Next Article in Journal
Iron Sulfide Materials: Catalysts for Electrochemical Hydrogen Evolution
Previous Article in Journal
Determination of pKa Values via ab initio Molecular Dynamics and its Application to Transition Metal-Based Water Oxidation Catalysts
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle

First Principles Study of the Vibrational and Thermal Properties of Sn-Based Type II Clathrates, CsxSn136 (0 ≤ x ≤ 24) and Rb24Ga24Sn112

Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409-1051, USA
*
Author to whom correspondence should be addressed.
Inorganics 2019, 7(6), 74; https://doi.org/10.3390/inorganics7060074
Received: 12 May 2019 / Revised: 6 June 2019 / Accepted: 11 June 2019 / Published: 14 June 2019
  |  
PDF [4632 KB, uploaded 20 June 2019]
  |  

Abstract

After performing first-principles calculations of structural and vibrational properties of the semiconducting clathrates Rb24Ga24Sn112 along with binary CsxSn136 (0 ≤ x ≤ 24), we obtained equilibrium geometries and harmonic phonon modes. For the filled clathrate Rb24Ga24Sn112, the phonon dispersion relation predicts an upshift of the low-lying rattling modes (~25 cm−1) for the Rb (“rattler”) compared to Cs vibration in CsxSn136. It is also found that the large isotropic atomic displacement parameter (Uiso) exists when Rb occupies the “over-sized” cage (28 atom cage) rather than the 20 atom counterpart. These guest modes are expected to contribute significantly to minimizing the lattice’s thermal conductivity (κL). Our calculation of the vibrational contribution to the specific heat and our evaluation on κL are quantitatively presented and discussed. Specifically, the heat capacity diagram regarding CV/T3 vs. T exhibits the Einstein-peak-like hump that is mainly attributable to the guest oscillator in a 28 atom cage, with a characteristic temperature 36.82 K for Rb24Ga24Sn112. Our calculated rattling modes are around 25 cm−1 for the Rb trapped in a 28 atom cage, and 65.4 cm−1 for the Rb encapsulated in a 20 atom cage. These results are utilized to predict the lattice’s thermal conductivity (approximately 0.62 W/m/K) in Rb24Ga24Sn112 within the kinetic theory approximation. View Full-Text
Keywords: isotropic atomic displacement parameter; excess specific heat; lattice thermal conductivity; Einstein oscillator isotropic atomic displacement parameter; excess specific heat; lattice thermal conductivity; Einstein oscillator
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Xue, D.; Myles, C.W. First Principles Study of the Vibrational and Thermal Properties of Sn-Based Type II Clathrates, CsxSn136 (0 ≤ x ≤ 24) and Rb24Ga24Sn112. Inorganics 2019, 7, 74.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Inorganics EISSN 2304-6740 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top