Treatments of COVID-19-Associated Taste and Saliva Secretory Disorders
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Treatments of COVID-19-Associated Taste Disorders
3.1.1. Tetracycline
- Viral Cellular Entry, Inflammatory Cell Death, and Neuropathy
- 2.
- Treatment with Tetracyclines and Outcomes
3.1.2. Corticosteroid
- Inflammation of the Taste Buds and Papillae
- 2.
- Treatment with Corticosteroid and Outcomes
3.1.3. Zinc
- Zinc Deficiency Induced by SARS-CoV-2 Infection
- 2.
- Supplementation with Zinc and Outcomes
3.1.4. Stellate Ganglion Block
- Dysautonomia
- 2.
- Stellate Ganglion Block and Outcomes
3.1.5. Phytochemical
- Multiple Pathogenic Mechanisms
- 2.
- Treatment with Curcumin and Outcomes
3.1.6. Herbal Medicine
- Multiple Pathogenic Mechanisms
- 2.
- Treatment with Herbal Medicine and Outcomes
3.1.7. Nutraceutical
- Association with Disease Severity and Multiple Pathogenic Mechanisms
- 2.
- Supplementation with Vitamin D and Outcomes
3.1.8. Photobiomodulation
- Multiple Pathogenic Mechanisms
- 2.
- Photobiomodulation and Outcomes
3.1.9. Alternative Medicine
- Multiple Pathogenic Mechanisms
- 2.
- Acupuncture and Moxibustion and Expected Outcomes
3.2. Treatments of COVID-19-Associated Saliva Secretory Disorders
3.2.1. Corticosteroid
- Viral Cellular Entry and Inflammation of Salivary Glands
- 2.
- Treatment with Corticosteroid and Outcomes
3.2.2. Zinc
- Zinc Deficiency Induced by SARS-CoV-2 Infection
- 2.
- Supplementation with Zinc and Expected Outcomes
3.2.3. Antiviral Drugs
- Viral Invasion of Salivary Glands and Induced Inflammation
- 2.
- Treatment with Antiviral Drugs and Outcomes
3.2.4. Photobiomodulation
- Multiple Pathogenic Mechanisms
- 2.
- Photobiomodulation and Expected Outcomes
3.2.5. Sialagogue
- Promotion of Salivary Secretion
- 2.
- Treatment with Malic Acid Sialagogue and Expected Outcomes
3.2.6. Artificial Saliva
- Substitution for Saliva
- 2.
- Use of Artificial Saliva and Outcomes
3.2.7. Chewing Gum
- Mechanical Stimulation of Salivary Glands
- 2.
- Use of Chewing Gum and Expected Outcomes
3.2.8. Alternative Medicine
- Multiple Pathogenic Mechanisms
- 2.
- Acupuncture and Expected Outcomes
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johns Hopkins University & Medicine Coronavirus Resource Center Website. Available online: https://coronavirus.jhu.edu/map.html (accessed on 10 March 2023).
- Worldometer. A Reference Website of Live World Statistics. Available online: www.worldometers.info/coronavirus/ (accessed on 15 May 2023).
- Tsuchiya, H. Oral symptoms associated with COVID-19 and their pathogenic mechanisms: A literature review. Dent. J. 2021, 9, 32. [Google Scholar] [CrossRef]
- Tsuchiya, H. Characterization and pathogenic speculation of xerostomia associated with COVID-19: A narrative review. Dent. J. 2021, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Kalak, G.; Jarjou’i, A.; Bohadana, A.; Wild, P.; Rokach, A.; Amiad, N.; Abdelrahman, N.; Arish, N.; Chen-Shuali, C.; Izbicki, G. Prevalence and persistence of symptoms in adult COVID-19 survivors 3 and 18 months after discharge from hospital or corona hotels. J. Clin. Med. 2022, 11, 7413. [Google Scholar] [CrossRef] [PubMed]
- Ferdeghini, C.; Mirabelli, L.; Bianco, E.; Hari, S.; Maddalone, M. Oral manifestations in hospitalized COVID patients. World J. Dent. 2022, 13, 434–440. [Google Scholar] [CrossRef]
- Binmadi, N.O.; Aljohani, S.; Alsharif, M.T.; Almazrooa, S.A.; Sindi, A.M. Oral manifestations of COVID-19: A cross-sectional study of their prevalence and association with disease severity. J. Clin. Med. 2022, 11, 4461. [Google Scholar] [CrossRef]
- Al-Magsoosi, M.J.N.; Al-Asadi, O.K.B.; Al-Quraine, N.T.; Sami, S.M.; Haider, J. Oral manifestations associated with COVID-19 infection: A cross-sectional study of recovered Iraqi patients. Int. J. Dent. 2023, 2023, 4288182. [Google Scholar] [CrossRef] [PubMed]
- Amorim Dos Santos, J.; Normando, A.G.C.; Carvalho da Silva, R.L.; Acevedo, A.C.; De Luca Canto, G.; Sugaya, N.; Santos-Silva, A.R.; Guerra, E.N.S. Oral manifestations in patients with COVID-19: A living systematic review. J. Dent. Res. 2021, 100, 141–154. [Google Scholar] [CrossRef]
- Fathi, Y.; Hoseini, E.G.; Atoof, F.; Mottaghi, R. Xerostomia (dry mouth) in patients with COVID-19: A case series. Future Virol. 2021, 16, 315–319. [Google Scholar] [CrossRef]
- Biadsee, A.; Dagan, O.; Ormianer, Z.; Kassem, F.; Masarwa, S.; Biadsee, A. Eight-month follow-up of olfactory and gustatory dysfunctions in recovered COVID-19 patients. Am. J. Otolaryngol. 2021, 42, 103065. [Google Scholar] [CrossRef]
- Vaira, L.A.; De Vito, A.; Lechien, J.R.; Chiesa-Estomba, C.M.; Mayo-Yàñez, M.; Calvo-Henrìquez, C.; Saussez, S.; Madeddu, G.; Babudieri, S.; Boscolo-Rizzo, P.; et al. New onset of smell and taste loss are common findings also in patients with symptomatic COVID-19 after complete vaccination. Laryngoscope 2022, 132, 419–421. [Google Scholar] [CrossRef]
- Tsuchiya, H. Gustatory and saliva secretory dysfunctions in COVID-19 patients with zinc deficiency. Life 2022, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- Barbara, J.M.; Gatt, J.; Xuereb, R.A.; Tabone Adami, N.; Darmanin, J.; Erasmi, R.; Xuereb, R.G.; Barbara, C.; Stephen, F.; Jane Magri, C. Clinical outcomes at medium-term follow-up of COVID-19. J. R. Coll. Physicians Edinb. 2022, 52, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Bek, L.M.; Berentschot, J.C.; Heijenbrok-Kal, M.H.; Huijts, S.; van Genderen, M.E.; Vlake, J.H.; van Bommel, J.; Aerts, J.G.J.V.; Ribbers, G.M.; van den Berg-Emons, R.J.G.; et al. Symptoms persisting after hospitalisation for COVID-19: 12 months interim results of the CO-FLOW study. ERJ. Open Res. 2022, 8, 00355-2022. [Google Scholar] [CrossRef] [PubMed]
- Boscolo-Rizzo, P.; Guida, F.; Polesel, J.; Marcuzzo, A.V.; Capriotti, V.; D’Alessandro, A.; Zanelli, E.; Marzolino, R.; Lazzarin, C.; Antonucci, P.; et al. Sequelae in adults at 12 months after mild-to-moderate coronavirus disease 2019 (COVID-19). Int. Forum Allergy Rhinol. 2021, 11, 1685–1688. [Google Scholar] [CrossRef] [PubMed]
- Gebretsadik, H.G. An update on oral clinical courses among patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A clinical follow-up (a prospective prevalent cohort) study. PLoS ONE 2022, 17, e0275817. [Google Scholar] [CrossRef] [PubMed]
- Muthyam, A.K.; Reddy, M.P.; Kulkarni, S.; Srilatha, A.; Sahithi, K.; Satyanarayana, D. Oral manifestations in COVID-19 patients: An observational study. J. Family Med. Prim. Care 2022, 11, 1000–1005. [Google Scholar] [CrossRef]
- Anaya, J.M.; Rojas, M.; Salinas, M.L.; Rodríguez, Y.; Roa, G.; Lozano, M.; Rodríguez-Jiménez, M.; Montoya, N.; Zapata, E.; Post-COVID Study Group; et al. Post-COVID syndrome. A case series and comprehensive review. Autoimmun. Rev. 2021, 20, 102947. [Google Scholar] [CrossRef]
- Ercoli, T.; Masala, C.; Pinna, I.; Orofino, G.; Solla, P.; Rocchi, L.; Defazio, G. Qualitative smell/taste disorders as sequelae of acute COVID-19. Neurol. Sci. 2021, 42, 4921–4926. [Google Scholar] [CrossRef]
- Vaira, L.A.; Gessa, C.; Deiana, G.; Salzano, G.; Maglitto, F.; Lechien, J.R.; Saussez, S.; Piombino, P.; Biglio, A.; Biglioli, F.; et al. The effects of persistent olfactory and gustatory dysfunctions on quality of life in long-COVID-19 patients. Life 2022, 12, 141. [Google Scholar] [CrossRef]
- Oliveira, W.Q.; Sousa, P.H.M.; Pastore, G.M. Olfactory and gustatory disorders caused by COVID-19: How to regain the pleasure of eating? Trends Food Sci. Technol. 2022, 122, 104–109. [Google Scholar] [CrossRef]
- Yom-Tov, E.; Lekkas, D.; Jacobson, N.C. Association of COVID19-induced anosmia and ageusia with depression and suicidal ideation. J. Affect. Disord. Rep. 2021, 5, 100156. [Google Scholar] [CrossRef] [PubMed]
- Kapourani, A.; Kontogiannopoulos, K.N.; Manioudaki, A.E.; Poulopoulos, A.K.; Tsalikis, L.; Assimopoulou, A.N.; Barmpalexis, P. A review on xerostomia and its various management strategies: The role of advanced polymeric materials in the treatment approaches. Polymers 2022, 14, 850. [Google Scholar] [CrossRef] [PubMed]
- Neta, F.I.; Fernandes, A.C.L.; Vale, A.J.M.; Pinheiro, F.I.; Cobucci, R.N.; Azevedo, E.P.; Guzen, F.P. Pathophysiology and possible treatments for olfactory-gustatory disorders in patients affected by COVID-19. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100035. [Google Scholar] [CrossRef] [PubMed]
- Khani, E.; Khiali, S.; Beheshtirouy, S.; Entezari-Maleki, T. Potential pharmacologic treatments for COVID-19 smell and taste loss: A comprehensive review. Eur. J. Pharmacol. 2021, 912, 174582. [Google Scholar] [CrossRef]
- Vaira, L.A.; Salzano, G.; Fois, A.G.; Piombino, P.; De Riu, G. Potential pathogenesis of ageusia and anosmia in COVID-19 patients. Int. Forum Allergy Rhinol. 2020, 10, 1103–1104. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chiesa-Estomba, C.M.; De Siati, D.R.; Horoi, M.; Le Bon, S.D.; Dodriguez, A.; Dequanter, D.; Blecic, S.; El Afia, F.; Distinguin, L.; et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur. Arch. Otorhinolaryngol. 2020, 277, 2251–2261. [Google Scholar] [CrossRef]
- Passarelli, P.C.; Lopez, M.A.; Mastandrea Bonaviri, G.N.; Garcia-Godoy, F.; D’Addona, A. Taste and smell as chemosensory dysfunctions in COVID-19 infection. Am. J. Dent. 2020, 33, 135–137. [Google Scholar]
- Moraschini, V.; Reis, D.; Sacco, R.; Calasans-Maia, M.D. Prevalence of anosmia and ageusia symptoms among long-term effects of COVID-19. Oral Dis. 2022, 28 (Suppl. S2), 2533–2537. [Google Scholar] [CrossRef]
- Vaira, L.A.; Salzano, G.; Deiana, G.; De Riu, G. Anosmia and ageusia: Common findings in COVID-19 patients. Laryngoscope 2020, 130, 1787. [Google Scholar] [CrossRef]
- Asadi, M.M.; Shankayi, Z.; Bahrami, F.; Mohammadzadeh, T.; Amini, H.; Naderi, M. Quantitative analysis of taste disorder in COVID-19 patients, the hypersensitivity to salty quality. New Microbes New Infect. 2021, 43, 100919. [Google Scholar] [CrossRef]
- Saniasiaya, J.; Islam, M.A.; Abdullah, B. Prevalence and characteristics of taste disorders in cases of COVID-19: A meta-analysis of 29,349 patients. Otolaryngol. Head Neck Surg. 2021, 165, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, A.; Kumar, S.; Kaur, A.; Chaudhry, K.; Kumar, P.; Dutt, N.; Nag, V.L.; Garg, M.K. Oral manifestations of COVID-19 infection: An analytical cross-sectional study. J. Maxillofac. Oral Surg. 2022, 21, 1326–1335. [Google Scholar] [CrossRef] [PubMed]
- Cremaschi, R.C.; Bahi, C.A.S.; Paola, A.A.V.; Arakaki, J.S.O.; Ferreira, P.R.A.; Bellei, N.C.J.; Borges, V.; Coelho, F.M.S. Neurological symptoms and comorbidity profile of hospitalized patients with COVID-19. Arq. Neuropsiquiatr. 2023, 81, 146–154. [Google Scholar] [CrossRef]
- Okada, Y.; Yoshimura, K.; Toya, S.; Tsuchimochi, M. Pathogenesis of taste impairment and salivary dysfunction in COVID-19 patients. Jpn. Dent. Sci. Rev. 2021, 57, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Leng, A.; Shah, M.; Ahmad, S.A.; Premraj, L.; Wildi, K.; Li Bassi, G.; Pardo, C.A.; Choi, A.; Cho, S.M. Pathogenesis underlying neurological manifestations of long COVID syndrome and potential therapeutics. Cells 2023, 12, 816. [Google Scholar] [CrossRef] [PubMed]
- Gironi, L.C.; Damiani, G.; Zavattaro, E.; Pacifico, A.; Santus, P.; Pigatto, P.D.M.; Cremona, O.; Savoia, P. Tetracyclines in COVID-19 patients quarantined at home: Literature evidence supporting real-world data from a multicenter observational study targeting inflammatory and infectious dermatoses. Dermatol. Ther. 2021, 34, e14694. [Google Scholar] [CrossRef]
- Singh, C.V.; Jain, S.; Parveen, S. The outcome of fluticasone nasal spray on anosmia and triamcinolone oral paste in dysgeusia in COVID-19 patients. Am. J. Otolaryngol. 2021, 42, 102892. [Google Scholar] [CrossRef]
- Gamil, Y.; Ismail, R.M.; Abdou, A.; Shabaan, A.A.; Hamed, M.G. Association between administration of systemic corticosteroids and the recovery of olfactory and/or gustatory functions in patients with COVID-19: A prospective cohort study. Open Access Maced. J. Med. Sci. 2022, 10, 538–542. [Google Scholar] [CrossRef]
- Abdelmaksoud, A.A.; Ghweil, A.A.; Hassan, M.H.; Rashad, A.; Khodeary, A.; Aref, Z.F.; Sayed, M.A.A.; Elsamman, M.K.; Bazeed, S.E.S. Olfactory disturbances as presenting manifestation among Egyptian patients with COVID-19: Possible role of zinc. Biol. Trace Elem. Res. 2021, 199, 4101–4108. [Google Scholar] [CrossRef]
- Finzi, E. Treatment of SARS-CoV-2 with high dose oral zinc salts: A report on four patients. Int. J. Infect. Dis. 2020, 99, 307–309. [Google Scholar] [CrossRef]
- Ben Abdallah, S.; Mhalla, Y.; Trabelsi, I.; Sekma, A.; Youssef, R.; Bel Haj Ali, K.; Ben Soltane, H.; Yacoubi, H.; Msolli, M.A.; Stambouli, N.; et al. Twice-daily oral zinc in the treatment of patients with coronavirus disease 2019: A randomized double-blind controlled trial. Clin. Infect. Dis. 2023, 76, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Finzi, E.; Harrington, A. Zinc treatment of outpatient COVID-19: A retrospective review of 28 consecutive patients. J. Med. Virol. 2021, 93, 2588–2590. [Google Scholar] [CrossRef] [PubMed]
- Citu, I.M.; Citu, C.; Margan, M.M.; Craina, M.; Neamtu, R.; Gorun, O.M.; Burlea, B.; Bratosin, F.; Rosca, O.; Grigoras, M.L.; et al. Calcium, magnesium, and zinc supplementation during pregnancy: The additive value of micronutrients on maternal immune response after SARS-CoV-2 infection. Nutrients 2022, 14, 1445. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.D.; Duricka, D.L. Stellate ganglion block reduces symptoms of Long COVID: A case series. J. Neuroimmunol. 2022, 362, 577784. [Google Scholar] [CrossRef]
- Chauhan, G.; Upadhyay, A.; Khanduja, S.; Emerick, T. Stellate ganglion block for anosmia and dysgeusia due to long COVID. Cureus 2022, 14, e27779. [Google Scholar] [CrossRef]
- Chabot, A.B.; Huntwork, M.P. Turmeric as a possible treatment for COVID-19-induced anosmia and ageusia. Cureus 2021, 13, e17829. [Google Scholar] [CrossRef] [PubMed]
- Wanjarkhedkar, P.; Sarade, G.; Purandare, B.; Kelkar, D. A prospective clinical study of an Ayurveda regimen in COVID 19 patients. J. Ayurveda Integr. Med. 2022, 13, 100365. [Google Scholar] [CrossRef] [PubMed]
- Sabico, S.; Enani, M.A.; Sheshah, E.; Aljohani, N.J.; Aldisi, D.A.; Alotaibi, N.H.; Alshingetti, N.; Alomar, S.Y.; Alnaami, A.M.; Amer, O.E.; et al. Effects of a 2-week 5000 IU versus 1000 IU vitamin D3 supplementation on recovery of symptoms in patients with mild to moderate Covid-19: A randomized clinical trial. Nutrients 2021, 13, 2170. [Google Scholar] [CrossRef]
- Gaylis, N.B.; Kreychman, I.; Sagliani, J.; Mograbi, J.; Gabet, Y. The results of a unique dietary supplement (nutraceutical formulation) used to treat the symptoms of long-haul COVID. Front. Nutr. 2022, 9, 1034169. [Google Scholar] [CrossRef]
- de Souza, V.B.; Ferreira, L.T.; Sene-Fiorese, M.; Garcia, V.; Rodrigues, T.Z.; de Aquino Junior, A.E.; Bagnato, V.S.; Panhoca, V.H. Photobiomodulation therapy for treatment olfactory and taste dysfunction COVID-19-related: A case report. J. Biophotonics 2022, 15, e202200058. [Google Scholar] [CrossRef]
- Panhoca, V.H.; Ferreira, L.T.; de Souza, V.B.; Ferreira, S.A.; Simão, G.; de Aquino Junior, A.E.; Bagnato, V.S.; Hanna, R. Can photobiomodulation restore anosmia and ageusia induced by COVID-19? A pilot clinical study. J. Biophotonics 2023. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, W.; Kubota, N.; Shimizu, T.; Saruta, J.; Fuchida, S.; Kawata, A.; Yamamoto, Y.; Sugimoto, M.; Yakeishi, M.; Tsukinoki, K. Existence of SARS-CoV-2 entry molecules in the oral cavity. Int. J. Mol. Sci. 2020, 21, 6000. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.E.; Appleton, A.; Liu, Q.R.; Yao, Q.; Mazucanti, C.H.; Egan, J.M. Human type II taste cells express angiotensin-converting enzyme 2 and are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Am. J. Pathol. 2021, 191, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Cazzolla, A.P.; Lovero, R.; Spirito, F.; Di Cosola, M.; Santacroce, L.; Lo Muzio, E.; Ciavarella, D.; Dioguardi, M.; Crincoli, V.; Pepe, M.; et al. Evaluation of qualitative and quantitative taste alterations in COVID-19. Biomol. Biomed. 2023, 23, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Catton, G.; Gardner, A. COVID-19 induced taste dysfunction and recovery: Association with smell dysfunction and oral health behaviour. Medicina 2022, 58, 715. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Zhang, S.; Wang, Q.; Anang, S.; Wang, J.; Ding, H.; Kappes, J.C.; Sodroski, J. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects. J. Virol. 2020, 95, e02304-20. [Google Scholar] [CrossRef]
- Finsterer, J.; Stollberger, C. Causes of hypogeusia/hyposmia in SARS-CoV2 infected patients. J. Med. Virol. 2020, 92, 1793–1794. [Google Scholar] [CrossRef]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Kesavardhana, S.; Malireddi, R.K.S.; Kanneganti, T.D. Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol. 2020, 38, 567–595. [Google Scholar] [CrossRef]
- Finsterer, J.; Scorza, F.A.; Scorza, C.; Fiorini, A. COVID-19 associated cranial nerve neuropathy: A systematic review. Bosn. J. Basic Med. Sci. 2022, 22, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Tonkal, A.; Alamri, A.A.; AlMaghrabi, S.J.; Mozahim, N.F.; Mozahim, S.F.; Alsubaie, S.A.; Alsehly, A.A.; Alshuaibi, R.O.; Alotaibi, L.A.; Qashgari, F.S. Cranial nerve impairment associated with COVID-19 infections: A systematic review. Cureus 2022, 14, e31997. [Google Scholar] [CrossRef]
- Park, J.M.; Kim, M.G.; Jung, J.; Kim, S.S.; Jung, A.R.; Kim, S.H.; Yeo, S.G. Effect of age and severity of facial palsy on taste thresholds in Bell’s palsy patients. J. Audiol. Otol. 2017, 21, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Doty, R.L.; Hawkes, C.H. Chemosensory dysfunction in neurodegenerative diseases. Handb. Clin. Neurol. 2019, 164, 325–360. [Google Scholar] [CrossRef] [PubMed]
- Gromova, O.A.; Torshin, I.Y.; Semenov, V.A.; Putilina, M.V.; Chuchalin, A.G. Direct and indirect neurological signs of COVID-19. Neurosci. Behav. Physiol. 2021, 51, 856–866. [Google Scholar] [CrossRef]
- Paderno, A.; Mattavelli, D.; Piazza, C. Long-term olfactory and gustatory dysfunction may be related to neural damage. Otolaryngol. Head Neck Surg. 2021, 165, 755. [Google Scholar] [CrossRef]
- Sodhi, M.; Etminan, M. Therapeutic potential for tetracyclines in the treatment of COVID-19. Pharmacotherapy 2020, 40, 487–488. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Patankar, N.A. Tetracycline as an inhibitor to the SARS-CoV-2. J. Cell. Biochem. 2021, 122, 752–759. [Google Scholar] [CrossRef]
- Gendrot, M.; Andreani, J.; Jardot, P.; Hutter, S.; Delandre, O.; Boxberger, M.; Mosnier, J.; Le Bideau, M.; Duflot, I.; Fonta, I.; et al. In vitro antiviral activity of doxycycline against SARS-CoV-2. Molecules 2020, 25, 5064. [Google Scholar] [CrossRef]
- Henehan, M.; Montuno, M.; De Benedetto, A. Doxycycline as an anti-inflammatory agent: Updates in dermatology. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1800–1808. [Google Scholar] [CrossRef]
- Zheng, Q.; Lin, R.; Chen, Y.; Lv, Q.; Zhang, J.; Zhai, J.; Xu, W.; Wang, W. SARS-CoV-2 induces “cytokine storm” hyperinflammatory responses in RA patients through pyroptosis. Front. Immunol. 2022, 13, 1058884. [Google Scholar] [CrossRef] [PubMed]
- Mosquera-Sulbaran, J.A.; Hernández-Fonseca, H. Tetracycline and viruses: A possible treatment for COVID-19? Arch. Virol. 2021, 166, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, M.; Negro Álvarez, S.E.; Hernández, E.B. The potential use of tetracyclines in neurodegenerative diseases and the role of nano-based drug delivery systems. Eur. J. Pharm. Sci. 2022, 175, 106237. [Google Scholar] [CrossRef] [PubMed]
- Cazzolla, A.P.; Lovero, R.; Lo Muzio, L.; Testa, N.F.; Schirinzi, A.; Palmieri, G.; Pozzessere, P.; Procacci, V.; Di Comite, M.; Ciavarella, D.; et al. Taste and smell disorders in COVID-19 patients: Role of interleukin-6. ACS Chem. Neurosci. 2020, 11, 2774–2781. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, M.; Brand, J.; Huang, L. Inflammation activates the interferon signaling pathways in taste bud cells. J. Neurosci. 2007, 27, 10703–10713. [Google Scholar] [CrossRef]
- Henin, D.; Pellegrini, G.; Carmagnola, D.; Lanza Attisano, G.C.; Lopez, G.; Ferrero, S.; Amendola, A.; De Angelis, D.; Tanzi, E.; Dellavia, C. Morphological and immunopathological aspects of lingual tissues in COVID-19. Cells 2022, 11, 1248. [Google Scholar] [CrossRef]
- Singh, C.V.; Jain, S.; Parveen, S.; Deshmukh, P. The outcome of fluticasone nasal spray on anosmia and triamcinolone oral paste in taste dysgeusia in COVID-19 patients. Am. J. Otolaryngol. 2021, 42, 103009. [Google Scholar] [CrossRef]
- Verma, R.R.; Gupta, N.; Singh, M. Letter to the editor regarding “The outcome of fluticasone nasal spray on anosmia and triamcinolone oral paste in dysgeusia in COVID-19 patients”. Am. J. Otolaryngol. 2021, 42, 103103. [Google Scholar] [CrossRef]
- Fiani, B.; Covarrubias, C.; Desai, A.; Sekhon, M.; Jarrah, R. A contemporary review of neurological sequelae of COVID-19. Front. Neurol. 2020, 11, 640. [Google Scholar] [CrossRef]
- Basheikh, M. Reactive arthritis after COVID-19: A case report. Cureus 2022, 14, e24096. [Google Scholar] [CrossRef]
- Chou, H.C.; Chien, C.L.; Huang, H.L.; Lu, K.S. Effects of zinc deficiency on the vallate papillae and taste buds in rats. J. Formos. Med. Assoc. 2001, 100, 326–335. [Google Scholar] [PubMed]
- Fromonot, J.; Gette, M.; Ben Lassoued, A.; Guéant, J.L.; Guéant-Rodriguez, R.M.; Guieu, R. Hypozincemia in the early stage of COVID-19 is associated with an increased risk of severe COVID-19. Clin. Nutr. 2022, 41, 3115–3119. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, T.J.M.; Gonçalves, S.E.A.B.; Guarnieri, A.; Risegato, R.C.; Guimarães, M.P.; de Freitas, D.C.; Razuk-Filho, A.; Junior, P.B.B.; Parrillo, E.F. Association between low zinc levels and severity of acute respiratory distress syndrome by new coronavirus SARS-CoV-2. Nutr. Clin. Pract. 2021, 36, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Lozada-Nur, F.; Chainani-Wu, N.; Fortuna, G.; Sroussi, H. Dysgeusia in COVID-19: Possible mechanisms and implications. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Yagi, T.; Asakawa, A.; Ueda, H.; Ikeda, S.; Miyawaki, S.; Inui, A. The role of zinc in the treatment of taste disorders. Recent Pat. Food Nutr. Agric. 2013, 5, 44–51. [Google Scholar] [CrossRef]
- Henkin, R.I.; Martin, B.M.; Agarwal, R.P. Decreased parotid saliva gustin/carbonic anhydrase VI secretion: An enzyme disorder manifested by gustatory and olfactory dysfunction. Am. J. Med. Sci. 1999, 318, 380–391. [Google Scholar] [CrossRef]
- Badahdah, A.A.; Al-Ghamdi, S.; Banjar, A.; Elfirt, E.; Almarghlani, A.; Elfert, A.; Bahanan, L. The association between salivary zinc levels and dysgeusia in COVID-19 patients. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 6885–6891. [Google Scholar] [CrossRef]
- Henkin, R.I.; Martin, B.M.; Agarwal, R.P. Efficacy of exogenous oral zinc in treatment of patients with carbonic anhydrase VI deficiency. Am. J. Med. Sci. 1999, 318, 392–405. [Google Scholar] [CrossRef]
- Hozumi, I.; Suzuki, J.S.; Kanazawa, H.; Hara, A.; Saio, M.; Inuzuka, T.; Miyairi, S.; Naganuma, A.; Tohyama, C. Metallothionein-3 is expressed in the brain and various peripheral organs of the rat. Neurosci. Lett. 2008, 438, 54–58. [Google Scholar] [CrossRef]
- Fan, D.; Chettouh, Z.; Consalez, G.G.; Brunet, J.F. Taste bud formation depends on taste nerves. eLife 2019, 8, e49226. [Google Scholar] [CrossRef]
- Santos, H.O. Therapeutic supplementation with zinc in the management of COVID-19-related diarrhea and ageusia/dysgeusia: Mechanisms and clues for a personalized dosage regimen. Nutr. Rev. 2022, 80, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E.; et al. Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: The COVID A to Z randomized clinical trial. JAMA Netw. Open. 2021, 4, e210369. [Google Scholar] [CrossRef] [PubMed]
- Gadoth, N.; Mass, E.; Gordon, C.R.; Steiner, J.E. Taste and smell in familial dysautonomia. Dev. Med. Child Neurol. 1997, 39, 393–397. [Google Scholar]
- Porzionato, A.; Emmi, A.; Barbon, S.; Boscolo-Berto, R.; Stecco, C.; Stocco, E.; Macchi, V.; De Caro, R. Sympathetic activation: A potential link between comorbidities and COVID-19. FEBS J. 2020, 287, 3681–3688. [Google Scholar] [CrossRef]
- Dani, M.; Dirksen, A.; Taraborrelli, P.; Torocastro, M.; Panagopoulos, D.; Sutton, R.; Lim, P.B. Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clin. Med. 2021, 21, e63–e67. [Google Scholar] [CrossRef] [PubMed]
- Eldokla, A.M.; Mohamed-Hussein, A.A.; Fouad, A.M.; Abdelnaser, M.G.; Ali, S.T.; Makhlouf, N.A.; Sayed, I.G.; Makhlouf, H.A.; Shah, J.; Aiash, H. Prevalence and patterns of symptoms of dysautonomia in patients with long-COVID syndrome: A cross-sectional study. Ann. Clin. Transl. Neurol. 2022, 9, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res. 2020, 10, 354–367. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Mizogami, M. Interaction of drugs with lipid raft membrane domains as a possible target. Drug Target Insights 2020, 14, 34–47. [Google Scholar] [CrossRef]
- Naoi, M.; Shamoto-Nagai, M.; Maruyama, W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: Antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. Future Neurol. 2019, 14, FNL9. [Google Scholar] [CrossRef]
- Cárdenas-Rodríguez, N.; Bandala, C.; Vanoye-Carlo, A.; Ignacio-Mejía, I.; Gómez-Manzo, S.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J.; Carmona-Aparicio, L.; Hernández-Ochoa, B. Use of antioxidants for the neuro-therapeutic management of COVID-19. Antioxidants 2021, 10, 971. [Google Scholar] [CrossRef]
- Das, S.; Sarmah, S.; Lyndem, S.; Singha Roy, A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J. Biomol. Struct. Dyn. 2021, 39, 3347–3357. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Kondo, K.; Ueha, R.; Kashiwadani, H.; Heinbockel, T. Possible use of phytochemicals for recovery from COVID-19-induced anosmia and ageusia. Int. J. Mol. Sci. 2021, 22, 8912. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.B.; Kanungo, N.; Nayak, V.; Chainy, G.B.N.; Dandapat, J. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: Insights from computational studies. Sci. Rep. 2021, 11, 2043, Erratum in Sci. Rep. 2021, 11, 8482. [Google Scholar] [CrossRef]
- Marín-Palma, D.; Tabares-Guevara, J.H.; Zapata-Cardona, M.I.; Flórez-Álvarez, L.; Yepes, L.M.; Rugeles, M.T.; Zapata-Builes, W.; Hernandez, J.C.; Taborda, N.A. Curcumin inhibits in vitro SARS-CoV-2 infection in Vero E6 cells through multiple antiviral mechanisms. Molecules 2021, 26, 6900. [Google Scholar] [CrossRef] [PubMed]
- Bormann, M.; Alt, M.; Schipper, L.; van de Sand, L.; Le-Trilling, V.T.K.; Rink, L.; Heinen, N.; Madel, R.J.; Otte, M.; Wuensch, K.; et al. Turmeric root and its bioactive ingredient curcumin effectively neutralize SARS-CoV-2 in vitro. Viruses 2021, 13, 1914. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, S.K.; Malaiya, A.; Mishra, G.; Jain, D.; Kesharwani, P.; Mody, N.; Ahmadi, A.; Paliwal, R.; Jain, A. An exhaustive comprehension of the role of herbal medicines in Pre- and Post-COVID manifestations. J. Ethnopharmacol. 2022, 296, 115420. [Google Scholar] [CrossRef] [PubMed]
- Parekar, R.R.; Bolegave, S.S.; Marathe, P.A.; Rege, N.N. Experimental evaluation of analgesic, anti-inflammatory and anti-platelet potential of Dashamoola. J. Ayurveda Integr. Med. 2015, 6, 11–18. [Google Scholar] [CrossRef]
- Radujkovic, A.; Hippchen, T.; Tiwari-Heckler, S.; Dreher, S.; Boxberger, M.; Merle, U. Vitamin D deficiency and outcome of COVID-19 patients. Nutrients 2020, 12, 2757. [Google Scholar] [CrossRef]
- Musavi, H.; Abazari, O.; Barartabar, Z.; Kalaki-Jouybari, F.; Hemmati-Dinarvand, M.; Esmaeili, P.; Mahjoub, S. The benefits of Vitamin D in the COVID-19 pandemic: Biochemical and immunological mechanisms. Arch. Physiol. Biochem. 2020, 8, 1–9. [Google Scholar] [CrossRef]
- Xu, Y.; Baylink, D.J.; Chen, C.S.; Reeves, M.E.; Xiao, J.; Lacy, C.; Lau, E.; Cao, H. The importance of vitamin d metabolism as a potential prophylactic, immunoregulatory and neuroprotective treatment for COVID-19. J. Transl. Med. 2020, 18, 322. [Google Scholar] [CrossRef]
- de Freitas, L.F.; Hamblin, M.R. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 7000417. [Google Scholar] [CrossRef] [PubMed]
- Nejatifard, M.; Asefi, S.; Jamali, R.; Hamblin, M.R.; Fekrazad, R. Probable positive effects of the photobiomodulation as an adjunctive treatment in COVID-19: A systematic review. Cytokine 2021, 137, 155312. [Google Scholar] [CrossRef]
- Ramezani, F.; Neshasteh-Riz, A.; Ghadaksaz, A.; Fazeli, S.M.; Janzadeh, A.; Hamblin, M.R. Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers Med. Sci. 2022, 37, 11–18. [Google Scholar] [CrossRef]
- de Matos, B.T.L.; Buchaim, D.V.; Pomini, K.T.; Barbalho, S.M.; Guiguer, E.L.; Reis, C.H.B.; Bueno, C.R.S.; Cunha, M.R.D.; Pereira, E.S.B.M.; Buchaim, R.L. Photobiomodulation therapy as a possible new approach in COVID-19: A systematic review. Life 2021, 11, 580. [Google Scholar] [CrossRef] [PubMed]
- Rhyu, M.R.; Kim, Y.; Lyall, V. Interactions between Chemesthesis and Taste: Role of TRPA1 and TRPV1. Int. J. Mol. Sci. 2021, 22, 3360. [Google Scholar] [CrossRef] [PubMed]
- El Mobadder, M.; Farhat, F.; El Mobadder, W.; Nammour, S. Photobiomodulation therapy in the treatment of oral mucositis, dysphagia, oral dryness, taste alteration, and burning mouth sensation due to cancer therapy: A case series. Int. J. Environ. Res. Public Health 2019, 16, 4505. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.E. Acupuncture treatment of long-COVID: A narrative review of selected case studies and review articles. Asian J. Complement. Altern. Med. 2022, 10, 95–97. [Google Scholar] [CrossRef]
- Deng, H.; Shen, X. The mechanism of moxibustion: Ancient theory and modern research. Evid. Based Complement. Altern. Med. 2013, 2013, 379291. [Google Scholar] [CrossRef]
- Chao, Y.; Zhang, L.; Chen, Q.; Chen, B.; Yu, Y.; Chen, S. The efficacy and safety of acupuncture in the treatment of taste disorders after rehabilitation from COVID-19: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e31649. [Google Scholar] [CrossRef]
- Luo, D.; Liu, B.; Wang, P.; Liao, H.; Mao, S.; Chen, H.; Huang, Y.; Liu, L.; Lan, W.; Liu, F. Traditional Chinese medicine combined with Moxibustion in the treatment of “long-COVID”: A protocol for systematic review and meta-analysis. Medicine 2022, 101, e31447. [Google Scholar] [CrossRef]
- Saniasiaya, J. Xerostomia and COVID-19: Unleashing pandora’s box. Ear Nose Throat J. 2021, 100, 139S. [Google Scholar] [CrossRef] [PubMed]
- Díaz Rodríguez, M.; Jimenez Romera, A.; Villarroel, M. Oral manifestations associated with COVID-19. Oral Dis. 2022, 28 (Suppl. S1), 960–962. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M. Secretory function of the salivary gland in patients with taste disorders or xerostomia: Correlation with zinc deficiency. Acta Otolaryngol. 2002, 122 (Suppl. S546), 134–141. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.W.; Warren, D.C.; Squyres, N.S.; Cotham, A.C. Zinc concentrations in hair, plasma, and saliva and changes in taste acuity of adults supplemented with zinc. Biol. Trace Elem. Res. 1982, 4, 83–93. [Google Scholar] [CrossRef]
- Arbabi-kalati, F.; Arbabi-kalati, F.; Deghatipour, M.; Ansari Moghadam, A. Evaluation of the efficacy of zinc sulfate in the prevention of chemotherapy-induced mucositis: A double-blind randomized clinical trial. Arch. Iran. Med. 2012, 15, 413–417. [Google Scholar]
- Kim, Y.J.; Jo, Y.; Lee, Y.H.; Park, K.; Park, H.K.; Choi, S.Y. Zn2+ stimulates salivary secretions via metabotropic zinc receptor ZnR/GPR39 in human salivary gland cells. Sci. Rep. 2019, 9, 17648. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Han, J.; Yi, Y.; Zhou, H.; Li, J. Paxlovid administration in elderly patient with COVID-19 caused by Omicron BA.2.0: A case report. Medicine 2022, 101, e31361. [Google Scholar] [CrossRef]
- Palma, L.F.; Gonnelli, F.A.S.; Marcucci, M.; Dias, R.S.; Giordani, A.J.; Segreto, R.A.; Segreto, H.R.C. Impact of low-level laser therapy on hyposalivation, salivary pH, and quality of life in head and neck cancer patients post-radiotherapy. Lasers Med. Sci. 2017, 32, 827–832. [Google Scholar] [CrossRef]
- Ferrandez-Pujante, A.; Pons-Fuster, E.; López-Jornet, P. Efficacy of photobiomodulation in reducing symptomatology and improving the quality of life in patients with xerostomia and hyposalivation: A randomized controlled trial. J. Clin. Med. 2022, 11, 3414. [Google Scholar] [CrossRef]
- Gómez-Moreno, G.; Guardia, J.; Aguilar-Salvatierra, A.; Cabrera-Ayala, M.; Maté-Sánchez de-Val, J.E.; Calvo-Guirado, J.L. Effectiveness of malic acid 1% in patients with xerostomia induced by antihypertensive drugs. Med. Oral Patol. Oral Cir. Bucal. 2013, 18, e49–e55. [Google Scholar] [CrossRef]
- Ozen, N.; Aydin Sayilan, A.; Mut, D.; Sayilan, S.; Avcioglu, Z.; Kulakac, N.; Ecder, T.; Akyolcu, N. The effect of chewing gum on dry mouth, interdialytic weight gain, and intradialytic symptoms: A prospective, randomized controlled trial. Hemodial. Int. 2021, 25, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Blom, M.; Lundeberg, T. Long-term follow-up of patients treated with acupuncture for xerostomia and the influence of additional treatment. Oral Dis. 2000, 6, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, P.A.; Peng, Y.P.; May, B.C.; Inouye, W.S.; Niemtzow, R.C. Acupuncture for pilocarpine-resistant xerostomia following radiotherapy for head and neck malignancies. Int. J. Radiat. Oncol. Biol. Phys. 2001, 50, 353–357. [Google Scholar] [CrossRef]
- Soares, C.D.; Mosqueda-Taylor, A.; Hernandez-Guerrero, J.C.; de Carvalho, M.G.F.; de Almeida, O.P. Immunohistochemical expression of angiotensin-converting enzyme 2 in minor salivary glands during SARS-CoV-2 infection. J. Med. Virol. 2021, 93, 1905–1906. [Google Scholar] [CrossRef] [PubMed]
- Matuck, B.F.; Dolhnikoff, M.; Duarte-Neto, A.N.; Maia, G.; Gomes, S.C.; Sendyk, D.I.; Zarpellon, A.; de Andrade, N.P.; Monteiro, R.A.; Pinho, J.R.R.; et al. Salivary glands are a target for SARS-CoV-2: A source for saliva contamination. J. Pathol. 2021, 254, 239–243. [Google Scholar] [CrossRef]
- Huang, N.; Pérez, P.; Kato, T.; Mikami, Y.; Okuda, K.; Gilmore, R.C.; Conde, C.D.; Gasmi, B.; Stein, S.; Beach, M.; et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat. Med. 2021, 27, 892–903. [Google Scholar] [CrossRef]
- Tsuchiya, H. The oral cavity potentially serving as a reservoir for SARS-CoV-2 but not necessarily facilitating the spread of COVID-19 in dental practice. Eur. J. Dent. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Ding, X.; Ji, H.; Jiao, P.; Song, H.; Li, S.; Du, H. Does infection of 2019 novel coronavirus cause acute and/or chronic sialadenitis? Med. Hypotheses 2020, 140, 109789. [Google Scholar] [CrossRef]
- Lim, Z.Y.; Ang, A.; Cross, G.B. COVID-19 associated parotitis. IDCases 2021, 24, e01122. [Google Scholar] [CrossRef]
- Maegawa, K.; Nishioka, H. COVID-19-associated parotitis and sublingual gland sialadenitis. BMJ Case Rep. 2022, 15, e251730. [Google Scholar] [CrossRef]
- Li, N.; Wang, X.; Lv, T. Prolonged SARS-CoV-2 RNA shedding: Not a rare phenomenon. J. Med. Virol. 2020, 92, 2286–2287. [Google Scholar] [CrossRef] [PubMed]
- Razonable, R.R.; Henault, M.; Watson, H.L.; Paya, C.V. Nystatin induces secretion of interleukin (IL)-1beta, IL-8, and tumor necrosis factor alpha by a toll-like receptor-dependent mechanism. Antimicrob. Agents Chemother. 2005, 49, 3546–3549. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Komai, M.; Bryant, B.P.; Furukawa, Y. Reduction in carbonic anhydrase activity in the tongue epithelium and submandibular gland in zinc-deficient rats. Int. J. Vitam. Nutr. Res. 2000, 70, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Fábián, T.K.; Beck, A.; Fejérdy, P.; Hermann, P.; Fábián, G. Molecular mechanisms of taste recognition: Considerations about the role of saliva. Int. J. Mol. Sci. 2015, 16, 5945–5974. [Google Scholar] [CrossRef]
- Ishii, K.; Sato, M.; Akita, M.; Tomita, H. Localization of zinc in the rat submandibular gland and the effect of its deficiency on salivary secretion. Ann. Otol. Rhinol. Laryngol. 1999, 108, 300–308. [Google Scholar] [CrossRef]
- Wessels, I.; Rolles, B.; Rink, L. The potential impact of zinc supplementation on COVID-19 pathogenesis. Front. Immunol. 2020, 11, 1712. [Google Scholar] [CrossRef]
- Cvancara, D.J.; Baertsch, H.C.; Lehmann, A.E.; Humphreys, I.M.; Farrell, N.F.; Marshall, T.B.; Bhatt, N.K.; Abuzeid, W.M.; Jafari, A. Postmarketing reporting of Paxlovid-related dysgeusia: A real-world pharmacovigilance study. Otolaryngol. Head Neck Surg. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Lin, C.Y.; Cassidy, A.G.; Li, L.; Prahl, M.K.; Golan, Y.; Gaw, S.L. Nirmatrelvir-ritonavir (Paxlovid) for mild coronavirus disease 2019 (COVID-19) in pregnancy and lactation. Obstet. Gynecol. 2023, 141, 957–960. [Google Scholar] [CrossRef]
- Liu, X.; Ong, H.L.; Ambudkar, I. TRP channel involvement in salivary glands—Some good, some Bad. Cells 2018, 7, 74. [Google Scholar] [CrossRef]
- Houghton, J.W.; Carpenter, G.; Hans, J.; Pesaro, M.; Lynham, S.; Proctor, G. Agonists of orally expressed TRP channels stimulate salivary secretion and modify the salivary proteome. Mol. Cell. Proteom. 2020, 19, 1664–1676. [Google Scholar] [CrossRef]
- Sousa, A.S.; Silva, J.F.; Pavesi, V.C.S.; Carvalho, N.A.; Ribeiro-Júnior, O.; Varellis, M.L.Z.; Prates, R.A.; Bussadori, S.K.; Gonçalves, M.L.L.; Horliana, A.C.R.T.; et al. Photobiomodulation and salivary glands: A systematic review. Lasers Med. Sci. 2020, 35, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Abueva, C. Photobiomodulation therapy in the treatment of salivary dysfunction. Med. Lasers 2022, 11, 15–20. [Google Scholar] [CrossRef]
- Alhejoury, H.A.; Mogharbel, L.F.; Al-Qadhi, M.A.; Shamlan, S.S.; Alturki, A.F.; Babatin, W.M.; Mohammed Alaishan, R.A.; Pullishery, F. Artificial saliva for therapeutic management of xerostomia: A narrative review. J. Pharm. Bioallied Sci. 2021, 13 (Suppl. S2), S903–S907. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Qiu, X.; Tan, X.; Miao, R.; Tian, W.; Jing, W. Efficacy of a 1% malic acid spray for xerostomia treatment: A systematic review and meta-analysis. Oral Dis. 2023, 29, 862–872. [Google Scholar] [CrossRef]
- Gómez-Moreno, G.; Aguilar-Salvatierra, A.; Guardia, J.; Uribe-Marioni, A.; Cabrera-Ayala, M.; Delgado-Ruiz, R.A.; Calvo-Guirado, J.L. The efficacy of a topical sialogogue spray containing 1% malic acid in patients with antidepressant-induced dry mouth: A double-blind, randomized clinical trial. Depress. Anxiety 2013, 30, 137–142. [Google Scholar] [CrossRef]
- Gómez-Moreno, G.; Cabrera-Ayala, M.; Aguilar-Salvatierra, A.; Guardia, J.; Ramírez-Fernández, M.P.; González-Jaranay, M.; Calvo-Guirado, J.L. Evaluation of the efficacy of a topical sialogogue spray containing malic acid 1% in elderly people with xerostomia: A double-blind, randomized clinical trial. Gerodontology 2014, 31, 274–280. [Google Scholar] [CrossRef]
- Kho, H.S. Understanding of xerostomia and strategies for the development of artificial saliva. Chin. J. Dent. Res. 2014, 17, 75–83. [Google Scholar]
- Eduardo, F.P.; Bezinelli, L.M.; Gobbi, M.F.; Bergamin, L.G.; de Carvalho, D.L.C.; Corrêa, L. Oral lesions and saliva alterations of COVID-19 patients in an intensive care unit: A retrospective study. Spec. Care Dentist. 2022, 42, 494–502. [Google Scholar] [CrossRef]
- Naik, P.N.; Kiran, R.A.; Yalamanchal, S.; Kumar, V.A.; Goli, S.; Vashist, N. Acupuncture: An alternative therapy in dentistry and its possible applications. Med. Acupunct. 2014, 26, 308–314. [Google Scholar] [CrossRef]
- Trager, R.J.; Brewka, E.C.; Kaiser, C.M.; Patterson, A.J.; Dusek, J.A. Acupuncture in multidisciplinary treatment for post-COVID-19 syndrome. Med. Acupunct. 2022, 34, 177–183. [Google Scholar] [CrossRef]
- Wu, T.; Fu, C.; Deng, Y.; Huang, W.; Wang, J.; Jiao, Y. Acupuncture therapy for radiotherapy-induced adverse effect: A systematic review and network meta-analysis. Front. Public Health 2022, 10, 1026971. [Google Scholar] [CrossRef] [PubMed]
Type | Mechanism | Method | Subject | Outcome | Reference |
---|---|---|---|---|---|
Tetracycline | Antiviral Anti-inflammatory Neuroprotective Anti-apoptotic | Oral administration of either doxycycline (100 mg/day or 100 mg twice a day) or minocycline (50 mg/day, 100 mg/day, or 100 mg twice a day) | COVID-19 patients (n = 38, female: 52.6%, age: 21–67 years) with mild disease quarantined at home | Ageusia disappeared in all patients within 7 days after treatment | Gironi et al. [38] |
Corticosteroid | Anti-inflammatory | Local application of triamcinolone oral paste (0.1% triamcinolone acetonide) | COVID-19 patients (n = 60, female: 25.0%, mean age: 50.9 years) | Sweet, bitter, salty, and sour taste were improved in 83.3–91.7% of patients on day 5 of treatment | Singh et al. [39] |
Oral administration of corticosteroid (10 mg/day for the first week and reduced to 5 mg in the second week) | COVID-19 patients (n = 34, female: 55.9% and n = 33, female: 57.6%; grouped according to the different duration of taste disorders) | At weekly follow-ups up to 3 months, all patients recovered from ageusia at the end of treatment without side-effects | Gamil et al. [40] | ||
Zinc | Compensation for deficient zinc | Supplementation with 220 mg zinc sulfate (corresponding to elemental zinc of 50 mg) twice a day | COVID-19 patients (n = 49) with different disease severity | When followed up until the pharyngeal swabs became negative, the duration of tase function recovery was shortened compared with control subjects (n = 56) | Abdel-maksoud et al. [41] |
Taking lozenges of zinc citrate (corresponding to elemental zinc of 23 mg), zinc citrate/zinc gluconate (23 mg), or zinc acetate (15 mg) every 2–4 h | COVID-19 outpatients (n = 4) | All patients showed symptomatic and objective improvements | Finzi [42] | ||
Supplementation with elemental zinc of 25 mg twice a day for 15 days | Ambulatory and hospitalized COVID-19 patients (n = 231, female: 47.6%, mean age: 54.6 years) | The symptom duration was shortened | Ben Abdallah et al. [43] | ||
Taking 6–12 lozenges of zinc gluconate/citrate (corresponding to elemental zinc of 23 mg) or zinc acetate (corresponding to elemental zinc of 15 mg) once a day | COVID-19 patients (n = 28, female: 60.7%, mean age: 40 years) | Symptoms including ageusia were improved 7 days after treatment and zinc gluconate was better tolerated than zinc acetate | Finzi and Harrington [44] | ||
Supplementation with a combination of zinc, magnesium, and calcium | COVID-19 pregnant patients (n = 74) | Ageusia/anosmia was reported by 41.9% of patients with zinc treatment, but by 57.2% of patients without zinc treatment | Citu et al. [45] | ||
Stellate ganglion block | Treatment of dysautonomia | Right-sided stellate ganglion block with a local anesthetic and left-sided stellate ganglion block 2 days later | COVID-19 patient, a 42-year-old female who recovered from the disease but had continued to suffer from dysgeusia and anosmia | Immediately after treatment, dysgeusia and anosmia were improved, and taste/smell functions were normal at 2-week follow-up | Liu and Duricka [46] |
Right-sided stellate ganglion block, followed by left-sided stellate ganglion block on the next day | COVID-19 patient, a 44-year-old female with taste and smell loss who contracted the disease approximately 8 months ago | Within minutes after treatment, dysgeusia was drastically improved and taste function was normal at 60-day follow-up | Liu and Duricka [46] | ||
Right-sided stellate ganglion block with 4 mL of 0.25% bupivacaine and left-sided stellate ganglion block after 3 days | COVID-19 patient, a 48-year-old female who had recovered from the disease 4 months before but had altered taste to various types of foods | Taste disorders were improved a few days after treatment | Chauhan et al. [47] | ||
Phytochemical: Curcumin | Antiviral Anti-inflammatory Neuroprotective Anti-apoptotic Antioxidant | Oral administration of capsule containing 1000 mg turmeric extract (95% curcuminoids) and 10 mg black pepper extract | COVID-19 patient, a 25-year-old male with ageusia persisting for 46 days | The patient experienced the complete recovery of taste function 10 min after treatment | Chabot and Huntwork [48] |
Oral administration of capsule containing 1000 mg turmeric extract (95% curcuminoids), 15 mg black pepper extract, and 1000 mg Boswellia serrata plant extract | COVID-19 patient, a 28-year-old male complaining of ageusia | Taste sensation was improved 12 h after treatment and completely restored 3 days later | Chabot and Huntwork [48] | ||
Traditional herbal medicine: Ayurveda | Antiviral Anti-inflammatory | Oral administration of one tablet of 900 mg Dasamoolkaduthrayam Kashaya and one tablet of 600 mg Guluchyadi Kwatham 12-hourly after meal for 7 days in addition to the Standard of Care as per the Indian Council of Medical Research guidelines | COVID-19 patients (n = 60, mean age: 44.0 years) with ageusia due to mild to moderate disease | The ageusia prevalence of 75% on day 1 was reduced to 25% on day 3 and 3.3% on day 7, whereas it was 35.9% on day 3 and 25.6% on day 7 in the control group (n = 39, mean age: 41.6 years) who received only the Standard of Care | Wanjark-hedkar et al. [49] |
Vitamin D | Nutraceutical supplementation | Oral administration of either 5000 IU vitamin D3 or 1000 IU vitamin D3 once a day for 2 weeks | COVID-19 patients with mild to moderate disease: 5000 IU vitamin D3 for patients (n = 36, female: 41.7%, mean age: 46.3 years) or 1000 IU vitamin D3 for patients (n = 33, female: 60.6%, mean age: 53.5 years) | After receiving 5000 IU vitamin D3, the time to recovery from ageusia was significantly reduced to mean 11.4 days compared with mean 16.9 days for 1000 IU vitamin D3 | Sabico et al. [50] |
Oral administration twice a day of 1000 IU vitamin D, 40 mg β-caryophyllene, 40 mg pregnenolone, 30 mg dehydroepiandrosterone, 416 mg bromelain, 150 mg St. John’s Wort extract, 100 mg Boswellia serrata gum/resin extract, 40 mg quercetin, and 12 mg zinc picolinate | COVID-19 patients (n = 51, female: approximately 67%, age: 21–73 year) suffering from various symptoms including ageusia for at least 3 months after SARS-CoV-2 infection | Taste/smell loss became significantly milder after 2 weeks and the symptoms were further improved in 72–84% of subjects after 4 weeks | Gaylis et al. [51] | ||
Photobio-modulation | Stimulation of cell proliferation and differentiation Anti-inflammatory Increase in neurogenesis Immune modulation Apoptosis inhibition Promotion of tissue repair Activation of taste bud TRPV1 | Illumination of 3 laser beams (680 nm) and 3 laser beams (808 nm) for 2 min on the back of the tongue and the skin surface of the cheeks, consisting of 10 sessions performed over 25 days with a minimum interval of 48 h between sessions | COVID-19 patient, a 34-year-old female with ageusia | Taste function was improved with each session and back to normal after the last session | de Souza et al. [52] |
Intraoral illumination of dual wavelengths (660 nm and 808 nm) at 3 points, treatment consisting of 12 sessions | COVID-19 patients (n = 20) with ageusia | Taste perception was significantly improved | Panhoca et al. [53] |
Type | Mechanism | Method | Subject | Outcome | Reference |
---|---|---|---|---|---|
Corticosteroid | Anti-inflammatory | Nystatin solution rinses 4 times a day for 15 days for intraoral lesions and ointments containing triamcinolone acetonide, neomycin, and nystatin for angular cheilitis | COVID-19 patient, a 78-year-old female who had suffered from mouth dryness, tongue and palate lesions, and angular cheilitis since hospitalization | Dry mouth and salivary secretion were improved along with the disappearance of intraoral lesions | Díaz Rodríguez et al. [124] |
Zinc | Compensation for deficient zinc | Oral administration of zinc sulfate (300 mg/day) for 6 months | Non-COVID-19 patients (n = 93) with oral symptoms | Xerostomia and hypogeusia were relieved in 57.9–72.7% of patients | Tanaka [125] |
Oral ingestion of 15 mg zinc acetate with milk every morning | Non-COVID-19 subjects (n = 10, female: 50%, age: 17–37 years) | After 5 weeks, the flow rate of stimulated parotid saliva was increased along with an increase in blood zinc levels | Lane et al. [126] | ||
Taking 3 capsules (220 mg zinc sulfate) daily until the end of chemotherapy | Non-COVID-19 patients (n = 25, female: 48%, age: 18–70 years) undergoing chemotherapy | At 2–20-week follow-ups, the intensity of xerostomia was lower compared with control subjects | Arbabi-kalati et al. [127] | ||
Mouth rinsing with 0.25% ZnCl2 solution for 3 min | Non-COVID-19 patients (n = 29) with hyposalivation | Both unstimulated and mastication-stimulated saliva were increased | Kim et al. [128] | ||
Antiviral drug | Antiviral Inhibition of SARS-CoV-2 Mpro | Oral administration of Paxlovid (two 150-mg tablets of nirmatrelvir and one 100-mg tablet of ritonavir) 12-hourly for 5 days | COVID-19 hospitalized patient, a 79-year-old female with moderate disease complaining of xerostomia due to infection with the Omicron variant BA.2.0 of SARS-CoV-2 | Xerostomia was relieved on day 3 of treatment | Zhang et al. [129] |
Photobio- modulation | Stimulation of cell proliferation and differentiation Anti-inflammatory Increase in ducts and epithelial cell mitoses Increase in salivary gland protein synthesis Increase in salivary gland blood circulation Increase in salivary flow rate Activation of salivary gland TRPV1 | Illumination of laser (808 nm) to 6 extraoral points on each parotid gland, 3 extraoral points on each submandibular gland, and 2 intraoral points on each sublingual gland: illumination for 10 s per point with 2 laser sessions weekly for 3 months (a total of 24 sessions) | Non-COVID-19 patients (n = 29, female: 27.6%, age: ≥37 years) with persistent xerostomia after radiotherapy of head and neck cancer | Flow rates of both unstimulated and stimulated saliva were significantly increased | Palma et al. [130] |
External bilateral illumination of laser (810 nm) to the parotid gland on a continuous basis for 2.4 min and to the submandibular gland on a continuous basis for 1.2 min: one weekly session carried out for a total of 6 weeks | Non-COVID-19 patients (n = 30, female: 93.3%, mean age: 65.4 years) developing xerostomia due to drug use or Sjögren’s syndrome | Xerostomia was significantly improved compared with control xerostomic subjects (n = 30, female: 100%, mean age: 68.4 years) with simulated treatments | Ferrandez-Pujante et al. [131] | ||
Sialagogue: Malic acid | Promotion of salivary secretion | Topical application of Xeros Dentaid® spray (1% malic acid, 10% xylitol, and 0.05% sodium fluoride) on demand with a maximum of 8 doses per day for 2 weeks | Non-COVID-19 patients (n = 25, female: 56%, mean age: 54.3 years) with xerostomia induced by using antihypertensive drugs | Flow rates of both unstimulated and stimulated saliva were significantly increased compared with a placebo group (n = 20, female: 45%, mean age: 51.8 years) | Gómez-Moreno et al. [132] |
Chewing gum | Mechanical stimulation of salivary glands | Chewing gum for 10 min 6 times a day and when feeling mouth dryness or thirsty | Non-COVID-19 patients (n = 22, female: 63.6%, mean age: 61.7 years) with chronic hemodialysis to cause xerostomia | At 3-month follow-up, xerostomia was alleviated and the flow rate of unstimulated saliva was increased compared with control subjects (n = 22, female: 36.4%, mean age: 61.4 years) who did not chew any gum | Ozen et al. [133] |
Alternative medicine: Acupuncture | Anti-inflammatory Activation of parasympathetic nerves Restoration of autonomic nervous balance Stimulation of salivary glands via the cranial nerves | Acupuncture performed by giving 24 treatments in 2 series (12 treatments in each series) | Non-COVID-19 patients (n = 70, female: 57.1%, age: 33–82 years) suffering from xerostomia due to Sjögren’s syndrome (n = 25, female: 92.0%, age: 33–72 years), irradiation (n = 38, female: 31.6%, age: 37–82 years), and other causes (n = 7, female: 71.4%, age: 38–73 years) | Flow rates of both unstimulated and stimulated saliva were increased after 6 months, and the additional acupuncture maintained such effects for 3 years | Blom and Lunde-berg [134] |
Acupuncture applied to 3 auricular points and 1 digital point bilaterally | Non-COVID-19 patients (n = 18) with pilocarpine-resistant xerostomia due to radiotherapy | Xerostomia was relieved in some patients | Johnstone et al. [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsuchiya, H. Treatments of COVID-19-Associated Taste and Saliva Secretory Disorders. Dent. J. 2023, 11, 140. https://doi.org/10.3390/dj11060140
Tsuchiya H. Treatments of COVID-19-Associated Taste and Saliva Secretory Disorders. Dentistry Journal. 2023; 11(6):140. https://doi.org/10.3390/dj11060140
Chicago/Turabian StyleTsuchiya, Hironori. 2023. "Treatments of COVID-19-Associated Taste and Saliva Secretory Disorders" Dentistry Journal 11, no. 6: 140. https://doi.org/10.3390/dj11060140
APA StyleTsuchiya, H. (2023). Treatments of COVID-19-Associated Taste and Saliva Secretory Disorders. Dentistry Journal, 11(6), 140. https://doi.org/10.3390/dj11060140