Carbon Nanomaterials for Advanced Technology
Conflicts of Interest
References
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906. [Google Scholar] [CrossRef] [PubMed]
- Speranza, G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials 2021, 11, 967. [Google Scholar] [CrossRef] [PubMed]
- Paukov, M.; Kramberger, C.; Begichev, I.; Kharlamova, M.; Burdanova, M. Functionalized Fullerenes and Their Applications in Electrochemistry, Solar Cells, and Nanoelectronics. Materials 2023, 16, 1276. [Google Scholar] [CrossRef]
- Ding, L.P.; McLean, B.; Xu, Z.; Kong, X.; Hedman, D.; Qiu, L.; Page, A.J.; Ding, F. Why Carbon Nanotubes Grow. J. Amer. Chem. Soc. 2022, 144, 5606. [Google Scholar] [CrossRef] [PubMed]
- Hedman, D.; McLean, B.; Bichara, C.; Maruyama, S.; Larsson, J.A.; Ding, F. Dynamics of growing carbon nanotube interfaces probed by machine learning-enabled molecular simulations. Nat. Commun. 2024, 15, 4076. [Google Scholar] [CrossRef]
- McLean, B.; Eveleens, C.A.; Mitchell, I.; Webber, G.B.; Page, A.J. Catalytic CVD synthesis of boron nitride and carbon nanomaterials—Synergies between experiment and theory. Phys. Chem. Chem. Phys. 2017, 19, 26466. [Google Scholar] [CrossRef]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535. [Google Scholar] [CrossRef]
- Franklin, A.D.; Hersam, M.C.; Wong, H.S.P. Carbon nanotube transistors: Making electronics from molecules. Science 2022, 378, 726. [Google Scholar] [CrossRef]
- Niu, W.; Sopp, S.; Lodi, A.; Gee, A.; Kong, F.; Pei, T.; Gehring, P.; Nägele, J.; Lau, C.S.; Ma, J.; et al. Exceptionally clean single-electron transistors from solutions of molecular graphene nanoribbons. Nat. Mater. 2023, 22, 180. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Zhu, Z.; He, J.; Yang, Y.; Liang, Y.; Li, Z.; Zhu, M.; Xiao, M.; Zhang, Z. Mass Production of Carbon Nanotube Transistor Biosensors for Point-of-Care Tests. Nano Lett. 2024, 24, 10510. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Nezhad, F.F.; Ghahramani, Y.; Binazadeh, M.; Javidi, Z.; Azhdari, R.; Gholami, A.; Omidifar, N.; Rahman, M.M.; Chiang, W. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem. Biodivers. 2024, 21, e202301288. [Google Scholar] [CrossRef]
- Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Narita, A.; Müllen, K. Precision synthesis versus bulk-scale fabrication of graphenes. Nat. Rev. Chem. 2017, 2, 0100. [Google Scholar] [CrossRef]
- Rao, R.; Pint, C.L.; Islam, A.E.; Weatherup, R.S.; Hofmann, S.; Meshot, E.R.; Wu, F.; Zhou, C.; Dee, N.; Amama, P.B.; et al. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano 2018, 12, 11756. [Google Scholar] [CrossRef] [PubMed]
- Luong, D.X.; Bets, K.V.; Algozeeb, W.A.; Stanford, M.G.; Kittrell, C.; Chen, W.; Salvatierra, R.V.; Ren, M.; McHugh, E.A.; Advincula, P.A.; et al. Gram-scale bottom-up flash graphene synthesis. Nature 2020, 577, 647. [Google Scholar] [CrossRef]
- Bishop, M.D.; Hills, G.; Srimani, T.; Lau, C.; Murphy, D.; Fuller, S.; Humes, J.; Ratkovich, A.; Nelson, M.; Shulaker, M.M. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 2020, 3, 492. [Google Scholar] [CrossRef]
- Wang, M.; Huang, M.; Luo, D.; Li, Y.; Choe, M.; Seong, W.K.; Kim, M.; Jin, S.; Wang, M.; Chatterjee, S.; et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 2021, 596, 519. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Luo, D.; Choe, M.; Kim, Y.; Ram, B.; Zafari, M.; Seong, W.K.; Bakharev, P.; Wang, M.; Park, I.K.; et al. Growth of diamond in liquid metal at 1 atm pressure. Nature 2024, 629, 348. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, J.-Q.; Qian, W.-Z.; Zhang, Y.-Y.; Wei, F. The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage. Small 2013, 9, 1237. [Google Scholar] [CrossRef]
- Serpell, C.J.; Kostarelos, K.; Davis, B.G. Can Carbon Nanotubes Deliver on Their Promise in Biology? Harnessing Unique Properties for Unparalleled Applications. ACS Cent. Sci. 2016, 2, 190. [Google Scholar] [CrossRef]
- Kaplan, A.; Yuan, Z.; Benck, J.D.; Govind Rajan, A.; Chu, X.S.; Wang, Q.H.; Strano, M.S. Current and future directions in electron transfer chemistry of graphene. Chem. Soc. Rev. 2017, 46, 4530. [Google Scholar] [CrossRef]
- Taylor, L.W.; Dewey, O.S.; Headrick, R.J.; Komatsu, N.; Peraca, N.M.; Wehmeyer, G.; Kono, J.; Pasquali, M. Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers. Carbon 2021, 171, 689. [Google Scholar] [CrossRef]
- Liu, F.; Li, P.; An, H.; Peng, P.; McLean, B.; Ding, F. Achievements and Challenges of Graphene Chemical Vapor Deposition Growth. Adv. Funct. Mater. 2022, 32, 2203191. [Google Scholar] [CrossRef]
- Choi, C.; Yun, T.G.; Hwang, B. Dispersion Stability of Carbon Nanotubes and Their Impact on Energy Storage Devices. Inorganics 2023, 11, 383. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, L.; Shi, Q.; Li, J.; Lv, Y.; Song, C. Research Progress on Graphene Oxide (GO)/Chitosan (CS) Multifunctional Nanocomposites for Drug Delivery. Inorganics 2025, 13, 98. [Google Scholar] [CrossRef]
- Lv, H.; Du, M.; Li, Z.; Xiao, L.; Zhou, S. Cost Optimization of Graphene Oxide-Modified Ultra-High-Performance Concrete Based on Machine Learning Methods. Inorganics 2024, 12, 181. [Google Scholar] [CrossRef]
- Samoei, V.K.; Takeda, K.; Sano, K.; Bharadwaz, A.; Jayasuriya, A.C.; Jayatissa, A.H. Infrared Light Annealing Effect on Pressure Sensor Fabrication Using Graphene/Polyvinylidene Fluoride Nanocomposite. Inorganics 2024, 12, 228. [Google Scholar] [CrossRef]
- Bident, A.; Grosseau-Poussard, J.-L.; Delange, F.; Addad, A.; Ji, G.; Lu, Y.; Bobet, J.-L.; Veillere, A.; Silvain, J.-F. Raman Spectroscopy and Microstructural Characterization of Hot-Rolled Copper/Graphene Composite Materials. Inorganics 2024, 12, 227. [Google Scholar] [CrossRef]
- Markopoulou, E.; Nikolakis, P.; Savvakis, G.; Rissanou, A.N. Employing Molecular Dynamics Simulations to Explore the Behavior of Diphenylalanine Dipeptides in Graphene-Based Nanocomposite Systems. Inorganics 2025, 13, 92. [Google Scholar] [CrossRef]
- Slanina, Z.; Uhlík, F.; Akasaka, T.; Lu, X.; Adamowicz, L. CO2@C84: DFT Calculations of Structure and Energetics. Inorganics 2025, 13, 19. [Google Scholar] [CrossRef]
- Han, G.; Hu, X. Repair of Small-Area Delamination in Carbon Fiber-Reinforced Polymer through Small Drilled Hole and Carbon Nanotubes-Reinforced Resin Pre-Coating Technique. Inorganics 2023, 11, 454. [Google Scholar] [CrossRef]
- Li, A.; Li, Z.; Qian, L. Ultralight Cellulose-Derived Carbon Nanofibers from Freeze-Drying Emulsion Towards Superior Microwave Absorption. Inorganics 2024, 12, 272. [Google Scholar] [CrossRef]
- Kim, T.; Kim, B.-S.; Ko, T.H.; Kim, H.Y. In-Situ Polymerization for Catalytic Graphitization of Boronated PAN Using Aluminum and Zirconium Containing Co-Catalysts. Inorganics 2025, 13, 16. [Google Scholar] [CrossRef]
- De Luca, P.; Macario, A.; Madeo, L.; B.Nagy, J. The Influence of Carbon Nanotube Functionalization on Water Contaminated by Diesel and Benzoic Acid: A Comparison of Two Case Studies. Inorganics 2024, 12, 238. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McLean, B.; Page, A.J. Carbon Nanomaterials for Advanced Technology. Inorganics 2025, 13, 129. https://doi.org/10.3390/inorganics13050129
McLean B, Page AJ. Carbon Nanomaterials for Advanced Technology. Inorganics. 2025; 13(5):129. https://doi.org/10.3390/inorganics13050129
Chicago/Turabian StyleMcLean, Ben, and Alister J. Page. 2025. "Carbon Nanomaterials for Advanced Technology" Inorganics 13, no. 5: 129. https://doi.org/10.3390/inorganics13050129
APA StyleMcLean, B., & Page, A. J. (2025). Carbon Nanomaterials for Advanced Technology. Inorganics, 13(5), 129. https://doi.org/10.3390/inorganics13050129