Binuclear Gold(I) Complexes with a Potentially Tetradentate S,N,N,S Ligand
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis, Characterization and Structure of H2L
2.2. Synthesis and Characterization of the Gold Complexes
3. Materials and Methods
3.1. Syntheses
3.2. Spectroscopic and Analytical Methods
3.3. X-Ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrera, R.P.; Gimeno, M.C. Main Avenues in Gold Coordination Chemistry. Chem. Rev. 2021, 121, 8311–8363. [Google Scholar] [CrossRef]
- Stylianakis, I.; Kolocouris, A. Comprehensive Overview of Homogeneous Gold-Catalyzed Transformations of π-Systems for Application Scientists. Catalysts 2023, 13, 921. [Google Scholar] [CrossRef]
- Yam, V.W.-W.; Chan, A.K.; Hong, E.Y. Charge-Transfer Processes in Metal Complexes enable Luminescence and Memory Functions. Nat. Rev. Chem. 2020, 4, 528–541. [Google Scholar] [CrossRef]
- Thomas, S.R.; Wilnhammer, N.; Casini, A.; Moreno-Alcantar, G. Gold metallacages: Design principles and applications. Chem 2025, 11, 102502. [Google Scholar] [CrossRef]
- Ghobashy, M.M.; Alkhursani, A.A.; Alqahtani, H.A.; El-Damhoughy, T.K.; Madani, M. Gold nanoparticles in microelectronics advancements and biomedical applications. Mat. Sci. Eng. 2024, 302, 117191. [Google Scholar] [CrossRef]
- Karnwal, A.; Sachan, R.S.K.; Devgon, I.; Devgon, J.; Pant, G.; Panchpuri, M.; Ahmad, A.; Alshammari, M.B.; Hossain, K.; Kumar, G. Gold Nanoparticles in Nanobiotechnology: From Synthesis to Biosensing Applications. ACS Omega 2024, 9, 29966–29982. [Google Scholar] [CrossRef]
- Georgeous, J.; AlSawafth, N.; Abuwatfa, W.H.; Husseini, G.A. Review of Gold Nanoparticles: Synthesis, Properties, Shapes, Cellular Uptake, Targeting, Release Mechanisms and Applications in Drug Delivery and Therapy. Therapeutics 2024, 16, 16101332. [Google Scholar] [CrossRef] [PubMed]
- Balfourier, A.; Kolosnjaj-Tabi, J.; Luciani, N.; Crn, F.; Gazeau, F. Gold-based therapy from past to present. Proc. Natl. Acad. Sci. USA 2020, 117, 22639–22648. [Google Scholar] [CrossRef]
- Dalziel, K.; Going, G.; Cartwright, P.H.; Marks, R.; Beveridge, G.W.; Rowell, N.R. Treatment of chronic discoid lupus erythematosus with an oral gold compound (auranofin). Br. J. Dermatol. 1986, 115, 211–216. [Google Scholar] [CrossRef]
- Salvarani, C.; Zizzi, F.; Maccioni, P.; Mantovani, W.; Rossi, F.; Baricchi, R.; Bellelli, A.; Capozzoli, N.; Frizziero, L.; Portioli, I. Clinical response to auranofin in patients with psoriatic arthritis. Clin. Rheumatol. 1989, 8, 54–57. [Google Scholar] [CrossRef]
- Giannini, E.H.; Brewer, E.J., Jr.; Kuzmina, N.; Shaikov, A.; Wallin, B. Auranofin in the treatment of juvenile rheumatoid arthritis. Arthritis Rheum. 1990, 33, 466–476. [Google Scholar] [CrossRef]
- Ott, I. On the Medicinal Chemistry of Gold Complexes as Anticancer Drugs. Coord. Chem. Rev. 2009, 253, 1670–1681. [Google Scholar] [CrossRef]
- Bertrand, B.; Casini, A.A. Golden Future in Medicinal Inorganic Chemistry: The Promise of Anticancer Gold Organometallic Compounds. Dalton Trans. 2014, 43, 4209–4219. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Lum, C.T.; Lok, C.-N.; Zhang, J.-J.; Che, C.-M. Chemical Biology of Anticancer Gold(III) and Gold(I) Complexes. Chem. Soc. Rev. 2015, 44, 8786–8801. [Google Scholar] [CrossRef] [PubMed]
- Mora, M.; Gimeno, M.C.; Visbal, R. Recent Advances in Gold-NHC Complexes with Biological Properties. Chem. Soc. Rev. 2019, 48, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Moreira, V.; Herrera, R.P.; Gimeno, M.C. Anticancer Properties of Gold Complexes with Biologically Relevant Ligands. Pure Appl. Chem. 2019, 91, 247–270. [Google Scholar] [CrossRef]
- Moreno-Alcantar, G.; Picchetti, P.; Casini, A. Gold Complexes in Anticancer Therapy: From New Design Principles to Particle-Based Delivery Systems. Angew. Chem. Int. Ed. 2023, 62, e2022180000. [Google Scholar] [CrossRef]
- Mertens, R.T.; Gukathasan, S.; Arojojoye, A.S.; Olelewe, C.; Awuah, S.G. Next Generation Gold Drugs and Probes: Chemistry and Biomedical Applications. Chem. Rev. 2023, 123, 6612–6667. [Google Scholar] [CrossRef]
- Maia, P.I.S.; Deflon, V.M.; Abram, U. Gold(III) complexes in medicinal chemistry. Future Med. Chem. 2014, 6, 1515–1536. [Google Scholar] [CrossRef]
- Borges, A.P.; Obata, S.S.; Libardi, S.H.; Trevisan, R.O.; Deflon, V.M.; Abram, U.; Ferreira, F.B.; Costa, L.A.S.; Patrocínio, A.O.T.; da Silva, M.V.; et al. Gold(I) and Silver(I) Complexes Containing Hybrid Sulfonamide/Thiourea Ligands as Potential Leishmanicidal Agents. Pharmaceutics 2024, 16, 452. [Google Scholar] [CrossRef]
- Bau, R. Crystal structure of the Antiarthritic Drug Gold Thiomalate (Myochrysine): A Double-Helical Geometry in the Solid State. J. Am. Chem. Soc. 1998, 120, 9380–9381. [Google Scholar] [CrossRef]
- Büssing, R.; Karge, B.; Lippmann, P.; Jones, P.G.; Brönstrup, M.; Ott, I. Gold (I) and Gold (III) N-Heterocyclic Carbene Complexes as Antibacterial Agents and Inhibitors of Bacterial Thioredoxin Reductase. ChemMedChem 2021, 16, 3402–3409. [Google Scholar] [CrossRef]
- Ferraro, G.; Monti, D.M.; Amoresano, A.; Pontillo, N.; Petruk, G.; Pane, F.; Cinellu, M.A.; Merlino, A. Gold-Based Drug Encapsulation within a Ferritin Nanocage: X-Ray Structure and Biological Evaluation as a Potential Anticancer Agent of the Auoxo3-Loaded Protein. Chem. Commun. 2016, 52, 9518–9521. [Google Scholar] [CrossRef]
- Tong, K.-C.; Lok, C.-N.; Wan, P.-K.; Hu, D.; Fung, Y.M.E.; Chang, X.-Y.; Huang, S.; Jiang, H.; Che, C.-M. An Anticancer Gold(III)-Activated Porphyrin Scaffold That Covalently Modifies Protein Cysteine Thiols. Proc. Natl. Acad. Sci. USA 2020, 117, 1321–1329. [Google Scholar] [CrossRef]
- Chung, C.Y.-S.; Fung, S.-K.; Tong, K.-C.; Wan, P.-K.; Lok, C.-N.; Huang, Y.; Chen, T.; Che, C.-M. A Multi-Functional Pegylated Gold(III) Compound: Potent Anti-Cancer Properties and Self-Assembly into Nanostructures for Drug Co-Delivery. Chem. Sci. 2017, 8, 1942–1953. [Google Scholar] [CrossRef] [PubMed]
- Ratia, C.; Ballén, V.; Gabasa, Y.; Soengas, R.G.; Velasco-de Andrés, M.; Iglesias, M.J.; Cheng, Q.; Lozano, F.; Arnér, E.S.J.; López-Ortiz, F.; et al. Novel gold(III)-dithiocarbamate complex targeting bacterial thioredoxin reductase: Antimicrobial activity, synergy, toxicity, and mechanistic insights. Front. Microbiol. 2023, 14, 1198473. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.K.; Bunyan, J.N.; Agrawal, A.; Li, G.; Dautoras, D.; Sarker, J.C.; Keat, T.T.; Hicks, T.; Hogarth, G.; Pugh, D. A revised understanding of the speciation of gold(III) dithiocarbamate complexes in solution. Dalton Trans. 2025, 54, 7627–7640. [Google Scholar] [CrossRef] [PubMed]
- Laguna, A.; Laguna, M. Coordination chemistry of gold(II) complexes. Coord. Chem. Rev. 1999, 193–195, 83–856. [Google Scholar] [CrossRef]
- Preiß, S.; Förster, C.; Otto, S.; Bauer, M.; Müller, P.; Hinderberger, D.; Haeri, H.H.; Carella, L.; Heinze, K. Structure and reactivity of a mononuclear gold(II) complex. Nature Chem. 2017, 9, 1249–1255. [Google Scholar] [CrossRef]
- Heinze, K. The Quest for Mononuclear Gold(II) and Its Potential Role in Photocatalysis and Drug Action. Angew. Chem. Int. Ed. 2017, 56, 16126–16134. [Google Scholar] [CrossRef]
- Pintus, A.; Aragoni, M.C.; Cinellu, M.A.; Maiore, L.; Isaia, F.; Lippolis, V.; Orru, G.; Tuveri, E.; Zucca, A.; Arca, M. [Au(Pyb-H)(Mnt)]: A Novel Gold (III) 1, 2-Dithiolene Cyclometalated Complex with Antimicrobial Activity (Pyb-H = C-Deprotonated 2- Benzylpyridine; Mnt = 1, 2-Dicyanoethene-1, 2-Dithiolate). J. Inorg. Biochem. 2017, 170, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Fontinha, D.; Sousa, S.A.; Morais, T.S.; Prudencio, M.; Leitão, J.H.; Le Gal, Y.; Lorcy, D.; Silva, R.A.; Velho, M.F.; Belo, D.; et al. Gold (III) Bis(dithiolene) Complexes: From Molecular Conductors to Prospective Anticancer, Antimicrobial and Antiplasmodial Agents. Metallomics 2020, 12, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Roccigiani, L.; Bochmann, M. Recent Advances in Godl(III) Chemistry: Structure, Bonding, Reactivity, and Role in Homogeneous Catalysis. Chem. Rev. 2021, 121, 8364–8451. [Google Scholar] [CrossRef] [PubMed]
- Lynch, W.E.; Padgett, C.W.; Quillian, B.; Haddock, J. A square-planar hydrated cationic tetrakis(methimazole)gold(III) complex. Acta Cryst. 2015, 71, 298–300. [Google Scholar] [CrossRef]
- Jääskeläinen, S.; Koskinen, L.; Kultamaa, M.; Haukka, M.; Hirva, P. Persistence of oxidation state III of gold in thione coordination. Solid State Sci. 2017, 67, 37–45. [Google Scholar] [CrossRef]
- Abram, U.; Mack, J.; Ortner, K.; Müller, M. Reactions of dichloro[2-(dimethylaminomethyl)phenyl-C1,N]gold(III), [Au(damp-C1,N)Cl2], with heterocyclic thiols. Evidence for Au-N bond cleavage and protonation of the dimethylamino group. J. Chem. Soc. Dalton Trans 1998, 1011–1019. [Google Scholar] [CrossRef]
- Smith, T.S.; Henderson, W.; Nicholson, B.K. Cycloaurated gold(III) complexes with monoanionic thiourea ligands. Inorg. Chim. Acta 2013, 408, 27–32. [Google Scholar] [CrossRef]
- Jia, W.-G.; Dai, Y.-C.; Zhang, H.-N.; Lu, X.; Sheng, E.-H. Synthesis and characterization of gold complexes. with pyridine-based SNS ligands and as homogeneous catalysts for reduction of 4-nitrophenol. RSC Adv. 2015, 5, 29491–29496. [Google Scholar] [CrossRef]
- Fonteh, P.N.; Keter, F.K.; Meyer, D. New bis(thiosemicarbazonate) gold(III) complexes inhibit HIV replication at cytostatic concentrations: Potential for incorporation into virostatic cocktails. J. Inorg. Biochem. 2011, 105, 1173–1180. [Google Scholar] [CrossRef]
- Rodríguez-Fanjul, V.; Lopez-Torres, E.; Mendiola, M.A.; Pizarro, A.M. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting. Eur. J. Med. Chem. 2018, 148, 372–383. [Google Scholar] [CrossRef]
- Bottenus, B.N.; Kan, P.; Jenkins, T.; Ballard, B.; Rold, T.L.; Barnes, C.; Cutler, C.; Hoffman, T.J.; Green, M.A.; Jurisson, S.S. Gold(III) bis-thiosemicarbazonato complexes: Synthesis, characterization, radiochemistry and X-ray crystal structure analysis. Nucl. Med. Biol. 2010, 37, 41–49. [Google Scholar] [CrossRef]
- Wie, J.-J.; Xiao, J.J.; Yu, J.-W.; Yi, X.-Y.; Liu, S.; Liu, G.-Y. Synthesis and structural characterization of silver(I) and gold(I) complexes of N,N′-diisobutyloxycarbonyl-N″,N‴-(1,3-propylene)bisthiourea. Polyhedron 2017, 137, 176–181. [Google Scholar]
- Castillo, J.D.; Nguyen, H.H.; Hagenbach, A.; Abram, U. Oxidorhenium(V) complexes with tetradentate thiourea derivatives. Polyhedron 2012, 43, 123–130. [Google Scholar] [CrossRef]
- Richter, R.; Sieler, J.; Beyer, L.; Yanovsky, A.L.; Struchkov, Y.T. Kristall- und Molekülstruktur von N,N′-o-Phenylen-bis-(N″,N′-diethyl-N‴-benzimidoyl-thioureato)nickel(II). Z. Anorg. Allg. Chem. 1989, 570, 84–92. [Google Scholar] [CrossRef]
- Rodenstein, A.; Creutzburg, D.; Schmiedel, P.; Griebel, J.; Hennig, L.; Kirmse, R. Synthesis, Structures, EPR and NMR Investigations of N,N′-o-Phenylen-bis(N″,N″-dialkyl-N‴-benzimidoyl-thioureato) Complexes of NiII and CuII (alkyl = C2H5, i-C4H9) and of Benzo[b]pyrimido-[1,6-d][1,4]diazepin-12-ium-dichlorocuprate(I). Z. Anorg. Allg. Chem. 2008, 634, 2811–2818. [Google Scholar] [CrossRef]
- Richter, R.; Schröder, U.; Kampf, M.; Hartung, J.; Beyer, L. Gold(I) Complexes of N-Thiocarbamoyl Benzamidines: Synthesis and Structures. Z. Anorg. Allg. Chem. 1997, 623, 1021–1026. [Google Scholar] [CrossRef]
- Schröder, U.; Richter, R.; Hartung, J.; Abram, U.; Beyer, L. Substituted 1,2,4-Thiadiazoliumdichloroaurates(I) and -tetrachloroaurates(III) as Products oft he Reactions of N-Thiocarbamoyl-benzamidines with Tetrachlorogold(III) Compounds. Z. Naturforsch. 1997, 52, 620–628. [Google Scholar] [CrossRef]
- Schmidbauer, H. The Aurophilicity Phenomenon: A Decade of Experimental Findings, Theoretical Concepts and Emerging Applications. Gold Bull. 2000, 33, 3–10. [Google Scholar] [CrossRef]
- Bardaji, M.; Laguna, A. Gold Chemistry: The Aurophilic Interaction. J. Chem. Edu. 1999, 76, 201–202. [Google Scholar] [CrossRef]
- Schmidbauer, H.; Schier, A. A briefing on auophilicity. Chem. Soc. Rev. 2008, 37, 1931–1951. [Google Scholar] [CrossRef]
- Anderson, K.M.; Goeta, A.E.; Steed, J.W. Au⋯Au Interactions: Z‘ > 1 Behavior and Structural Analysis. Inorg. Chem. 2007, 46, 6444–6451. [Google Scholar] [CrossRef]
- Sculfort, S.; Braunstein, P. Intermolecular d10-d10 interactions in heterometallic clusters of the transition metals. Chem. Soc. Rev. 2011, 40, 2741–2760. [Google Scholar] [CrossRef]
- Schmidbauer, H.; Schier, A. Aurophilic interactions as a subject of current research: An up-date. Chem. Soc. Rev. 2012, 41, 370–412. [Google Scholar] [CrossRef]
- Westcott, S.A.; Sherry, B.D.; Toste, F.D.; Campagne, J.-M. Sodium Tetrachloroaurate(III). In Encyclopedia of Reagents for Organic Synthesis; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Uson, R.; Laguna, A.; Laguna, M. Chloro(tetrahydrothiophene)gold(I). Inorg. Synth. 1989, 26, 85–86. [Google Scholar]
- Kowala, C.; Swan, J.M. Coordination compounds of Group IB metals. II. Some tertiary phosphine and phosphite complexes of gold(I). Aust. J. Chem. 1966, 19, 547–554. [Google Scholar] [CrossRef]
- Beyer, L.; Widera, R. N-(Aminothiocarbonyl)benzimidchloride. Tetrahedron Lett. 1982, 23, 1881–1882. [Google Scholar] [CrossRef]
- Köhler, R.; Hoyer, E.; Beyer, L.; Weber, G. DD282910 A5 19900926. Available online: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&firstdoc=1&docid=DD000000282910A5 (accessed on 25 July 2025).
- Sheldrick, G. SADABS, version 2014/5; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Coppens, P. The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. In Crystallographic Computing; Muksgaard: Copenhagen, Denmark, 1979. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, 71, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Shmelev, N.Y.; Okubazghi, T.H.; Abramov, P.A.; Rakhmanova, M.I.; Novikov, A.S.; Sokolov, M.N.; Gushchin, A.L. Asymmetric Coordination Mode of Phenanthroline-like Ligands in Gold(I) Complexes: A Case of the Antichelate Effect. Cryst. Growth Des. 2022, 22, 3882–3895. [Google Scholar] [CrossRef]
C1–S1 | C1–N3 | C1–N1 | N1–C2 | C2–N2 | N2–C3 | N1–C1–N3 | N1–C2–N2 |
---|---|---|---|---|---|---|---|
1.696(3) | 1.334(3) | 1.373(4) | 1.293(3) | 1.334(4) | 1.440(4) | 115.4(3) | 119.0(3) |
C1–S1 | C1–N3 | C1–N1 | N1–C2 | C2–N2 | N2–C3 | Au–S1 | Au–Cl1 | Au–S21 | C1–S1-Au | S1–Au–X | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.746(5) | 1.325(6) | 1.337(6) | 1.306(6) | 1.340(6) | 1.459(6) | 2.259(1) | 2.281(1) | - | 106.0(2) | 177.89(5) |
2 | 1.734(3) | 1.328(5) | 1.352(4) | 1.300(4) | 1.334(4) | 1.452(4) | 2.274(1) | - | 2.293(1) | 107.2(1) | 176.08(4) |
C1–S1 | C1–N3 | C1–N1 | N1–C2 | C2–N2 | N2–C3 | Au–S1 | Au–P1 | Au…Au’’ | C1–S1-Au | S1–Au–P |
---|---|---|---|---|---|---|---|---|---|---|
1.746(3) | 1.329(3) | 1.344(3) | 1.308(3) | 1.341(3) | 1.457(3) | 2.3223(6) | 2.2703(6) | 3.2310(3) | 105.22(9) | 175.77(5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sucena, S.F.; Hagenbach, A.; Pham, C.T.; Abram, U. Binuclear Gold(I) Complexes with a Potentially Tetradentate S,N,N,S Ligand. Inorganics 2025, 13, 292. https://doi.org/10.3390/inorganics13090292
Sucena SF, Hagenbach A, Pham CT, Abram U. Binuclear Gold(I) Complexes with a Potentially Tetradentate S,N,N,S Ligand. Inorganics. 2025; 13(9):292. https://doi.org/10.3390/inorganics13090292
Chicago/Turabian StyleSucena, Suelen Ferreira, Adelheid Hagenbach, Chien Thang Pham, and Ulrich Abram. 2025. "Binuclear Gold(I) Complexes with a Potentially Tetradentate S,N,N,S Ligand" Inorganics 13, no. 9: 292. https://doi.org/10.3390/inorganics13090292
APA StyleSucena, S. F., Hagenbach, A., Pham, C. T., & Abram, U. (2025). Binuclear Gold(I) Complexes with a Potentially Tetradentate S,N,N,S Ligand. Inorganics, 13(9), 292. https://doi.org/10.3390/inorganics13090292