Thermoelectric Properties of Mg2Si Produced by New Chemical Route and SPS
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Morris, R.G.; Redin, R.D.; Daneilson, G.C. Semiconducting Properties of Mg2Si Single Crystals. Phys. Rev. 1958, 109, 1909. [Google Scholar] [CrossRef]
- LaBotz, R.J.; Mason, D.R.; O’Kane, D.F. The Thermoelectric Properties of Mixed Crystals of Mg2GexSi1− x. J. Electrochem. Soc. 1963, 110, 127–134. [Google Scholar] [CrossRef]
- Zaitsev, V.K.; Fedorov, M.I.; Gurieva, E.A.; Eremin, I.S.; Konstantinov, P.P.; Samunin, A.Y.; Vedernikov, M.V. Thermoelectrics of n-type with ZT > 1 based on Mg2Si-Mg2Sn solid solutions. In Proceedings of 24th International Conference on Thermoelectrics (ICT), Clemson, SC, USA, 19–23 June 2005; IEEE: Piscataway, NJ, USA. [CrossRef]
- Khan, A.U.; Vlachos, N.; Kyratsi, T. High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb. Scripta Mater. 2013, 69, 606–609. [Google Scholar] [CrossRef]
- Liu, W.; Tang, X.; Li, H.; Yin, K.; Sharp, J.; Zhou, X.; Uher, C. Enhanced thermoelectric properties of n-type Mg2.16(Si0.4Sn0.6)1−ySby due to nano-sized Sn-rich precipitates and an optimized electron concentration. J. Mater. Chem. 2012, 22, 13653. [Google Scholar] [CrossRef]
- Wunderlich, W.; Motoyama, Y.; Sugisawa, Y.; Matsumura, Y. Large Seebeck Closed-Circuit Currents in Quaternary (Ti,Zr)NiSn Heusler-Alloys. J. Electron. Mater. 2011, 40, 583–588. [Google Scholar] [CrossRef]
- Wunderlich, W.; Amano, M.; Matsumura, Y. Electronic band-structure calculations of Ba8MexSi46−x clathrates with Me = Mg, Pd, Ni, Au, Ag, Cu, Zn, Al, Sn. J. Electron. Mater. 2014, 43, 1527–1532. [Google Scholar] [CrossRef]
- Pixius, K.; Wunderlich, W.; Schilz, J.; Amend, W. Electronic Properties and Microstructure of Si76Ge23.95P0.05 Alloys Produced by Mechanical Alloying. Phys. Stat. Sol. (a) 1994, 146, 109–118. [Google Scholar] [CrossRef]
- Schilz, J.; Pixius, K.; Wunderlich, W.; Kaysser, W.A. Existence of enhanced solid state diffusion during mechanical alloying of Si and Ge. Appl. Phys. Lett. 1995, 66, 1903–1905. [Google Scholar] [CrossRef]
- Riffel, M.; Schilz, J. Mechanical alloying of Mg2Si. Scr. Metall. Mater. 1995, 32, 1951–1956. [Google Scholar] [CrossRef]
- Ioannou, M.; Chrissafis, K.; Pavlidou, E.; Gascoin, F.; Kyratsi, T. Solid-state synthesis of Mg2Si via short-duration ball-milling and low-temperature annealing. J. Solid State Chem. 2013, 197, 172–180. [Google Scholar] [CrossRef]
- Paskevicius, M.; Sheppard, D.A.; Chaudhary, A.-L.; Webb, C.J.; Gray, E.M.; Tian, H.Y.; Peterson, V.K.; Buckley, C.E. Kinetic limitations in the Mg–Si–H system. Int. J. Hydrogen Energy 2011, 36, 10779–10786. [Google Scholar] [CrossRef]
- Tani, J.I.; Kido, H. Fabrication and thermoelectric properties of Mg2Si-based composites using reduction reaction with additives. Intermetallics 2013, 32, 72–80. [Google Scholar] [CrossRef]
- Godlewska, E.; Mars, K.; Mania, R.; Zimowski, S. Combustion synthesis of Mg2Si. Intermetallics 2011, 19, 1983–1988. [Google Scholar] [CrossRef]
- Kajikawa, T.; Shirrushi, K.S.K.; Ito, T.; Omori, M.; Hirai, T. Thermoelectric figure of merit of impurity doped and hot-pressed magnesium silicide elements. In Proceedings of XVII International Conference on Thermoelectrics, Nagoya, Japan, 24–28 May 1998; IEEE: Piscataway, NJ, USA. [CrossRef]
- Yang, M.J.; Zhang, L.M.; Han, L.Q.; Shen, Q.; Wang, C.B. Simple fabrication of Mg2Si by spark plasma sintering. Indian J. Eng. Mater. Sci. 2009, 16, 277–280. [Google Scholar]
- Hayatsu, Y.; Iida, T.; Sakamoto, T.; Kurosaki, S.; Nishio, K.; Kogo, Y.; Takanashi, Y. Fabrication of large sintered pellets of Sb-doped n-type Mg2Si using a plasma activated sintering method. J. Sol. State Chem. 2012, 193, 161–165. [Google Scholar] [CrossRef]
- Savary, E.; Gascoin, F.; Marinel, S.; Heuguet, R. Spark plasma sintering of fine Mg2Si particle. Powder Technol. 2012, 228, 295–300. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Q.; Yin, K.; Chi, H.; Zhou, X.; Tang, X.; Uher, C. High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions. J. Solid State Chem. 2013, 203, 333–339. [Google Scholar] [CrossRef]
- Sakamoto, T.; Iida, T.; Matsumoto, A.; Honda, Y.; Nemoto, T.; Sato, J.; Nakajima, T.; Taguchi, H.; Takanashi, Y. Thermoelectric Characteristics of a Commercialized Mg2Si Source Doped with Al, Bi, Ag, and Cu. J. Electron. Mater. 2010, 39, 1708–1713. [Google Scholar] [CrossRef]
- Berthebaud, D.; Gascoin, F. Microwaved assisted fast synthesis of n and p-doped Mg2Si. J. Solid State Chem. 2013, 202, 61–64. [Google Scholar] [CrossRef]
- Bowman, R.C.; Fultz, B. Metallic Hydrides I: Hydrogen Storage and Other Gas-Phase Applications. MRS Bull. 2002, 27, 688–693. [Google Scholar] [CrossRef]
- Barkhordarian, G.; Klassen, T.; Bormann, R. Catalytic Mechanism of Transition-Metal Compounds on Mg Hydrogen Sorption Reaction. J. Phys. Chem. B 2006, 110, 11020–11024. [Google Scholar] [CrossRef]
- Bogdanovic, B.; Bohmhammel, K.; Christ, B.; Reiser, A.; Schlichte, K.; Vehlen, R.; Wolf, U. Thermodynamic investigation of the magnesium–hydrogen system. J. Alloy. Compd. 1999, 282, 84–92. [Google Scholar] [CrossRef]
- Yartys, V.A.; Riabov, A.B.; Denys, R.V.; Sato, M.; Delaplane, R.G. Novel intermetallic hydrides. J. Alloys Comp. 2006, 408–412, 273–279. [Google Scholar] [CrossRef]
- Crivello, J.-C.; Nobuki, T.; Kato, S.; Abe, M.; Kuji, T. Hydrogen absorption properties of the γ-Mg17Al12 phase and its Al-richer domain. J. Alloys Compd. 2007, 446–447, 157–161. [Google Scholar] [CrossRef]
- Sato, M.; Kuji, T. Thermodynamic Consideration on Multi-Step Hydrogenation of Mg17Al12 Assisted by Phase Separation. Mater. Trans. 2011, 52, 1773–1776. [Google Scholar] [CrossRef]
- Haraki, T.; Oishi, K.; Uchida, H.; Miyamoto, Y.; Abe, M.; Kokaji, T.; Uchida, S. Properties of hydrogen absorption by nano-structured FeTi alloys. Int. J. Mater. Res. 2008, 99, 507–512. [Google Scholar] [CrossRef]
- Uchida, H.; Sato, M.; Cui, W.; Tabata, T.; Kumagai, M.; Takano, H.; Kondo, T. Effect of the penetration of Li atoms into the Pd surface on thermodynamic properties of the Pd–H system. J. Alloys Compd. 1999, 293, 30–33. [Google Scholar] [CrossRef]
- Wunderlich, W.; Tanemura, M. Interaction of Palladium Nano-Crystals with Hydrogen during PECVD Growth of Carbon Nanotubes. Adv. Solid State Phys. 2003, 43, 171–180, doi:0.1007/978-3-540-44838-9_12. [Google Scholar]
- Enomoto, M.; Ohata, Y.; Uchida, H. Reaction kinetics of H2, O2, and H2O with rare earths (Y, La, Ce, Pr, Nd, Gd, Tb, Dy, and Er) at 298 K. J. Alloys Compd. 2013, 580, S3–S5. [Google Scholar] [CrossRef]
- Hotta, H.; Chiba, M.; Kuji, T.; Uchida, H. Synthesis of Mg-Fe bcc Alloys by Mechanical Alloying and Their Hydrogen Solubility. J. Jpn. Inst. Met. 2006, 70, 662–665. [Google Scholar] [CrossRef]
- Wunderlich, W.; Niegel, A.; Gudladt, H.J. TEM-Studies of Grain Boundaries in Cyclically Deformed Al-Zn-Mg-Bicrystals. Acta Metall. Mater. 1992, 40, 2123–2129. [Google Scholar] [CrossRef]
- Wunderlich, W.; Mori, T.; Sologub, O.; Baufeld, B. SPS-Sintering of NaTaO3-Fe2O3 Composites. J. Aust. Ceram. Soc. 2011, 47, 57–60. [Google Scholar]
- Wunderlich, W.; Mori, T.; Sologub, O. SPS-sintered NaTaO3-Fe2O3 composite exhibits enhanced Seebeck coefficient and electric current. Mater. Renew. Sustain. Energy 2013, 2, 21. [Google Scholar] [CrossRef]
- Wunderlich, W. NaTaO3 composite ceramics—A new thermoelectric material for energy generation. J. Nucl. Mater. 2009, 389, 57–61. [Google Scholar] [CrossRef]
- Milekhine, V.; Solberg, J.K.; Onsøien, M.I. The fracture toughness of Mg2Si determined by 3-point bending and the indentation microcracking method. Z. Metallkunde 2003, 94, 1331–1335. [Google Scholar] [CrossRef]
- Wunderlich, W.; Foitzik, A.H.; Heuer, A.H. On the Quantitative EDS Analysis of low Carbon Concentrations in Analytical TEM. Ultramicroscopy 1993, 49, 220–224. [Google Scholar] [CrossRef]
- Gelbstein, Y.; Tunbridge, J.; Dixon, R.; Reece, M.J.; Ning, H.; Gilchrist, R.; Summers, R.; Agote, I.; Lagos, M.A.; Simpson, K.; et al. Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications. J. Electron. Mater. 2014, 43, 1703–1711. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wunderlich, W.; Suzuki, Y.; Gibo, N.; Ohkuma, T.; Al-Abandi, M.; Sato, M.; Khan, A.U.; Mori, T. Thermoelectric Properties of Mg2Si Produced by New Chemical Route and SPS. Inorganics 2014, 2, 351-362. https://doi.org/10.3390/inorganics2020351
Wunderlich W, Suzuki Y, Gibo N, Ohkuma T, Al-Abandi M, Sato M, Khan AU, Mori T. Thermoelectric Properties of Mg2Si Produced by New Chemical Route and SPS. Inorganics. 2014; 2(2):351-362. https://doi.org/10.3390/inorganics2020351
Chicago/Turabian StyleWunderlich, Wilfried, Yoshihito Suzuki, Naoto Gibo, Takahiro Ohkuma, Muayyad Al-Abandi, Masashi Sato, Atta Ullah Khan, and Takao Mori. 2014. "Thermoelectric Properties of Mg2Si Produced by New Chemical Route and SPS" Inorganics 2, no. 2: 351-362. https://doi.org/10.3390/inorganics2020351
APA StyleWunderlich, W., Suzuki, Y., Gibo, N., Ohkuma, T., Al-Abandi, M., Sato, M., Khan, A. U., & Mori, T. (2014). Thermoelectric Properties of Mg2Si Produced by New Chemical Route and SPS. Inorganics, 2(2), 351-362. https://doi.org/10.3390/inorganics2020351