# Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes

## Abstract

**:**

## 1. Introduction

## 2. Test Set of Dinuclear Manganese Complexes

**S**and

_{1}**S**:

_{2}**1**) represents a case of ferromagnetic coupling, with a ground state spin of S = 3 [63]. The other complexes have low-spin ground states. Complex

**2**is a weakly antiferromagnetically coupled Mn(III,III) dimer (S = 0) [64]. Complex

**3**is a mixed-valence system with asymmetric ligation [65] that facilitates spin localization. This complex has a moderate antiferromagnetic coupling resulting in a spin doublet (S = 1/2) ground state and has been the subject of a recent study [20] that evaluated the use of the density matrix renormalization group [66] in the multireference treatment of exchange coupling [18,22]. Complex

**4**is a classic example of a strongly coupled bis-μ-oxo Mn(IV,IV) system [67]. Finally, complex

**5**reaches the far limit of strong antiferromagnetic coupling [68]. The tris-μ-oxo ligation in complex

**5**brings the manganese ions in such close proximity that, in addition to ligand-mediated superexchange, direct metal–metal interaction contributes significantly in stabilizing the low-spin state [39]. This situation is common in face-sharing d

^{3}–d

^{3}systems [51,69].

## 3. Selection of Functionals

## 4. Results and Discussion

#### 4.1. Conventional Density Functionals

**1**, but improves over TPSS for all other complexes. The SCAN results suggest possible non-linearity because the results are rather poor in the weak coupling cases but improve significantly toward the strong exchange-coupling regime (complexes

**4**and

**5**).

^{−1}for complexes

**1**,

**3**, and

**4**, with the largest deviation being 25 cm

^{−1}for the strongest antiferromagnetic coupling in the test set (complex

**5**). The good performance of TPSSh documented here is in agreement with previous studies on synthetic manganese complexes and bioinorganic model systems [34,35,36,38,40,41,42,43,80,81,82,83,84,85]. The increase in the percentage of HF exchange to 20% in the B3LYP functional leads to a slight overestimation of the stability of high-spin states and larger deviations from experiment. Only complex

**2**appears to be better described by B3LYP compared with TPSSh. Further increase of HF exchange to 25% in PBE0 results in exaggerated ferromagnetic coupling for complex

**1**, too small antiferromagnetic coupling for

**3**–

**5**, and qualitatively incorrect reversal of the ground spin state for

**2**from low to high spin. The effect of additional diffuse functions [86] in the basis set was tested and found to be negligible (variation of less than 0.2 cm

^{−1}in the computed exchange coupling constants) because they do not have a differential effect on the energies of the high-spin and broken-symmetry solutions. The conductor-like polarizable continuum model (CPCM) [87] was additionally tested with an infinite dielectric in order to investigate possible effects on the computed exchange coupling constants. Compared to the gas-phase results, the CPCM calculations show variations in the J values of less than 2 cm

^{−1}for the antiferromagnetically coupled dimers and up to 9 cm

^{−1}for complex

**1**. Given that these values were obtained under the extreme assumption of a perfect conductor, it is concluded that the continuum model has only a limited effect on the computed values as it does not strongly favor any particular solution. In conclusion, the various technical aspects of the calculations appear to be converged. In terms of the performance of individual functionals, even though exceptions exist at the quantitative level for specific complexes, TPSSh offers the most balanced performance.

#### 4.2. Double-Hybrid Density Functionals

**2**, and all DHDFs overestimate the stability of the high-spin state.

**1**, but a qualitatively different result for complex

**2**, a similar error albeit with opposite sign than TPSSh for complex

**3**, and significantly greater errors than TPSSh for the more strongly coupled complexes

**4**and

**5**. mPW2-PLYP tracks closely the B2-PLYP results, but with uniformly increased errors for all complexes. The reparametrized versions of B2-PLYP, i.e., the general-purpose B2GP-PLYP and the other two functionals (B2K-PLYP and B2T-PLYP) that were optimized for specific applications similarly show no improvement. Complex

**4**yields an outlier for B2K-PLYP, which overestimates the strength of the antiferromagnetic coupling.

**4**, yielding unrealistically large antiferromagnetic exchange coupling constants, particularly in the case of DSD-PBEP86. This is presumably related to the coefficients employed for the SCS-MP2 correction, to the overall MP2 contribution, or both. Moreover, both DSD functionals fail to predict the absolute and relative sign of the coupling for complexes

**1**and

**2**.

**2**.

#### 4.3. Energetic Contributions to Exchange Coupling from Double-Hybrid Density Functionals

_{DFT}in Table 4). This is due to the high HF admixture in all DHDFs. Looking at these results alone, the usual and expected correlation between the percentage of HF exchange and the stabilization of the high-spin state that was discussed for the conventional hybrid functionals (Table 2) becomes immediately apparent. B2-PLYP, mPW2-PLYP, and PWPB95 appear practically identical here because the results are primarily defined by the fact that all three functionals have almost the same ${\alpha}_{\mathrm{X}}$ factor (0.50–0.55). Reparametrized functionals with higher ${\alpha}_{\mathrm{X}}$ factors yield even greater stabilization of the high-spin state. In terms of the methodological utility of these DHDFs in the prediction of exchange coupling constants, the question is, to what extent can the perturbational contribution correct the flawed J

_{DFT}picture.

_{PT2}values in Table 4 are illuminating in this respect. Almost without exception the perturbational component correctly stabilizes the low-spin state, thereby enhancing antiferromagnetic coupling. For the functionals that were termed “well-behaved” above, the perturbational corrections are all very similar. What can be concluded on the basis of these results is that the perturbational correction for these functionals is well-controlled but never sufficient to fully recover the experimentally determined strength of antiferromagnetic coupling. Interestingly, the SOS-MP2 used in PWPB95 gives practically the same corrections as the MP2 component of B2-PLYP and mPW2-PLYP.

**4**. The decomposition of the energetic contributions in Table 4 reveals clearly the origin of the weakness of the DSD functionals for the present application. Their weakness stems in large part from the SCS-MP2 approach used in these functionals, or more precisely from the associated ${c}_{\mathrm{C}}$, ${c}_{\mathrm{O}}$, and ${c}_{\mathrm{S}}$ parameters that lead to very large and hence unreliable perturbational terms. These two families of DHDFs vividly demonstrate the pitfalls of pursuing property-specific functional parametrizations.

## 5. Computational Methods

## 6. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Mukhopadhyay, S.; Mandal, S.K.; Bhaduri, S.; Armstrong, W.H. Manganese Clusters with Relevance to Photosystem II. Chem. Rev.
**2004**, 104, 3981–4026. [Google Scholar] [CrossRef] [PubMed] - Wu, A.J.; Penner-Hahn, J.E.; Pecoraro, V.L. Structural, Spectroscopic, and Reactivity Models for the Manganese Catalases. Chem. Rev.
**2004**, 104, 903–938. [Google Scholar] [CrossRef] - Thompson, L.K.; Waldmann, O.; Xu, Z. Polynuclear Manganese Grids and Clusters—A Magnetic Perspective. Coord. Chem. Rev.
**2005**, 249, 2677–2690. [Google Scholar] [CrossRef] - Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Boer, J.W.D.; Browne, W.R.; Feringa, B.L.; Hage, R. Carboxylate-Bridged Dinuclear Manganese Systems—From Catalases to Oxidation Catalysis. C. R. Chim.
**2007**, 10, 341–354. [Google Scholar] [CrossRef] - Mullins, C.S.; Pecoraro, V.L. Reflections on Small Molecule Manganese Models that Seek to Mimic Photosynthetic Water Oxidation Chemistry. Coord. Chem. Rev.
**2008**, 252, 416–443. [Google Scholar] [CrossRef][Green Version] - Tsui, E.Y.; Kanady, J.S.; Agapie, T. Synthetic Cluster Models of Biological and Heterogeneous Manganese Catalysts for O
_{2}Evolution. Inorg. Chem.**2013**, 52, 13833–13848. [Google Scholar] [CrossRef] [PubMed] - Hirahara, M.; Shoji, A.; Yagi, M. Artificial Manganese Center Models for Photosynthetic Oxygen Evolution in Photosystem II. Eur. J. Inorg. Chem.
**2014**, 2014, 595–606. [Google Scholar] [CrossRef] - Yang, C.-I.; Zhang, Z.-Z.; Lin, S.-B. A Review of Manganese-Based Molecular Magnets and Supramolecular Architectures from Phenolic Oximes. Coord. Chem. Rev.
**2015**, 289–290, 289–314. [Google Scholar] [CrossRef] - Young, K.J.; Brennan, B.J.; Tagore, R.; Brudvig, G.W. Photosynthetic Water Oxidation: Insights from Manganese Model Chemistry. Acc. Chem. Res.
**2015**, 48, 567–574. [Google Scholar] [CrossRef] - Gerey, B.; Gouré, E.; Fortage, J.; Pécaut, J.; Collomb, M.-N. Manganese-calcium/strontium heterometallic compounds and their relevance for the oxygen-evolving center of photosystem II. Coord. Chem. Rev.
**2016**, 319, 1–24. [Google Scholar] [CrossRef] - Krewald, V.; Pantazis, D.A. Understanding and tuning the properties of redox-accumulating manganese helicates. Dalton Trans.
**2016**, 45, 18900–18908. [Google Scholar] [CrossRef] [PubMed] - Najafpour, M.M.; Renger, G.; Hołyńska, M.; Moghaddam, A.N.; Aro, E.-M.; Carpentier, R.; Nishihara, H.; Eaton-Rye, J.J.; Shen, J.-R.; Allakhverdiev, S.I. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chem. Rev.
**2016**, 116, 2886–2936. [Google Scholar] [CrossRef] - Paul, S.; Neese, F.; Pantazis, D.A. Structural models of the biological oxygen-evolving complex: Achievements, insights, and challenges for biomimicry. Green Chem.
**2017**, 19, 2309–2325. [Google Scholar] [CrossRef] - De Graaf, C.; Broer, R. Magnetic Interactions in Molecules and Solids; Springer: Heidelberg, Germany, 2016; p. 246. [Google Scholar]
- Malrieu, J.P.; Caballol, R.; Calzado, C.J.; de Graaf, C.; Guihéry, N. Magnetic Interactions in Molecules and Highly Correlated Materials: Physical Content, Analytical Derivation, and Rigorous Extraction of Magnetic Hamiltonians. Chem. Rev.
**2014**, 114, 429–492. [Google Scholar] [CrossRef] [PubMed] - Swart, M.; Costas, M. Spin States in Biochemistry and Inorganic Chemistry; John Wiley & Sons: Chichester, UK, 2016; p. 466. [Google Scholar]
- Krewald, V.; Pantazis, D.A. Applications of the Density Matrix Renormalization Group to Exchange-Coupled Transition Metal Systems. In Transition Metals in Coordination Environments: Computational Chemistry and Catalysis Viewpoints; Broclawik, E., Borowski, T., Radoń, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 91–120. [Google Scholar]
- Harris, T.V.; Kurashige, Y.; Yanai, T.; Morokuma, K. Ab initio Density Matrix Renormalization Group Study of Magnetic Coupling in Dinuclear Iron and Chromium Complexes. J. Chem. Phys.
**2014**, 140, 054303. [Google Scholar] [CrossRef] [PubMed] - Roemelt, M.; Krewald, V.; Pantazis, D.A. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex. J. Chem. Theory Comput.
**2018**, 14, 166–179. [Google Scholar] [CrossRef] [PubMed] - Kawakami, T.; Miyagawa, K.; Sharma, S.; Saito, T.; Shoji, M.; Yamada, S.; Yamanaka, S.; Okumura, M.; Nakajima, T.; Yamaguchi, K. UNO DMRG CAS CI Calculations of Binuclear Manganese Complex Mn(IV)
_{2}O_{2}(NHCHCO_{2})_{4}: Scope and Applicability of Heisenberg Model. J. Comput. Chem.**2018**, 40, 333–341. [Google Scholar] [CrossRef] [PubMed] - Roemelt, M.; Pantazis, D.A. Multireference Approaches to Spin-State Energetics of Transition Metal Complexes Utilizing the Density Matrix Renormalization Group. Adv. Theory Simul.
**2019**, 1800201. [Google Scholar] [CrossRef] - Noodleman, L. Valence Bond Description of Anti-ferromagnetic Coupling in Transition-Metal Dimers. J. Chem. Phys.
**1981**, 74, 5737–5743. [Google Scholar] [CrossRef] - Noodleman, L.; Davidson, E.R. Ligand Spin Polarization and Antiferromagnetic Coupling in Transition-Metal Dimers. Chem. Phys.
**1986**, 109, 131–143. [Google Scholar] [CrossRef] - Yamaguchi, K.; Takahara, Y.; Fueno, T. Ab-Initio Molecular Orbital Studies of Structure and Reactivity of Transition Metal-Oxo Compounds. In Applied Quantum Chemistry; Smith, V.H., Jr., Scheafer, H.F., III, Morokuma, K., Eds.; D. Reidel: Boston, MA, USA, 1986; pp. 155–184. [Google Scholar]
- Yamanaka, S.; Kawakami, T.; Nagao, H.; Yamaguchi, K. Effective Exchange Integrals for Open-Shell Species by Density Functional Methods. Chem. Phys. Lett.
**1994**, 231, 25–33. [Google Scholar] [CrossRef] - Bencini, A.; Totti, F.; Daul, C.A.; Doclo, K.; Fantucci, P.; Barone, V. Density Functional Calculations of Magnetic Exchange Interactions in Polynuclear Transition Metal Complexes. Inorg. Chem.
**1997**, 36, 5022–5030. [Google Scholar] [CrossRef] - Ruiz, E.; Rodriguez-Fortea, A.; Cano, J.; Alvarez, S.; Alemany, P. About the Calculation of Exchange Coupling Constants in Polynuclear Transition Metal Complexes. J. Comput. Chem.
**2003**, 24, 982–989. [Google Scholar] [CrossRef] - Ciofini, I.; Daul, C.A. DFT Calculations of Molecular Magnetic Properties of Coordination Compounds. Coord. Chem. Rev.
**2003**, 238–239, 187–209. [Google Scholar] [CrossRef] - Neese, F. Prediction of Molecular Properties and Molecular Spectroscopy with Density Functional Theory: From Fundamental Theory to Exchange-Coupling. Coord. Chem. Rev.
**2009**, 253, 526–563. [Google Scholar] [CrossRef] - Bencini, A.; Totti, F. A Few Comments on the Application of Density Functional Theory to the Calculation of the Magnetic Structure of Oligo-Nuclear Transition Metal Clusters. J. Chem. Theory Comput.
**2009**, 5, 144–154. [Google Scholar] [CrossRef] - Rudberg, E.; Sałek, P.; Rinkevicius, Z.; Ågren, H. Heisenberg Exchange in Dinuclear Manganese Complexes: A Density Functional Theory Study. J. Chem. Theory Comput.
**2006**, 2, 981–989. [Google Scholar] [CrossRef] - Comba, P.; Hausberg, S.; Martin, B. Calculation of Exchange Coupling Constants of Transition Metal Complexes with DFT. J. Phys. Chem. A
**2009**, 113, 6751–6755. [Google Scholar] [CrossRef] - Orio, M.; Pantazis, D.A.; Petrenko, T.; Neese, F. Magnetic and Spectroscopic Properties of Mixed Valence Manganese(III,IV) Dimers: A Systematic Study Using Broken Symmetry Density Functional Theory. Inorg. Chem.
**2009**, 48, 7251–7260. [Google Scholar] [CrossRef] - Schinzel, S.; Kaupp, M. Validation of Broken-Symmetry Density Functional Methods for the Calculation of Electron Paramagnetic Resonance Parameters of Dinuclear Mixed-Valence Mn
^{IV}Mn^{III}Complexes. Can. J. Chem.**2009**, 87, 1521–1539. [Google Scholar] [CrossRef] - Pantazis, D.A.; Orio, M.; Petrenko, T.; Zein, S.; Bill, E.; Lubitz, W.; Messinger, J.; Neese, F. A New Quantum Chemical Approach to the Magnetic Properties of Oligonuclear Transition-Metal Complexes: Application to a Model for the Tetranuclear Manganese Cluster of Photosystem II. Chem. Eur. J.
**2009**, 15, 5108–5123. [Google Scholar] [CrossRef] [PubMed] - Orio, M.; Pantazis, D.A.; Neese, F. Density Functional Theory. Photosynth. Res.
**2009**, 102, 443–453. [Google Scholar] [CrossRef] [PubMed] - Baffert, C.; Orio, M.; Pantazis, D.A.; Duboc, C.; Blackman, A.G.; Blondin, G.; Neese, F.; Deronzier, A.; Collomb, M.-N. Trinuclear Terpyridine Frustrated Spin System with a Mn
^{IV}_{3}O_{4}Core: Synthesis, Physical Characterization, and Quantum Chemical Modeling of Its Magnetic Properties. Inorg. Chem.**2009**, 48, 10281–10288. [Google Scholar] [CrossRef] [PubMed] - Pantazis, D.A.; Krewald, V.; Orio, M.; Neese, F. Theoretical magnetochemistry of dinuclear manganese complexes: Broken symmetry density functional theory investigation on the influence of bridging motifs on structure and magnetism. Dalton Trans.
**2010**, 39, 4959–4967. [Google Scholar] [CrossRef] [PubMed] - Schraut, J.; Arbuznikov, A.V.; Schinzel, S.; Kaupp, M. Computation of Hyperfine Tensors for Dinuclear Mn
^{III}Mn^{IV}Complexes by Broken-Symmetry Approaches: Anisotropy Transfer Induced by Local Zero-Field Splitting. ChemPhysChem**2011**, 12, 3170–3179. [Google Scholar] [CrossRef] [PubMed] - Bovi, D.; Guidoni, L. Magnetic Coupling Constants and Vibrational Frequencies by Extended Broken Symmetry Approach with Hybrid Functionals. J. Chem. Phys.
**2012**, 137, 114107. [Google Scholar] [CrossRef] - Krewald, V.; Neese, F.; Pantazis, D.A. On the Magnetic and Spectroscopic Properties of High-Valent Mn
_{3}CaO_{4}Cubanes as Structural Units of Natural and Artificial Water Oxidizing Catalysts. J. Am. Chem. Soc.**2013**, 135, 5726–5739. [Google Scholar] [CrossRef] - Krewald, V.; Retegan, M.; Cox, N.; Messinger, J.; Lubitz, W.; DeBeer, S.; Neese, F.; Pantazis, D.A. Metal Oxidation States in Biological Water Splitting. Chem. Sci.
**2015**, 6, 1676–1695. [Google Scholar] [CrossRef] - Becke, A.D. Density-Functional Thermochemistry. III. The Role Of Exact Exchange. J. Chem. Phys.
**1993**, 98, 5648–5652. [Google Scholar] [CrossRef] - Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron-Density. Phys. Rev. B
**1988**, 37, 785–789. [Google Scholar] [CrossRef] - Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. J. Chem. Phys.
**2003**, 119, 12129–12137. [Google Scholar] [CrossRef] - Bühl, M.; Kabrede, H. Geometries of Transition-Metal Complexes from Density-Functional Theory. J. Chem. Theory Comput.
**2006**, 2, 1282–1290. [Google Scholar] [CrossRef] [PubMed] - Kossmann, S.; Kirchner, B.; Neese, F. Performance of Modern Density Functional Theory for the Prediction of Hyperfine Structure: Meta-GGA and Double Hybrid Functionals. Mol. Phys.
**2007**, 105, 2049–2071. [Google Scholar] [CrossRef] - Jensen, K.P. Bioinorganic Chemistry Modeled with the TPSSh Density Functional. Inorg. Chem.
**2008**, 47, 10357–10365. [Google Scholar] [CrossRef] [PubMed] - Cirera, J.; Via-Nadal, M.; Ruiz, E. Benchmarking Density Functional Methods for Calculation of State Energies of First Row Spin-Crossover Molecules. Inorg. Chem.
**2018**, 57, 14097–14105. [Google Scholar] [CrossRef] [PubMed] - Pantazis, D.A. Meeting the Challenge of Magnetic Coupling in a Triply-Bridged Chromium Dimer: Complementary Broken-Symmetry Density Functional Theory and Multireference Density Matrix Renormalization Group Perspectives. J. Chem. Theory Comput.
**2019**, 15, 938–948. [Google Scholar] [CrossRef] [PubMed] - Goerigk, L.; Grimme, S. Double-Hybrid Density Functionals. Wires Comput. Mol. Sci.
**2014**, 4, 576–600. [Google Scholar] [CrossRef] - Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys.
**2006**, 124, 034108. [Google Scholar] [CrossRef] - Schwabe, T.; Grimme, S. Theoretical thermodynamics for large molecules: Walking the thin line between accuracy and computational cost. Acc. Chem. Res.
**2008**, 41, 569–579. [Google Scholar] [CrossRef] - Goerigk, L.; Grimme, S. Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals—Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput.
**2010**, 7, 291–309. [Google Scholar] [CrossRef] - Goerigk, L.; Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys.
**2011**, 13, 6670–6688. [Google Scholar] [CrossRef] - Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A Look at the Density Functional Theory Zoo with the Advanced GMTKN55 Database for General Main Group Thermochemistry, Kinetics and Noncovalent Interactions. Phys. Chem. Chem. Phys.
**2017**, 19, 32184–32215. [Google Scholar] [CrossRef] - Mardirossian, N.; Head-Gordon, M. Thirty Years of Density Functional Theory in Computational Chemistry: An Overview and Extensive Assessment of 200 Density Functionals. Mol. Phys.
**2017**, 115, 2315–2372. [Google Scholar] [CrossRef] - Schwabe, T.; Grimme, S. Calculation of Magnetic Couplings with Double-Hybrid Density Functionals. J. Phys. Chem. Lett.
**2010**, 1, 1201–1204. [Google Scholar] [CrossRef] - Valero, R.; Costa, R.; de PR Moreira, I.; Truhlar, D.G.; Illas, F. Performance of the M06 family of exchange-correlation functionals for predicting magnetic coupling in organic and inorganic molecules. J. Chem. Phys.
**2008**, 128, 114103. [Google Scholar] [CrossRef] - Gupta, T.; Rajeshkumar, T.; Rajaraman, G. Magnetic exchange in {Gd
^{III}–radical} complexes: Method assessment, mechanism of coupling and magneto-structural correlations. Phys. Chem. Chem. Phys.**2014**, 16, 14568–14577. [Google Scholar] [CrossRef] - Vogiatzis, K.D.; Klopper, W.; Mavrandonakis, A.; Fink, K. Magnetic properties of paddlewheels and trinuclear clusters with exposed metal sites. ChemPhysChem
**2011**, 12, 3307–3319. [Google Scholar] [CrossRef] - Bossek, U.; Hummel, H.; Weyhermüller, T.; Wieghardt, K.; Russell, S.; van der Wolf, L.; Kolb, U. The [Mn
_{2}^{IV}(μ-O)(μ-PhBO_{2})_{2}]^{2+}Unit: A New Structural Model for Manganese-Containing Metalloproteins. Angew. Chem. Int. Ed.**1996**, 35, 1552–1554. [Google Scholar] [CrossRef] - Ménage, S.; Girerd, J.-J.; Gleizes, A. A [Mn
_{2}O(MeCO_{2})_{2}(H_{2}O)_{2}(bipy)_{2}]^{2+}(bipy = 2,2′-bipyridine) Unit with Accessible Co-ordination Sites. Contribution to the Modelling of the Photosynthetic Oxygen Evolving Centre. J. Chem. Soc. Chem. Commun.**1988**, 431–432. [Google Scholar] [CrossRef] - Bossek, U.; Saher, M.; Weyhermuller, T.; Wieghardt, K. Asymmetric Mixed Valence Manganese Complexes Containing the [Mn(μ-O)
_{2}(μ-MeCo_{2})Mn]^{2+}Core and their Catalase Reactivity. J. Chem. Soc. Chem. Commun.**1992**, 1780–1782. [Google Scholar] [CrossRef] - Chan, G.K.-L.; Sharma, S. The Density Matrix Renormalization Group in Quantum Chemistry. Annu. Rev. Phys. Chem.
**2011**, 62, 465–481. [Google Scholar] [CrossRef] - Pal, S.; Olmstead, M.M.; Armstrong, W.H. Syntheses, Structures, and Properties of [Mn
_{2}(μ-O)(2)(μ-O_{2}CCH_{3})(fac-Bpea)_{2}](ClΟ_{4})_{2}and Two Halide-Ligated Dioxo-Bridged Dimers Derived Therefrom—[Mn_{2}(μ-O)_{2×2}(mer-Bpea)_{2}](ClO_{4})_{2}(X = F, Cl). Inorg. Chem.**1995**, 34, 4708–4715. [Google Scholar] [CrossRef] - Wieghardt, K.; Bossek, U.; Nuber, B.; Weiss, J.; Bonvoisin, J.; Corbella, M.; Vitols, S.E.; Girerd, J.J. Synthesis, Crystal Structures, Reactivity, and Magnetochemistry of a Series of Binuclear Complexes of Manganese(II), -(III), and -(IV) of Biological Relevance. The Crystal Structure of [L′Mn
^{IV}(μ-O)_{3}Mn^{IV}L′](PF_{6})_{2}.H_{2}O Containing an Unprecedented Short Mn···Mn distance of 2.296 Å. J. Am. Chem. Soc.**1988**, 110, 7398–7411. [Google Scholar] - Niemann, A.; Bossek, U.; Wieghardt, K.; Butzlaff, C.; Trautwein, A.X.; Nuber, B. A New Structure–Magnetism Relationship for Face-Sharing Transition-Metal Complexes with d
^{3}–d^{3}Electronic Configuration. Angew. Chem. Int. Ed.**1992**, 31, 311–313. [Google Scholar] [CrossRef] - Goerigk, L.; Mehta, N. A Trip to the Density Functional Theory Zoo: Warnings and Recommendations for the User. Aust. J. Chem.
**2019**. [Google Scholar] [CrossRef] - Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett.
**2003**, 91, 146401. [Google Scholar] [CrossRef] - Sun, J.; Ruzsinszky, A.; Perdew, J.P. Strongly Constrained and Appropriately Normed Semilocal Density Functional. Phys. Rev. Lett.
**2015**, 115, 036402. [Google Scholar] [CrossRef] - Adamo, C.; Barone, V. Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model. J. Chem. Phys.
**1999**, 110, 6158–6170. [Google Scholar] [CrossRef] - Karton, A.; Tarnopolsky, A.; Lamère, J.-F.; Schatz, G.C.; Martin, J.M.L. Highly Accurate First-Principles Benchmark Data Sets for the Parametrization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics. J. Phys. Chem. A
**2008**, 112, 12868–12886. [Google Scholar] - Grimme, S. Improved second-order Moller-Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys.
**2003**, 118, 9095–9102. [Google Scholar] [CrossRef] - Kozuch, S.; Gruzman, D.; Martin, J.M.L. DSD-BLYP: A General Purpose Double Hybrid Density Functional Including Spin Component Scaling and Dispersion Correction. J. Phys. Chem. C
**2010**, 114, 20801–20808. [Google Scholar] [CrossRef] - Kozuch, S.; Martin, J.M.L. DSD-PBEP86: In search of the best double-hybrid DFT with spin-component scaled MP2 and dispersion corrections. Phys. Chem. Chem. Phys.
**2011**, 13, 20104–20107. [Google Scholar] [CrossRef] - Kozuch, S.; Martin, J.M.L. Spin-component-scaled double hybrids: An extensive search for the best fifth-rung functionals blending DFT and perturbation theory. J. Comput. Chem.
**2013**, 34, 2327–2344. [Google Scholar] [CrossRef] - Jung, Y.; Lochan, R.C.; Dutoi, A.D.; Head-Gordon, M. Scaled opposite-spin second order Møller–Plesset correlation energy: An economical electronic structure method. J. Chem. Phys.
**2004**, 121, 9793–9802. [Google Scholar] [CrossRef] - Paul, S.; Cox, N.; Pantazis, D.A. What Can We Learn from a Biomimetic Model of Nature’s Oxygen-Evolving Complex? Inorg. Chem.
**2017**, 56, 3875–3888. [Google Scholar] [CrossRef] - Pantazis, D.A.; Ames, W.; Cox, N.; Lubitz, W.; Neese, F. Two Interconvertible Structures that Explain the Spectroscopic Properties of the Oxygen-Evolving Complex of Photosystem II in the S
_{2}State. Angew. Chem. Int. Ed.**2012**, 51, 9935–9940. [Google Scholar] [CrossRef] - Beal, N.J.; Corry, T.A.; O’Malley, P.J. Comparison between Experimental and Broken Symmetry Density Functional Theory (BS-DFT) Calculated Electron Paramagnetic Resonance (EPR) Parameters of the S
_{2}State of the Oxygen-Evolving Complex of Photosystem II in Its Native (Calcium) and Strontium-Substituted Form. J. Phys. Chem. B**2017**, 121, 11273–11283. [Google Scholar] - Amabilino, S.; Deeth, R.J. DFT Analysis of Spin Crossover in Mn(III) Complexes: Is a Two-Electron S = 2 to S = 0 Spin Transition Feasible? Inorg. Chem.
**2017**, 56, 2602–2613. [Google Scholar] [CrossRef] - Cox, N.; Ames, W.; Epel, B.; Kulik, L.V.; Rapatskiy, L.; Neese, F.; Messinger, J.; Wieghardt, K.; Lubitz, W. Electronic Structure of a Weakly Antiferromagnetically Coupled Mn
^{II}Mn^{III}Model Relevant to Manganese Proteins: A Combined EPR,^{55}Mn-ENDOR, and DFT Study. Inorg. Chem.**2011**, 50, 8238–8251. [Google Scholar] [CrossRef] - Ames, W.; Pantazis, D.A.; Krewald, V.; Cox, N.; Messinger, J.; Lubitz, W.; Neese, F. Theoretical evaluation of structural models of the S
_{2}state in the oxygen evolving complex of photosystem II: Protonation states and magnetic interactions. J. Am. Chem. Soc.**2011**, 133, 19743–19757. [Google Scholar] [CrossRef] - Zheng, J.; Xu, X.; Truhlar, D.G. Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc.
**2011**, 128, 295–305. [Google Scholar] [CrossRef] - Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem.
**2003**, 24, 669–681. [Google Scholar] [CrossRef] - Peverati, R.; Head-Gordon, M. Orbital Optimized Double-Hybrid Density Functionals. J. Chem. Phys.
**2013**, 139, 024110. [Google Scholar] [CrossRef] - Najibi, A.; Goerigk, L. A Comprehensive Assessment of the Effectiveness of Orbital Optimization in Double-Hybrid Density Functionals in the Treatment of Thermochemistry, Kinetics, and Noncovalent Interactions. J. Phys. Chem. A
**2018**, 122, 5610–5624. [Google Scholar] [CrossRef] - Chan, B.; Goerigk, L.; Radom, L. On the Inclusion of Post-MP2 Contributions to Double-Hybrid Density Functionals. J. Comput. Chem.
**2016**, 37, 183–193. [Google Scholar] [CrossRef] - Zhekova, H.R.; Seth, M.; Ziegler, T. Calculation of the exchange coupling constants of copper binuclear systems based on spin-flip constricted variational density functional theory. J. Chem. Phys.
**2011**, 135, 184105. [Google Scholar] [CrossRef] - Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst.
**2016**, B72, 171–179. [Google Scholar] [CrossRef] - Neese, F. Software Update: The ORCA Program System, Version 4.0. Wires Comput. Mol. Sci.
**2018**, 8, e1327. [Google Scholar] [CrossRef] - Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H–Pu. J. Chem. Phys.
**2010**, 132, 154104. [Google Scholar] [CrossRef] - Van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Relativistic Regular Two-component Hamiltonians. J. Chem. Phys.
**1993**, 99, 4597–4610. [Google Scholar] [CrossRef] - Van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Relativistic Total-Energy Using Regular Approximations. J. Chem. Phys.
**1994**, 101, 9783–9792. [Google Scholar] [CrossRef] - Pantazis, D.A.; Chen, X.Y.; Landis, C.R.; Neese, F. All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput.
**2008**, 4, 908–919. [Google Scholar] [CrossRef] - Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys.
**2005**, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed] - Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys.
**2006**, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed] - Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, Approximate and Parallel Hartree–Fock and Hybrid DFT Calculations. A ‘Chain-of-Spheres’ Algorithm for the Hartree–Fock Exchange. Chem. Phys.
**2009**, 356, 98–109. [Google Scholar] [CrossRef] - Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor. Chem. Acc.
**2007**, 117, 587–597. [Google Scholar] [CrossRef]

**Figure 1.**Structures of the manganese complexes included in this study. Hydrogen atoms bound to carbons are omitted for clarity (Mn: purple; C: grey; N: blue; O: red; B: yellow; Cl: green).

**Table 1.**Dinuclear manganese complexes considered in this study, with their crystallographic identifiers, Mn oxidation states, Mn···Mn distance R (in Å), and exchange coupling constant J (in cm

^{−1}).

Compound ^{a} | Refcode | Ox. States | R | J | Ref. | |
---|---|---|---|---|---|---|

1 | [Mn_{2}O(O_{2}BPh)_{2}(Me_{3}tacn)_{2}](PF_{6})_{2} | TIPFAZ | IV, IV | 3.185 | +10 | [63] |

2 | [Mn_{2}O(OAc)_{2}(H_{2}O)_{2}(bpy)_{2}](PF_{6})_{2}‚ 1.75H_{2}O | GEFKAD | III, III | 3.131 | −3.4 | [64] |

3 | [Mn_{2}O_{2}(OAc)(Me_{3}tacn)(OAc)_{2}] | KUVPEW | III, IV | 2.665 | −90 | [65] |

4 | [Mn_{2}O_{2}Cl_{2}(bpea)_{2}](ClO_{4})_{2} | ZEQGOR | IV, IV | 2.756 | −147 | [67] |

5 | [Mn_{2}O_{3}(Me_{3}tacn)_{2}](PF_{6})_{2}‚ H_{2}O | VADDAF | IV, IV | 2.297 | −390 | [68] |

^{a}Definition of ligand abbreviations: Me

_{3}tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane; bpy = bipyridine; bpea = N,N-bis(2-pyridylmethyl)ethylamine.

**Table 2.**Exchange coupling constants J (in cm

^{−1}) computed with selected conventional density functionals for the five manganese complexes studied in this work, compared with experimentally fitted values. Mean absolute deviations (MAD) in cm

^{−1}.

Method | 1 | 2 | 3 | 4 | 5 | MAD |
---|---|---|---|---|---|---|

exp. | +10 | −3.4 | −90 | −147 | −390 | - |

BLYP | −26.6 | −71.6 | −180.8 | −261.4 | −618.1 | −107.6 |

TPSS | −13.4 | −48.7 | −147.7 | −216.7 | −549.7 | −71.2 |

SCAN | −20.4 | −29.2 | −113.9 | −155.6 | −402.4 | −20.2 |

TPSSh | +13.5 | −19.3 | −95.1 | −140.9 | −415.0 | −7.3 |

B3LYP | +26.2 | −11.4 | −77.8 | −115.2 | −360.7 | +16.3 |

PBE0 | +40.0 | +1.3 | −57.8 | −89.6 | −327.2 | +37.4 |

**Table 3.**Exchange coupling constants J (in cm

^{−1}) computed with selected double-hybrid density functionals for the five manganese complexes studied in this work, compared with experimentally fitted values. Mean absolute deviations (MAD) in cm

^{−1}.

Method | 1 | 2 | 3 | 4 | 5 | MAD |
---|---|---|---|---|---|---|

exp. | +10 | −3.4 | −90 | −147 | −390 | - |

B2-PLYP | +13.1 | +4.6 | −83.8 | −109.9 | −326.8 | +23.5 |

mPW2-PLYP | +19.6 | +6.0 | −72.5 | −101.8 | −317.7 | +30.8 |

B2GP-PLYP | +13.3 | +11.7 | −79.8 | −135.1 | −332.6 | +19.6 |

B2K-PLYP | +11.2 | +14.4 | −96.4 | −318.7 | −351.5 | −24.1 |

B2T-PLYP | +15.6 | +9.2 | −73.6 | −114.6 | −323.2 | +26.8 |

DSD-PBEP86 | −17.4 | +16.0 | −107.5 | −861.1 | −402.5 | −150.4 |

DSD-PBEB95 | −15.5 | +11.2 | −97.6 | −230.6 | −394.1 | −21.2 |

PWPB95 | +8.4 | −0.5 | −78.2 | −108.3 | −318.9 | +24.6 |

**Table 4.**Density functional theory (DFT)-only exchange coupling constants J

_{DFT}(in cm

^{−1}) obtained from the Kohn–Sham orbitals of the double hybrid functionals by excluding the perturbational energy component, and the corresponding perturbational contribution (ΔJ

_{PT2}) that leads to the final results of Table 3.

J_{DFT} | ΔJ_{PT2} | |||||||||
---|---|---|---|---|---|---|---|---|---|---|

1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |

B2-PLYP | +66.5 | +12.5 | −18.7 | −43.7 | −277.8 | −53.4 | −7.9 | −65.1 | −66.2 | −49.0 |

mPW2-PLYP | +67.0 | +12.2 | −17.7 | −42.7 | −277.7 | −47.5 | −6.2 | −54.8 | −59.1 | −40.0 |

B2GP-PLYP | +77.2 | +13.4 | −6.4 | −28.6 | −269.2 | −63.9 | −1.7 | −73.4 | −106.5 | −63.3 |

B2K-PLYP | +83.2 | +13.2 | +3.3 | −13.1 | −261.1 | −71.9 | +1.2 | −99.7 | −305.6 | −90.4 |

B2T-PLYP | +72.5 | +13.2 | −11.9 | −36.0 | −273.7 | −56.9 | −4.0 | −61.7 | −78.6 | −49.6 |

DSD-PBEP86 | +94.0 | +16.1 | +12.7 | +9.9 | −244.8 | −111.4 | 0.0 | −120.2 | −871.1 | −157.7 |

DSD-PBEB95 | +88.7 | +15.1 | +2.2 | −11.5 | −249.2 | −104.2 | −3.9 | −99.8 | −219.1 | −144.9 |

PWPB95 | +67.1 | +12.9 | −22.8 | −50.3 | −278.4 | −58.7 | −13.3 | −55.4 | −58.0 | −40.4 |

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pantazis, D.A.
Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes. *Inorganics* **2019**, *7*, 57.
https://doi.org/10.3390/inorganics7050057

**AMA Style**

Pantazis DA.
Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes. *Inorganics*. 2019; 7(5):57.
https://doi.org/10.3390/inorganics7050057

**Chicago/Turabian Style**

Pantazis, Dimitrios A.
2019. "Assessment of Double-Hybrid Density Functional Theory for Magnetic Exchange Coupling in Manganese Complexes" *Inorganics* 7, no. 5: 57.
https://doi.org/10.3390/inorganics7050057