbiol. 2018, 44, 571–589. [Google Scholar] [CrossRef]
- D′Ambrosio, F.; Caggiano, M.; Acerra, A.; Pisano, M.; Giordano, F. Is Ozone a Valid Adjuvant Therapy for Periodontitis and Peri-Implantitis? A Systematic Review. J. Pers. Med. 2023, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.L.; Whaley, P.; Thayer, K.A.; Schünemann, H.J. Identifying the PECO: A Framework for Formulating Good Questions to Explore the Association of Environmental and Other Exposures with Health Outcomes. Environ. Int. 2018, 121, 1027–1031. [Google Scholar] [CrossRef]
- Albrektsson, T.; Zarb, G.; Worthington, P.; Eriksson, A.R. The Long-Term Efficacy of Currently Used Dental Implants: A Review and Proposed Criteria of Success. Int. J. Oral Maxillofac. Implant. 1986, 1, 11–25. [Google Scholar]
- Sanz, M.; Berglundh, T.; Giannobile, W.V.; Niklaus, P.L. Lindhe’s Clinical Periodontology and Implant Dentistry, 7th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2021. [Google Scholar]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Almohareb, T.; Alhamoudi, N.; Al Deeb, M.; Bin-Shuwaish, M.S.; Mokeem, S.A.; Saad Shafqat, S.; Vohra, F.; Abduljabbar, T. Clinical Efficacy of Photodynamic Therapy as an Adjunct to Mechanical Debridement in the Treatment of Per-Implantitis with Abscess. Photodiagnosis Photodyn. Ther. 2020, 30, 101750. [Google Scholar] [CrossRef]
- Bombeccari, G.P.; Guzzi, G.; Gualini, F.; Gualini, S.; Santoro, F.; Spadari, F. Photodynamic Therapy to Treat Periimplantitis. Implant. Dent. 2013, 22, 631–638. [Google Scholar] [CrossRef]
- Chen, J.-H.; Lin, Y.-C.; Kung, J.-C.; Yan, D.-Y.; Chen, I.-H.; Jheng, Y.-S.; Lai, C.-H.; Wu, Y.-M.; Lee, K.-T. Efficacy of Er:YAG Laser for the Peri-Implantitis Treatment and Microbiological Changes: A Randomized Controlled Trial. Lasers Med. Sci. 2022, 37, 3517–3525. [Google Scholar] [CrossRef]
- Galofré, M.; Palao, D.; Vicario, M.; Nart, J.; Violant, D. Clinical and Microbiological Evaluation of the Effect of Lactobacillus reuteri in the Treatment of Mucositis and Peri-implantitis: A Triple-blind Randomized Clinical Trial. J. Periodontal Res. 2018, 53, 378–390. [Google Scholar] [CrossRef]
- Laleman, I.; Pauwels, M.; Quirynen, M.; Teughels, W. The Usage of a Lactobacilli Probiotic in the Non-Surgical Therapy of Peri-Implantitis: A Randomized Pilot Study. Clin. Oral Implant. Res. 2020, 31, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Birang, E.; Talebi Ardekani, M.R.; Rajabzadeh, M.; Sarmadi, G.; Birang, R.; Gutknecht, N. Evaluation of Effectiveness of Photodynamic Therapy with Low-Level Diode Laser in Nonsurgical Treatment of Peri-Implantitis. J. Lasers Med. Sci. 2017, 8, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Saxer, U.P.; Mühlemann, H.R. Motivation and Education. SSO Schweiz. Monatsschr Zahnheilkd. 1975, 85, 905–919. [Google Scholar]
- Löe, H.; Silness, J. Periodontal Disease in Pregnancy I. Prevalence and Severity. Acta Odontol. Scand. 1963, 21, 533–551. [Google Scholar] [CrossRef]
- Mombelli, A.; van Oosten, M.A.C.; Schürch, E.; Lang, N.P. The Microbiota Associated with Successful or Failing Osseointegrated Titanium Implants. Oral Microbiol. Immunol. 1987, 2, 145–151. [Google Scholar] [CrossRef]
- O’Leary, T.J.; Drake, R.B.; Naylor, J.E. The Plaque Control Record. J. Periodontol. 1972, 43, 38. [Google Scholar] [CrossRef]
- Lang, N.P.; Joss, A.; Tonetti, M.S. Monitoring Disease during Supportive Periodontal Treatment by Bleeding on Probing. Periodontol. 2000 1996, 12, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Mühlemann, H. Papillan Blutungs Index Ein Motivation Zur Mund Hygiene; Informationsschrift Elida Cosmetic: Zurich, Switzerland, 1981. [Google Scholar]
- Engelberger, T.; Hefti, A.; Kallenberger, A.; Rateitschak, K.-H. Correlations among Papilla Bleeding Index, Other Clinical Indices and Historically Determined Inflammation of Gingival Papilla. J. Clin. Periodontol. 1983, 10, 579–589. [Google Scholar] [CrossRef]
- Lang, N.P.; Joss, A.; Orsanic, T.; Gusberti, F.A.; Siegrist, B.E. Bleeding on Probing. A Predictor for the Progression of Periodontal Disease? J. Clin. Periodontol. 1986, 13, 590–596. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.J.A.; Heitz, F.; Koong, B.; Huang, T.; Chivers, P. Surgical Peri-implantitis Treatment with and without Guided Bone Regeneration. A Randomized Controlled Trial. Clin. Oral Implant. Res. 2023, 34, 892–910. [Google Scholar] [CrossRef]
- Lin, G.-H.; Suárez López Del Amo, F.; Wang, H.-L. Laser Therapy for Treatment of Peri-Implant Mucositis and Peri-Implantitis: An American Academy of Periodontology Best Evidence Review. J. Periodontol. 2018, 89, 766–782. [Google Scholar] [CrossRef]
- Galindo-Moreno, P.; León-Cano, A.; Ortega-Oller, I.; Monje, A.; O′Valle, F.; Catena, A. Marginal Bone Loss as Success Criterion in Implant Dentistry: Beyond 2 Mm. Clin. Oral Implant. Res. 2015, 26, e28–e34. [Google Scholar] [CrossRef]
- Renvert, S.; Persson, G.R.; Pirih, F.Q.; Camargo, P.M. Peri-implant Health, Peri-implant Mucositis, and Peri-implantitis: Case Definitions and Diagnostic Considerations. J. Periodontol. 2018, 89, S304–S312. [Google Scholar] [CrossRef]
- Van Winkelhoff, A.J.; Goené, R.J.; Benschop, C.; Folmer, T. Early Colonization of Dental Implants by Putative Periodontal Pathogens in Partially Edentulous Patients. Clin. Oral Implant. Res. 2000, 11, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Ghensi, P.; Manghi, P.; Zolfo, M.; Armanini, F.; Pasolli, E.; Bolzan, M.; Bertelle, A.; Dell’Acqua, F.; Dellasega, E.; Waldner, R.; et al. Strong Oral Plaque Microbiome Signatures for Dental Implant Diseases Identified by Strain-Resolution Metagenomics. NPJ Biofilms Microbiomes 2020, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Chun Giok, K.; Menon, R.K. The Microbiome of Peri-Implantitis: A Systematic Review of Next-Generation Sequencing Studies. Antibiotics 2023, 12, 1610. [Google Scholar] [CrossRef] [PubMed]
- Ogunseitan, O. (Ed.) Microbial Diversity; Wiley: Hoboken, NJ, USA, 2004; ISBN 9780632047086. [Google Scholar]
- Zheng, H.; Xu, L.; Wang, Z.; Li, L.; Zhang, J.; Zhang, Q.; Chen, T.; Lin, J.; Chen, F. Subgingival Microbiome in Patients with Healthy and Ailing Dental Implants. Sci. Rep. 2015, 5, 10948. [Google Scholar] [CrossRef]
- da Silva, E.S.C.; Feres, M.; Figueiredo, L.C.; Shibli, J.A.; Ramiro, F.S.; Faveri, M. Microbiological Diversity of Peri-implantitis Biofilm by Sanger Sequencing. Clin. Oral Implant. Res. 2014, 25, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, É.B.S.; Romandini, M.; Sadilina, S.; Sant’Ana, A.C.P.; Sanz, M. Microbiota Associated with Peri-implantitis—A Systematic Review with Meta-analyses. Clin. Oral Implant. Res. 2023, 34, 1176–1187. [Google Scholar] [CrossRef]
- Hbibi, A.; Bouziane, A.; Lyoussi, B.; Zouhdi, M.; Benazza, D. Aggregatibacter Actinomycetemcomitans: From Basic to Advanced Research. In Periodontitis: Advances in Experimental Research; Springer International Publishing: Cham, Switzerland, 2022; pp. 45–67. [Google Scholar]
- Brennan, C.A.; Garrett, W.S. Fusobacterium Nucleatum—Symbiont, Opportunist and Oncobacterium. Nat. Rev. Microbiol. 2019, 17, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.W. Fusobacterium Nucleatum: A Commensal-Turned Pathogen. Curr. Opin. Microbiol. 2015, 23, 141–147. [Google Scholar] [CrossRef]
- Liu, Y.; Baba, Y.; Ishimoto, T.; Tsutsuki, H.; Zhang, T.; Nomoto, D.; Okadome, K.; Yamamura, K.; Harada, K.; Eto, K.; et al. Fusobacterium Nucleatum Confers Chemoresistance by Modulating Autophagy in Oesophageal Squamous Cell Carcinoma. Br. J. Cancer 2021, 124, 963–974. [Google Scholar] [CrossRef]
- Ardila, C.M.; Vivares-Builes, A.M. Antibiotic Resistance in Patients with Peri-Implantitis: A Systematic Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 15609. [Google Scholar] [CrossRef]
- Iniesta, M.; Herrera, D.; Montero, E.; Zurbriggen, M.; Matos, A.R.; Marín, M.J.; Sánchez-Beltrán, M.C.; Llama-Palacio, A.; Sanz, M. Probiotic Effects of Orally Administered Lactobacillus reuteri-containing Tablets on the Subgingival and Salivary Microbiota in Patients with Gingivitis. A Randomized Clinical Trial. J. Clin. Periodontol. 2012, 39, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Haukioja, A. Probiotics and Oral Health. Eur. J. Dent. 2010, 4, 348–355. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.M.; Malcangi, G.; De Leonardis, N.; Sardano, R.; Pezzolla, C.; de Ruvo, E.; Di Venere, D.; Palermo, A.; Inchingolo, A.D.; et al. The Benefits of Probiotics on Oral Health: Systematic Review of the Literature. Pharmaceuticals 2023, 16, 1313. [Google Scholar] [CrossRef]
- Ng, E.; Tay, J.R.H.; Ong, M.M.A.; Bostanci, N.; Belibasakis, G.N.; Seneviratne, C.J. Probiotic Therapy for Periodontal and Peri-Implant Health—Silver Bullet or Sham? Benef. Microbes 2021, 12, 215–230. [Google Scholar] [CrossRef] [PubMed]
- West, N.; Chapple, I.; Culshaw, S.; Donos, N.; Needleman, I.; Suvan, J.; Nibali, L.; Patel, A.; Preshaw, P.M.; Kebschull, M. BSP Implementation of Prevention and Treatment of Peri-Implant Diseases—The EFP S3 Level Clinical Practice Guideline. J. Dent. 2024, 149, 104980. [Google Scholar] [CrossRef] [PubMed]
- Monje, A.; Pons, R.; Insua, A.; Nart, J.; Wang, H.; Schwarz, F. Morphology and Severity of Peri-implantitis Bone Defects. Clin. Implant. Dent. Relat. Res. 2019, 21, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.N.; Koldsland, O.C.; Roos-Jansåker, A.; Wohlfahrt, J.C.; Verket, A.; Mdala, I.; Magnusson, A.; Salvesen, E.; Hjortsjö, C. Non-surgical Treatment of Mild to Moderate Peri-implantitis with an Oscillating Chitosan Brush or a Titanium Curette—12-month Follow-up of a Multicenter Randomized Clinical Trial. Clin. Oral Implant. Res. 2023, 34, 684–697. [Google Scholar] [CrossRef]
- Rosen, P.; Froum, S.; Sarmiento, H.; Wadhawani, C. A Revised Peri-Implantitis Classification Scheme: Adding Three-Dimensional Considerations to Facilitate Prognosis and Treatment Planning. Int. J. Periodontics Restor. Dent. 2022, 42, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Kröger, A.; Hülsmann, C.; Fickl, S.; Spinell, T.; Hüttig, F.; Kaufmann, F.; Heimbach, A.; Hoffmann, P.; Enkling, N.; Renvert, S.; et al. The Severity of Human Peri-implantitis Lesions Correlates with the Level of Submucosal Microbial Dysbiosis. J. Clin. Periodontol. 2018, 45, 1498–1509. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Tu, C.; Wara-aswapati, N.; Wang, C.; Tu, Y.; Hou, H.; Ueno, T.; Chen, I.; Fu, K.; Li, H.; et al. Microbiome of Periodontitis and Peri-implantitis before and after Therapy: Long-read 16S RRNA Gene Amplicon Sequencing. J. Periodontal Res. 2024, 59, 657–668. [Google Scholar] [CrossRef]
- Di Spirito, F.; Pisano, M.; Di Palo, M.P.; Franci, G.; Rupe, A.; Fiorino, A.; Rengo, C. Peri-Implantitis-Associated Microbiota before and after Peri-Implantitis Treatment, the Biofilm “Competitive Balancing” Effect: A Systematic Review of Randomized Controlled Trials. Microorganisms 2024, 12, 1965. [Google Scholar] [CrossRef]
- Di Spirito, F.; Giordano, F.; Di Palo, M.P.; D’Ambrosio, F.; Scognamiglio, B.; Sangiovanni, G.; Caggiano, M.; Gasparro, R. Microbiota of Peri-Implant Healthy Tissues, Peri-Implant Mucositis, and Peri-Implantitis: A Comprehensive Review. Microorganisms 2024, 12, 1137. [Google Scholar] [CrossRef]
- Belibasakis, G.N.; Manoil, D. Microbial Community-Driven Etiopathogenesis of Peri-Implantitis. J. Dent. Res. 2021, 100, 21–28. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.; Mombelli, A. The Therapy of Peri-Implantitis: A Systematic Review. Int. J. Oral Maxillofac. Implant. 2014, 29, 325–345. [Google Scholar] [CrossRef]
- Safioti, L.M.; Kotsakis, G.A.; Pozhitkov, A.E.; Chung, W.O.; Daubert, D.M. Increased Levels of Dissolved Titanium Are Associated With Peri-Implantitis—A Cross-Sectional Study. J. Periodontol. 2017, 88, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Schulz, S.; Schlitt, A.; Hofmann, B.; Schaller, H.; Reichert, S. Periodontal Pathogens and Their Role in Cardiovascular Outcome. J. Clin. Periodontol. 2020, 47, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Herrera, D.; Berglundh, T.; Schwarz, F.; Chapple, I.; Jepsen, S.; Sculean, A.; Kebschull, M.; Papapanou, P.N.; Tonetti, M.S.; Sanz, M. Prevention and Treatment of Peri-implant Diseases—The EFP S3 Level Clinical Practice Guideline. J. Clin. Periodontol. 2023, 50, 4–76. [Google Scholar] [CrossRef] [PubMed]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and Grading of Periodontitis: Framework and Proposal of a New Classification and Case Definition. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S149–S161. [Google Scholar] [CrossRef] [PubMed]
- El Mobadder, M.; Namour, A.; Nammour, S. Laser-Assisted Non-Surgical Treatments of Periodontitis. Encyclopedia 2023, 3, 458–467. [Google Scholar] [CrossRef]
- Song, L.; Lu, H.; Jiang, J.; Xu, A.; Huang, Y.; Huang, J.; Ding, P.; He, F. Metabolic Profiling of Peri-implant Crevicular Fluid in Peri-implantitis. Clin. Oral Implant. Res. 2024, 35, 719–728. [Google Scholar] [CrossRef]
- Mohanty, R.; Asopa, S.; Joseph, M.; Singh, B.; Rajguru, J.; Saidath, K.; Sharma, U. Red Complex: PolymicrobialConglomerate in Oral Flora: A Review. J. Family Med. Prim. Care 2019, 8, 3480. [Google Scholar] [CrossRef]
- Joseph, S.; Curtis, M.A. Microbial Transitions from Health to Disease. Periodontol. 2000 2021, 86, 201–209. [Google Scholar] [CrossRef]
- Mensi, M.; Scotti, E.; Calza, S.; Pilloni, A.; Grusovin, M.G.; Mongardini, C. A New Multiple Anti-Infective Non-Surgical Therapy in the Treatment of Peri-Implantitis: A Case Series. Minerva Dent. Oral Sci. 2017, 66, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.K.; Lee, J.S.; Kim, C.S. Surgical Therapy of Peri-Implantitis with Local Minocycline: A 6-Month Randomized Controlled Clinical Trial. J. Dent. Res. 2019, 98, 288–295. [Google Scholar] [CrossRef] [PubMed]
- SHIBLI, J.A.; FERRARI, D.S.; SIROMA, R.S.; de Figueiredo, L.C.; de Faveri, M.; FERES, M. Microbiological and Clinical Effects of Adjunctive Systemic Metronidazole and Amoxicillin in the Non-Surgical Treatment of Peri-Implantitis: 1 Year Follow-Up. Braz. Oral Res. 2019, 33, e080. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, G.; Signoriello, A.; Pardo, A.; Serpa Romero, X.Z.; Vila Sierra, L.A.; Arévalo Tovar, L.; Marincola, M.; Nocini, P.F. Short and ultra-short (<6-mm) locking-taper implants supporting single crowns in posterior areas (part II): A 5-year retrospective study on periodontally healthy patients and patients with a history of periodontitis. Clin. Implant. Dent. Relat. Res. 2022, 24, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Mombelli, A. Microbial Colonization of the Periodontal Pocket and Its Significance for Periodontal Therapy. Periodontol. 2000 2018, 76, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Kotsakis, G.A.; Olmedo, D.G. Peri-implantitis Is Not Periodontitis: Scientific Discoveries Shed Light on Microbiome-biomaterial Interactions That May Determine Disease Phenotype. Periodontol. 2000 2021, 86, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Insua, A.; Gañán, Y.; Macías, Y.; Garcia, J.; Rakic, M.; Monje, A. Diagnostic Accuracy of Cone Beam Computed Tomography in Identifying Peri-Implantitis–Like Bone Defects Ex Vivo. Int. J. Periodontics Restorative Dent. 2021, 41, e223–e231. [Google Scholar] [CrossRef]
- Kuusisto, N.; Abushahba, F.; Syrjänen, S.; Huumonen, S.; Vallittu, P.; Närhi, T. Zirconia Implants Interfere with the Evaluation of Peri-Implant Bone Defects in Cone Beam Computed Tomography (CBCT) Images Even with Artifact Reduction, a Pilot Study. Dentomaxillofac. Radiol. 2023, 52, 20230252. [Google Scholar] [CrossRef]
- Leisner, L.C.; Tasaka, A.; Trebing, C.T.; Hilgenfeld, T.; Kosinski, M.A.; Kronsteiner, D.; Rammelsberg, P.; Schwindling, F.S. Measuring Peri-Implant Bone Lesions Using Low-Dose Cone-Beam Computed Tomography. J. Prosthodont. Res. 2022, 66, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Pelekos, G.; Tse, J.M.N.; Ho, D.; Tonetti, M.S. Defect Morphology, Bone Thickness, Exposure Settings and Examiner Experience Affect the Diagnostic Accuracy of Standardized Digital Periapical Radiographic Images but Not of Cone Beam Computed Tomography in the Detection of Peri-implant Osseous Defects: An in Vitro Study. J. Clin. Periodontol. 2019, 46, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Ramanauskaite, A.; Fretwurst, T.; Schwarz, F. Efficacy of alternative or adjunctive measures to conventional non-surgical and surgical treatment of peri-implant mucositis and peri-implantitis: A systematic review and meta-analysis. Int. J. Implant. Dent. 2021, 7, 112. [Google Scholar] [CrossRef]
- Liñares, A.; Sanz-Sánchez, I.; Dopico, J.; Molina, A.; Blanco, J.; Montero, E. Efficacy of Adjunctive Measures in the Non-surgical Treatment of Peri-implantitis: A Systematic Review. J. Clin. Periodontol. 2023, 50, 224–243. [Google Scholar] [CrossRef]
- Aljohani, M.; Yong, S.L.; Bin Rahmah, A. The Effect of Surgical Regenerative Treatment for Peri-Implantitis: A Systematic Review. Saudi Dent. J. 2020, 32, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, A.; Maiani, F.; Franceschi, D.; Sassano, M.; Fiorino, A.; Urban, I.A.; Corinaldesi, G. The Influence of Vertical Ridge Augmentation Techniques on Peri-implant Bone Loss: A Systematic Review and 1056 Meta-analysis. Clin. Implant. Dent. Relat. Res. 2024, 26, 15–65. [Google Scholar] [CrossRef]
Studies | Population | Peri-Implant Site | Peri-Implantitis Treatment |
---|---|---|---|
Almohareb T., 2020 Photodiagnosis Photodyn Ther [30] RCT High risk Deanship of Scientific Research, King Saud University | Group 1: n. 20 Mean age: 51.7 ± 7.5 y.o. Gender ratio: 18M/2F | Peri-implant site(s): n. 43 Peri-implantitis sites: n. 20 Dental implant type and design: MD Dental implant level (soft tissue, bone): MD Abutment type: MD Supported restoration: MD (Mean) time elapsed after implant positioning: MD | NSMD + Local antibiotics (500 mg AMX for 3 days + 400 mg MTZ for 7 days) + CHX (0.12% twice a day) + Diode laser + aPDT Prosthesis removal: MD Session: n. 1 |
Group 2: n. 20 Mean age: 50.9 ± 6.3 y.o. Gender ratio: 16M/4F | Peri-implant site(s): n. 36 Peri-implantitis sites: n. 20 Dental implant type and design: MD Dental implant level (soft tissue, bone): MD Abutment type: MD Supported restoration: MD (Mean) time elapsed after implant positioning: MD | NSMD + Local antibiotics (500 mg AMX for 3 days + 400 mg MTZ for 7 days) + CHX (0.12% twice a day) + Diode laser Prosthesis removal: MD Session: n. 1 | |
Birang E., 2017 J Laser Med Sci [35] RCT Unclear risk No Funding | Group 1: n. 10 Mean age: N/D Gender ratio: N/D | Peri-implant site(s): MD Peri-implantitis sites: n. 20 Dental implant type and design: MD Dental implant level (soft tissue, bone): MD Abutment type: MD Supported restoration: MD (Mean) time elapsed after implant positioning: MD | NSMD + Air polishing (Prophy-Jet) + Diode laser + aPDT Prosthesis removal: MD Session: n. 2 |
Group 2: n. 10 Mean age: N/D Gender ratio: N/D | Peri-implant site(s): n. MD Peri-implantitis sites: n. 20 Dental implant type and design: MD Dental implant level (soft tissue, bone): MD Abutment type: MD Supported restoration: n. MD (Mean) time elapsed after implant positioning: MD | NSMD + Air polishing (Prophy-Jet) + Diode laser Prosthesis removal: MD Session: n. 2 | |
Bombeccari, G.P., 2013 Implant Dent [31] RCT High risk No Funding | Group 1: n. 20 Mean age: N/D Gender ratio: N/D | Peri-implant site(s): n. MD Peri-implantitis sites: n. 20 Dental implant type and design: Nobel Biocare® with rough surfaces Dental implant level (soft tissue, bone): MD Abutment type: MD Supported restoration: n. MD (Mean) time elapsed after implant positioning: MD | SMD + Local CHX (0.2%) + Diode laser + aPDT + CHX (0.2%, 10 mL for 1 min once every 8 h for 2 weeks) Prosthesis removal: no Session: n. 1 |
Group 2: n. 20 Mean age: N/D Gender ratio: N/D | Peri-implant site(s): n. MD Peri-implantitis sites: n. 20 Dental Implant type and design: Nobel Biocare® with rough surface Dental Implant Level (soft tissue, bone): MD Abutment type: MD Supported restoration: n. MD (Mean) time elapsed after implant positioning: MD | SMD + Local CHX (0.2%) + CHX (0.2%, 10 mL for 1 min once every 8 h for 2 weeks) Prosthesis removal: no Session: n. 1 | |
Chen, J.H., 2022 Laser Med Sci [32] RCT Unclear risk Southern Taiwan Science Park | Group 1: n. 11 Mean age: MD Gender ratio: MD | Peri-implant site(s): n. MD Peri-implantitis sites: n. 13 Dental implant type and design: MD Dental implant level (soft tissue, bone): MD Abutment type: MD Supported restoration: n. MD (Mean) time elapsed after implant positioning: MD | Er:YAG laser (SA-108, SAPPHIRE, LightMed) Prosthesis removal: MD Session: n. 3 at baseline, at 2 and 4 weeks |
Group 2: n. 12 Mean age: MD Gender ratio: MD | Peri-implant site(s): n. MD Peri-implantitis sites: n. 12 Dental implant type and design: MD Dental implant level (soft tissue, bone): MD Abutment type: MD Supported restoration: n. MD (Mean) time elapsed after implant positioning: MD | NSMD Prosthesis removal: MD Session: n. 1 | |
Galofré, M., 2018 J Periodontal Res [33] RCT Unclear risk Sunstar Suisse and BioGaia | Group 1: n. 11 Mean age: 61.7 ± 7.0 Gender ratio: 8M/3F | Peri-implant site(s): n. MD Peri-implantitis sites: n. 11 Dental implant type and design: MD Dental implant level (soft tissue, bone): MD Abutment type: MD Supported restoration: single crown (n. 36); fixed partial prosthesis (n. 64) (Mean) time elapsed after implant positioning: MD | NSMD + Lactobacillus reuteri (Prodentis, PerioBalance®, 1 lozenges for 30 days) Prosthesis removal: MD Session: n. 1 |
Group 2: n. 11 Mean age: 56.8 ± 9.3 Gender ratio: 5M/6F | Peri-implant site(s): n. MD Peri-implantitis sites: n. 11 Dental implant type and design: MD Dental implant level (soft tissue, bone): MD Abutment type: MD Supported restoration: single crown (n. 36); fixed partial prosthesis (n. 64) (Mean) time elapsed after implant positioning: MD | NSMD + Placebo (1 lozenges for 30 days) Prosthesis removal: MD Session: n. 1 | |
Laleman, I., 2020 Clin Oral Implants Res [34] RCT High risk BioGaia AB and Acteon | Group 1: n. 9 Mean age: 64 ± 11 Gender ratio: 5M/4F | Peri-implant site(s): n. MD Peri-implantitis sites: n. 9 Dental implant type and design: N/D Dental implant level (soft tissue, bone): N/D Abutment type: N/D Supported restoration: N/D (Mean) time elapsed after implant positioning: N/D | NSMD + Powder air-polishing (Air-N-Go Easy, Acteon) + Probiotic (Lactobaillus reuteri, BioGaia AB) Prosthesis removal: MD Session: n. 1 |
Group 2: n. 10 Mean age: 69 ± 9 Gender ratio: 4M/6F | Peri-implant site(s): n. MD Peri-implantitis sites: n. 10 Dental implant type and design: N/D Dental implant level (soft tissue, bone): N/D Abutment type: N/D Supported restoration: N/D (Mean) time elapsed after implant positioning: N/D | NSMD + Powder air-polishing (Air-N-Go Easy) + Placebo Prosthesis removal: MD Session: n. 1 |
Studies | Peri-Implant Microbial Load and Predominant Pathogen Counts (log CFU/mL) | Peri-Implant Clinical Parameters | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Treated) Peri-Implantitis Sites | (Treated) Peri-Implantitis Sites | Full Mouth Scores | |||||||||||||||||||
P.g. | T.f. | T.d. | F.n. | P.i. | P.m. | C.r. | A.a. | E.c. | Total Anaerobes | Total Load | PI (%) | CAL (mm) | mPI (Mean Score) | PD (mm) | BoP (%) | PBI (Mean Score) | mSBI (Mean Score) | SoP (Mean Score) | FMPS (%) | FMBS (%) | |
Before peri-implantitis treatment (baseline) | |||||||||||||||||||||
Almohareb [30] Group 1 n. 20 | 5.73 ± 1.12 | 4.22 ± 1.73 | 4.19 ± 1.92 | 38.6 ± 9.5 | 5.2 ± 2.0 | 45.3 ± 14.8 | |||||||||||||||
Group 2 n. 20 | 5.29 ± 1.64 | 4.46 ± 1.21 | 4.54 ± 1.08 | 41.2 ± 11.7 | 5.4 ± 2.1 | 43.8 ± 13.9 | |||||||||||||||
Birang [35] Group 1 n. 20 | 1.42 ± 1.49 | 0.43 ± 0.55 | 0.53 ± 0.63 | 1.04 ± 1.30 | 0.91 ± 0.80 | 1.25 ± 0.64 | 4.06 ± 0.78 | 1.85 ± 0.87 | |||||||||||||
Group 2 n. 20 | 1.68 ± 1.50 | 0.31 ± 0.55 | 0.48 ± 0.55 | 1.27 ± 1.11 | 1.12 ± 0.86 | 1.01 ± 0.91 | 4.02 ± 0.67 | 2.00 ± 0.86 | |||||||||||||
Bombeccari [31] Group 1 n. 20 | 2.35 ± 0.02 | −7.11 ± 0.02 | 5.90 ± 0.76 | 70 | 0.70 ± 0.48 | ||||||||||||||||
Group 2 n. 20 | 2.37 ± 0.03 | −7.05 ± 0.02 | 5.80 ± 0.78 | 80 | 0.60 ± 0.51 | ||||||||||||||||
Chen [32] Group 1 n. 13 | 9.23 ± 3.06 | 4.95 ± 1.72 | 61.5 | ||||||||||||||||||
Group 2 n. 12 | 12.02 ± 1.90 | 3.65 ± 1.46 | 58.33 | ||||||||||||||||||
Galofrè [33] Group 1 n. 11 | 5.20 ± 2.90 | 5.46 ± 1.20 | 3.80 ± 3.16 | 6.78 ± 0.97 | 6.10 ± 2.34 | 5.88 ± 0.78 | 5.97 ± 1.16 | 0.00 ± 0.00 | 4.36 ± 2.94 | 9.05 ± 1.11 | 63.6 | 5.07 ± 0.87 | 100 | 44 ± 14 | 53 ± 23 | ||||||
Group 2 n. 11 | 4.81 ± 3.29 | 5.06 ± 1.87 | 4.33 ± 2.92 | 6.81 ± 0.66 | 6.43 ± 2.22 | 6.10 ± 0.61 | 6.07 ± 0.86 | 0.00 ± 0.00 | 5.72 ± 1.12 | 9.31 ± 0.67 | 45.5 | 4.90 ± 0.66 | 90.9 | 43 ± 21 | 49 ± 23 | ||||||
Laleman [34] Group 1 n. 9 | 5.13 ± 3.14 | 6.93 ± 0.78 | 2.46 ± 1.97 | 3.09 ± 2.54 | 15 ± 13 | 5.17 ± 0.92 | 87 ± 13 | 1.92 ± 0.70 | 29 ± 11 | 30 ± 10 | |||||||||||
Group 2 n. 10 | 3.51 ± 3.37 | 6.87 ± 0.90 | 2.04 ± 2.28 | 3.74 ± 2.47 | 8 ± 21 | 5.45 ± 1.20 | 87 ± 22 | 1.96 ± 0.79 | 30 ± 14 | 21 ± 13 | |||||||||||
X | 3.92 ± 0.13 | 2.98 ± 1.12 | 2.78 ± 1.48 | 6.84 ± 0.42 | 2.80 ± 0.71 | 5.99 ± 0.70 | 6.02 ± 0.72 | 1.31 ± 0.52 | 5.04 ± 1.57 | 5.51. ± 0.71 | 9.18 ± 0.65 | 37.17 ± 4.76 | −7.08 ± 0.01 | 1.13 ± 0.56 | 4.98 ± 0.40 | 68.73 ± 3.17 | 1.93 ± 0.61 | 1.94 ± 0.53 | 0.65 ± 0.35 | 37.02 ± 7.96 | 39.07 ± 9.54 |
4-week follow-up | |||||||||||||||||||||
Galofrè [33] Group 1 n. 11 | 5.74 ± 3.08 | 5.60 ± 1.09 | 4.04 ± 3.26 | 5.60 ± 2.92 | 7.18 ± 0.88 | 4.81 ± 2.48 | 4.95 ± 2.58 | 0.00 ± 0.00 | 4.48 ± 2.99 | 9.46 ± 0.93 | 9.1 | 4.55 ± 0.69 | 54.5 | 31 ± 12 | 34 ± 6 | ||||||
∆: +0.54 ± 4.23 | ∆: + 0.14 ± 1.62 | ∆: + 0.24 ± 4.54 | ∆: −1.18 ± 3.08 | ∆: + 1.08 ± 3.22 | ∆: −1.07 ± 2.60 | ∆: −1.02 ± 2.83 | ∆: 0.00 ± 0.00 | ∆: + 0.12 ± 4.19 | ∆: +0.41 ± 1.45 | ∆: −54.5 | ∆: −0.52 ± 1.11 | ∆: −45.5 | ∆: −13 ± 18.44 | ∆: −19 ± 23.77 | |||||||
Group 2 n. 11 | 4.75 ± 3.34 | 4.54 ± 2.34 | 3.73 ± 3.12 | 6.59 ± 0.72 | 5.67 ± 2.96 | 5.30 ± 1.94 | 5.67 ± 1.98 | 0.00 ± 0.00 | 5.00 ± 1.88 | 9.26 ± 0.66 | 18.2 | 4.65 ± 0.78 | 90.9 | 36 ± 16 | 42 ± 22 | ||||||
∆: −0.06 ± 4.69 | ∆: −0.52 ± 3.00 | ∆: −0.60 ± 4.27 | ∆: −0.22 ± 0.98 | ∆: −0.76 ± 3.70 | ∆: −0.80 ± 2.04 | ∆: −0.40 ± 2.16 | ∆: 0.00 ± 0.00 | ∆: −0.72 ± 2.19 | ∆: −0.05 ± 0.94 | ∆: −27.3 | ∆: −0.25 ± 1.02 | ∆: 0.00 | ∆: −7 ± 26.40 | ∆: −7 ± 31.83 | |||||||
X | 5.25 ± 2.27 | 5.07 ± 1.72 | 3.89 ± 3.19 | 6.10 ± 2.14 | 6.43± 1.54 | 5.05 ± 2.21 | 5.31 ± 1.63 | 0.00 ± 0.00 | 4.74 ± 1.77 | 9.36 ± 0.57 | 13.65 | 4.60 ± 0.74 | 72.51 | 33.5 ± 10.00 | 38 ± 11.40 | ||||||
D | −1.65 ± 2.27 | +2.09 ± 2.05 | +1.11 ± 3.51 | −0.74 ± 2.18 | + 3.63 ± 1.70 | −0.94 ± 2.32 | −0.71 ± 1.78 | −1.31 ± 0.52 | −0.30 ± 2.37 | +0.18 ± 0.86 | −20.52 ± 4.76 | −0.38 ± 0.84 | +3.78 ± 3.17 | −3.52 ± 12.78 | +1.07 ± 14.86 | ||||||
6-week follow-up | |||||||||||||||||||||
Laleman [34] Group 1 n. 9 | 5.27 ± 3.10 | 6.69 ± 0.94 | 2.41 ± 2.44 | 3.71 ± 1.66 | 25 ± 11 | ||||||||||||||||
∆: +0.14 ± 4.41 | ∆: −0.24 ± 1.22 | ∆: −0.05 ± 3.14 | ∆: +0.62 ± 3.04 | ∆: −4 ± 15.56 | |||||||||||||||||
Group 2 n. 10 | 3.49 ± 3.33 | 6.72 ± 1.29 | 1.35 ± 2.26 | 3.67 ± 2.30 | 24 ± 8 | ||||||||||||||||
∆: −0.02 ± 4.74 | ∆: −0.15 ± 1.57 | ∆: −0.69 ± 3.21 | ∆: −0.07 ± 3.38 | ∆: −6 ± 16.12 | |||||||||||||||||
X | 4.38 ± 2.29 | 6.71 ± 0.81 | 1.88 ± 1.66 | 0.44 ± 1.44 | 24.47 ± 4.49 | ||||||||||||||||
D | +0.46 ± 2.29 | −0.13 ± 0.91 | −0.92 ± 1.81 | −0.87 ± 1.53 | −12.55 ± 9.14 | ||||||||||||||||
3-month follow-up | |||||||||||||||||||||
Birang [35] Group 1 n. 20 | 0.70 ± 0.99 | 0.14 ± 0.24 | 0.21 ± 0.46 | 0.39 ± 0.58 | 0.47 ± 0.64 | 0.35 ± 0.49 | 2.75 ± 0.84 | 0.50 ± 0.61 | |||||||||||||
∆: −0.72 ± 1.79 | ∆: −0.29 ± 0.6 | ∆: −0.32 ± 0.78 | ∆: −0.65 ± 1.42 | ∆: −0.44 ± 1.02 | ∆: −0.90 ± 0.81 | ∆: −1.31 ± 1.15 | ∆: −1.35 ± 1.06 | ||||||||||||||
Group 2 n. 20 | 1.03 ± 1.44 | 0.15 ± 0.27 | 0.28 ± 0.44 | 0.65 ± 1.19 | 0.61 ± 0.62 | 0.25 ± 0.44 | 2.69 ± 0.77 | 0.35 ± 0.59 | |||||||||||||
∆: −0.65 ± 2.08 | ∆: −0.16 ± 0.61 | ∆: −0.20 ± 0.71 | ∆: −0.62 ± 1.63 | ∆: −0.51 ± 1.06 | ∆: −0.76 ± 1.01 | ∆: −1.33 ± 1.02 | ∆: −1.65 ± 1.04 | ||||||||||||||
Bombeccari [31] Group 1 n. 20 | 1.50 | −6.58 ± 0.02 | 5.20 ± 1.03 | 0.00 | 0.00 ± 0.00 | ||||||||||||||||
∆: −0.85 ± 0.02 | ∆: +0.53 ± 0.02 | ∆: −0.70 ± 1.28 | ∆: −70 | ∆: −0.70 ± 0.00 | |||||||||||||||||
Group 2 n. 20 | 1.86 | −7.02 ± 0.02 | 5.70 ± 0.48 | 30 | 0.10 ± 0.31 | ||||||||||||||||
∆: −0.51 ± 0.03 | ∆: +0.03 ± 0.02 | ∆: −0.1 ± 0.92 | ∆: −50 | ∆: −0.50 ± 0.60 | |||||||||||||||||
Chen [32] Group 1 n. 13 | 9.43 ± 1.85 | 4.11 ± 2.09 | 57.67 | ||||||||||||||||||
∆: +0.20 ± 3.57 | ∆: −0.84 ± 2.71 | ∆: −3.83 | |||||||||||||||||||
Group 2 n. 12 | 9.05 ± 2.74 | 3.15 ± 1.94 | 43 | ||||||||||||||||||
∆: −2.97 ± 3.34 | ∆: −0.50 ± 2.43 | ∆: −15.33 | |||||||||||||||||||
Galofrè [33] n. 11 | 5.21 ± 2.86 | 4.78 ± 2.45 | 3.14 ± 3.14 | 6.64 ± 1.18 | 6.06 ± 2.18 | 5.32 ± 1.94 | 5.80 ± 1.02 | 0.00 ± 0.00 | 3.77 ± 2.66 | 8.96 ± 1.10 | 36.4 | 4.53 ± 0.72 | 63.6 | 28 ± 24 | 33 ± 9 | ||||||
∆: +0.01 ± 4.07 | ∆: −0.68 ± 2.73 | ∆: −0.66 ± 4.45 | ∆: −0.14 ± 1.53 | ∆: −0.04 ± 4.52 | ∆: −0.56 ± 2.09 | ∆: −0.17 ± 1.54 | ∆: 0.00 ± 0.00 | ∆: −0.59 ± 3.96 | ∆: −0.09 ± 1.56 | ∆: −27.2 | ∆: −0.54 ± 1.13 | ∆: −36.4 | ∆: −16 ± 27.78 | ∆: −20 ± 24.70 | |||||||
Group 2 n. 11 | 4.91 ± 3.43 | 4.89 ± 2.48 | 3.30 ± 3.26 | 6.94 ± 0.50 | 5.47 ± 2.91 | 5.97 ± 0.69 | 6.20 ± 0.87 | 0.00 ± 0.00 | 4.96 ± 1.79 | 9.33 ± 0.74 | 36.4 | 4.70 ± 0.75 | 90.9 | 33 ± 28 | 39 ± 17 | ||||||
∆: +0.10 ± 4.75 | ∆: −0.17 ± 3.11 | ∆: −1.03 ± 4.37 | ∆: + 0.13 ± 0.83 | ∆: −0.96 ± 3.66 | ∆: −0.13 ± 0.92 | ∆: + 0.13 ± 1.73 | ∆: 0.00 ± 0.00 | ∆: − 0.76 ± 2.11 | ∆: +0.02 ± 1.00 | ∆: −9.1 | ∆: −0.20 ± 1.00 | ∆: 0.00 | ∆: −10 ± 35.00 | ∆: −10 ± 28.60 | |||||||
Laleman [34] Group 1 n. 9 | 5.22 ± 3.16 | 6.84 ± 1.21 | 1.53 ± 2.39 | 3.62 ± 2.43 | 3 ± 7 | 4.13 ± 1.04 | 63 ± 31 | 1.14 ± 0.88 | 20 ± 11 | 19 ± 10 | |||||||||||
∆: +0.09 ± 4.45 | ∆: −0.09 ± 1.44 | ∆: −0.93 ± 3.10 | ∆: + 0.53 ± 3.51 | ∆: −12 ± 14.76 | ∆: −1.04 ± 1.39 | ∆: −24 ± 33.61 | ∆: −0.78 ± 1.13 | ∆: −9 ± 15.56 | ∆: −11 ± 14.14 | ||||||||||||
Group 2 n. 10 | 3.08 ± 3.48 | 6.87 ± 1.21 | 1.40 ± 2.32 | 3.43 ± 2.33 | 11 ± 19 | 4.30 ± 0.76 | 53 ± 33 | 0.89 ± 0.86 | 21 ± 10 | 17 ± 12 | |||||||||||
∆: −0.43 ± 4.84 | ∆: 0.00 ± 1.71 | ∆: −0.64 ± 3.25 | ∆: −0.31 ± 3.40 | ∆: +3 ± 28.33 | ∆: −1.15 ± 1.42 | ∆: −34 ± 39.66 | ∆: −1.07 ± 1.17 | ∆: −9 ± 17.20 | ∆: −4 ± 17.68 | ||||||||||||
X | 2.76 ± 0.93 | 1.79 ± 0.62 | 1.20 ± 0.54 | 6.82 ± 0.53 | 2.17 ± 0.67 | 5.65 ± 1.32 | 6.00 ± 0.67 | 1.09 ± 0.45 | 4.37 ± 1.60 | 4.58 ± 0.63 | 9.14 ± 0.66 | 22.87 ± 4.88 | −7.00 ± 0.01 | 0.30 ± 0.33 | 4.11 ± 0.32 | 43.99 ± 4.08 | 0.43 ± 0.42 | 1.01 ± 0.62 | 0.05 ± 0.16 | 25.88 ± 10.47 | 27.68 ± 6.33 |
D | −1.16 ± 0.94 | +1.19 ± 0.50 | −1.58 ± 0.94 | −0.02 ± 0.68 | - 0.63 ± 1.08 | −0.34 ± 1.49 | −0.02 ± 0.98 | −0.22 ± 0.69 | −0.67 ± 2.24 | −0.93 ± 0.67 | −0.04 ± 0.93 | −14.30 ± 6.82 | +0.08 ± 0.01 | −0.83 ± 0.65 | −0.87 ± 0.51 | −24.74 ± 5.17 | −1.5 ± 0.74 | −0.93 ± 0.82 | −0.60 ± 0.38 | −11.14 ± 13.15 | −11.39 ± 11.45 |
6-month follow-up | |||||||||||||||||||||
Almohareb [30] Group 1 n. 20 | 3.24 ± 1.52 | 2.64 ± 1.23 | 3.12 ± 1.09 | 21.8 ± 9.1 | 4.4 ± 1.1 | 27.2 ± 13.3 | |||||||||||||||
∆: −2.49 ± 1.89 | ∆: −1.58 ± 2.12 | ∆: −1.07 ± 2.21 | ∆: −16.8 ± 13.15 | ∆: −0.8 ± 2.28 | ∆: −18.1 ± 19.9 | ||||||||||||||||
Group 2 n. 20 | 3.96 ± 1.11 | 2.98 ± 1.18 | 3.41 ± 0.89 | 20.1 ± 7.7 | 4.7 ± 1.0 | 29.7 ± 13.2 | |||||||||||||||
∆: −1.33 ± 1.98 | ∆: −1.48 ± 1.69 | ∆: −1.13 ± 1.40 | ∆: −21.1 ± 14.01 | ∆: −0.7 ± 2.32 | ∆: −14.1 ± 19.18 | ||||||||||||||||
Bombeccari [31] Group 1 n. 20 | 1.77 | −6.57 ± 0.02 | 4.90 ± 0.47 | 10 | 0.00 ± 0.00 | ||||||||||||||||
∆: −0.58 ± 0.02 | ∆: +0.54 ± 0.02 | ∆: −1.00 ± 0.89 | ∆: −60 | ∆: −0.70 ± 0.00 | |||||||||||||||||
Group 2 n. 20 | 2.06 | −6.95 ± 0.03 | 5.50 ± 0.52 | 50 | 0.30 ± 0.48 | ||||||||||||||||
∆: −0.31 ± 0.03 | ∆: +0.10 ± 0.04 | ∆: −0.30 ± 0.94 | ∆: −30 | ∆: −0.30 ± 0.70 | |||||||||||||||||
Chen [32] Group 1 n. 13 | 8.80 ± 2.49 | 4.10 ± 2.12 | 47.33 | ||||||||||||||||||
∆: −0.43 ± 3.95 | ∆: −0.85 ± 2.73 | ∆: −14.17 | |||||||||||||||||||
Group 2 n. 12 | 8.66 ± 2.55 | 3.23 ± 1.89 | 44.33 | ||||||||||||||||||
∆: −3.36 ± 3.18 | ∆: −0.42 ± 2.39 | ∆: −14.00 | |||||||||||||||||||
Laleman [34] Group 1 n. 9 | 5.21 ± 3.13 | 6.68 ± 1.23 | 1.06 ± 2.11 | 2.44 ± 2.41 | 2 ± 6 | 4.15 ± 0.96 | 59 ± 32 | 0.89 ± 0.63 | 20 ± 12 | 16 ± 6 | |||||||||||
∆: +0.08 ± 4.43 | ∆: −0.25 ± 1.46 | ∆: −1.40 ± 2.89 | ∆: −0.65 ± 3.50 | ∆: −13 ± 14.32 | ∆: −1.02 ± 1.33 | ∆: −28 ± 34.53 | ∆: −1.03 ± 0.94 | ∆: −9 ± 16.28 | ∆: −14 ± 11.66 | ||||||||||||
Group 2 n. 10 | 3.10 ± 3.48 | 6.90 ± 1.25 | 2.02 ± 2.19 | 2.45 ± 2.92 | 7 ± 14 | 4.18 ± 1.26 | 53 ± 39 | 1.22 ± 1.07 | 21 ± 11 | 17 ± 11 | |||||||||||
∆: −0.41 ± 4.84 | ∆: + 0.03 ± 1.54 | ∆: −0.02 ± 3.16 | ∆: −1.29 ± 3.83 | ∆: −1 ± 25.24 | ∆: −1.27 ± 1.74 | ∆: −34 ± 44.78 | ∆: −0.74 ± 1.33 | ∆: −9 ± 17.80 | ∆: −4 ± 17.03 | ||||||||||||
X | 3.76 ± 0.66 | 2.81 ± 0.85 | 3.27 ± 0.69 | 6.76 ± 0.88 | 1.54 ± 1.53 | 2.45 ± 1.91 | 4.53 ± 0.69 | 15.70 ± 3.79 | −6.76 ± 0.03 | 4.53 ± 0.41 | 36.66 ± 4.38 | 0.98 ± 0.64 | 0.15 ± 0.01 | 20.53 ± 8.11 | 16.53 ± 5.96 | ||||||
D | −0.16 ± 0.82 | −0.17 ± 0.27 | +0.49 ± 0.79 | −0.05 ± 0.98 | - 1.26 ± 1.69 | + 1.14 ± 0.10 | −0.98 ± 0.70 | −21.47 ± 6.08 | +0.32 ± 0.02 | −0.45 ± 0.57 | −32.07 ± 5.41 | −0.96 ± 0.83 | −0.50 ± 0.35 | −16.49 ± 11.36 | −22.54 ± 11.25 | ||||||
12-month follow-up | |||||||||||||||||||||
Almohareb [30] Group 1 n.20 | 4.67 ± 1.44 | 3.33 ± 1.74 | 3.75 ± 1.79 | 25.6 ± 8.0 | 3.8 ± 0.9 | 18.6 ± 7.9 | |||||||||||||||
∆: −1.06 ± 1.82 | ∆: −0.89 ± 2.45 | ∆: −0.44 ± 2.62 | ∆: −13.0 ± 12.42 | ∆: −1.4 ± 2.19 | ∆: −26.7 ± 16.77 | ||||||||||||||||
Group 2 n.20 | 4.48 ± 1.35 | 3.86 ± 1.89 | 3.96 ± 1.88 | 27.1 ± 9.3 | 4.1 ± 1.0 | 25.7 ± 8.1 | |||||||||||||||
∆: −0.81 ± 2.12 | ∆: −0.60 ± 2.24 | ∆: −0.58 ± 2.17 | ∆: −14.1 ± 14.95 | ∆: −1.3 ± 2.32 | ∆: −18.1 ± 16.09 | ||||||||||||||||
X | 4.58 ± 3.24 | 3.60 ± 1.82 | 3.86 ± 1.84 | 26.35 ± 4.28 | 3.95 ± 0.32 | 22.15 ± 5.66 | |||||||||||||||
D | +0.66 ± 3.24 | +0.62 ± 2.14 | +1.08 ± 2.36 | −10.82 ± 6.40 | −1.03 ± 0.51 | −46.58 ± 6.49 |
Randomization Process (Domain 1) | Effect of Assignment to Intervention (Domain 2) | Effect of Adhering to Intervention (Domain 3) | Missing Outcome Data (Domain 4) | Measurement of the Outcome (Domain 5) | Selection of the Reported Studies (Domain 6) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | 1.2 | 1.3 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 3.1 | 3.2 | 3.3 | 3.4 | 3.5 | 3.6 | 4.1 | 4.2 | 4.3 | 4.4 | 5.1 | 5.2 | 5.3 | 5.4 | 5.5 | 6.1 | 6.2 | 6.3 | |
Almohareb et al. [30] | Y | PN | N | NI | PY | N | N | NA | Y | NA | NI | PY | N | N | N | Y | NI | PN | PN | NI | PN | N | N | NA | NA | Y | N | N |
Birang et al. [35] | Y | PY | NI | N | N | NA | NA | NA | Y | NA | N | N | NA | N | N | NA | Y | NA | NA | NA | NI | N | NI | NI | N | Y | N | N |
Bombeccari et al. [31] | NI | PN | N | PY | PY | N | N | NA | PY | NA | PY | PY | N | N | N | Y | NI | PN | PN | NI | PY | N | N | NA | NA | Y | N | N |
Chen et al. [32] | Y | Y | N | NI | NI | NA | N | NA | Y | NA | NI | NI | NA | N | N | NA | Y | NA | NA | NA | NI | N | NI | PN | N | Y | N | N |
Galofré et al. [33] | NI | PN | N | N | N | NA | N | NA | Y | NA | N | N | NA | N | N | NA | PY | NA | NA | NA | NI | N | N | PY | PY | Y | NI | NI |
Laleman et al. [34] | Y | Y | N | N | N | NA | N | NA | Y | NA | N | N | NA | N | N | NA | PY | NA | NA | NA | Y | N | NI | PY | N | Y | N | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Spirito, F.; Pisano, M.; Di Palo, M.P.; Salzano, F.; Rupe, A.; Fiorino, A.; Rengo, C. Potential Impact of Microbial Variations After Peri-Implantitis Treatment on Peri-Implant Clinical, Radiographic, and Crevicular Parameters: A Systematic Review. Dent. J. 2024, 12, 414. https://doi.org/10.3390/dj12120414
Di Spirito F, Pisano M, Di Palo MP, Salzano F, Rupe A, Fiorino A, Rengo C. Potential Impact of Microbial Variations After Peri-Implantitis Treatment on Peri-Implant Clinical, Radiographic, and Crevicular Parameters: A Systematic Review. Dentistry Journal. 2024; 12(12):414. https://doi.org/10.3390/dj12120414
Chicago/Turabian StyleDi Spirito, Federica, Massimo Pisano, Maria Pia Di Palo, Flora Salzano, Antonio Rupe, Antonino Fiorino, and Carlo Rengo. 2024. "Potential Impact of Microbial Variations After Peri-Implantitis Treatment on Peri-Implant Clinical, Radiographic, and Crevicular Parameters: A Systematic Review" Dentistry Journal 12, no. 12: 414. https://doi.org/10.3390/dj12120414
APA StyleDi Spirito, F., Pisano, M., Di Palo, M. P., Salzano, F., Rupe, A., Fiorino, A., & Rengo, C. (2024). Potential Impact of Microbial Variations After Peri-Implantitis Treatment on Peri-Implant Clinical, Radiographic, and Crevicular Parameters: A Systematic Review. Dentistry Journal, 12(12), 414. https://doi.org/10.3390/dj12120414