NMR-Based Structural Insights on Folic Acid and Its Interactions with Copper(II) Ions
Abstract
:1. Introduction
2. Results
2.1. NMR Analysis of Folic Acid: Investigating the Effects of pH and Concentration in Solution
2.2. NMR Study of Folic Acid–Cupric Ion Interactions
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffbrand, A.V.; Weir, D.G. The History of Folic Acid. Br. J. Haematol. 2001, 113, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Cantley, L.C. Toward a Better Understanding of Folate Metabolism in Health and Disease. J. Exp. Med. 2019, 216, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Blakley: Nomenclature and Symbols for Folic Acid...—Google Scholar. Available online: https://scholar.google.com/scholar_lookup?title=Nomenclature%20and%20symbols%20for%20folic%20acid%20and%20related%20compounds.%20Recommendations&publication_year=1986&author=R.L.%20Blakley&author=IUPAC-IUB%20Joint%20Commission%20on%20Biochemical%20Nomenclature%20(JCBN) (accessed on 6 June 2024).
- Saini, R.K.; Nile, S.H.; Keum, Y.-S. Folates: Chemistry, Analysis, Occurrence, Biofortification and Bioavailability. Food Res. Int. 2016, 89, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mahara, F.A.; Nuraida, L.; Lioe, H.N.; Nurjanah, S. Hypothetical Regulation of Folate Biosynthesis and Strategies for Folate Overproduction in Lactic Acid Bacteria. Prev. Nutr. Food Sci. 2023, 28, 386–400. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.T.; Stover, P.J. Chapter 1 Folate-Mediated One-Carbon Metabolism. In Vitamins & Hormones; Folic Acid and Folates; Academic Press: Cambridge, MA, USA, 2008; Volume 79, pp. 1–44. [Google Scholar]
- Menezo, Y.; Elder, K.; Clement, A.; Clement, P. Folic Acid, Folinic Acid, 5 Methyl TetraHydroFolate Supplementation for Mutations That Affect Epigenesis through the Folate and One-Carbon Cycles. Biomolecules 2022, 12, 197. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, J.; Chang, H.; Liu, X.; Zhu, R. Homocysteine and Folic Acid: Risk Factors for Alzheimer’s Disease—An Updated Meta-Analysis. Front. Aging Neurosci. 2021, 13, 665114. [Google Scholar] [CrossRef]
- Seshadri, S. Homocysteine and the Risk of Dementia. Clin. Chem. 2012, 58, 1059–1060. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, G.; Liu, D.; Yang, Y.; Li, X.; Cai, G.; Liu, Y.; Wu, Y. The Association Between Folate and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front. Neurosci. 2021, 15, 661198. [Google Scholar] [CrossRef]
- Price, B.R.; Wilcock, D.M.; Weekman, E.M. Hyperhomocysteinemia as a Risk Factor for Vascular Contributions to Cognitive Impairment and Dementia. Front. Aging Neurosci. 2018, 10, 350. [Google Scholar] [CrossRef]
- Spence, J.D. Nutrition and Risk of Stroke. Nutrients 2019, 11, 647. [Google Scholar] [CrossRef]
- Dang, S.; Jain, A.; Dhanda, G.; Bhattacharya, N.; Bhattacharya, A.; Senapati, S. One Carbon Metabolism and Its Implication in Health and Immune Functions. Cell Biochem. Funct. 2024, 42, e3926. [Google Scholar] [CrossRef] [PubMed]
- US Preventive Services Task Force. Folic Acid Supplementation to Prevent Neural Tube Defects: US Preventive Services Task Force Reaffirmation Recommendation Statement. JAMA 2023, 330, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Pietrzik, K.; Bailey, L.; Shane, B. Folic Acid and L-5-Methyltetrahydrofolate. Clin. Pharmacokinet. 2010, 49, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Nazki, F.H.; Sameer, A.S.; Ganaie, B.A. Folate: Metabolism, Genes, Polymorphisms and the Associated Diseases. Gene 2014, 533, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhou, Z.; Chi, X.; Fan, F.; Li, S.; Song, Y.; Zhang, Y.; Qin, X.; Sun, N.; Wang, X.; et al. Folic Acid Supplementation for Stroke Prevention: A Systematic Review and Meta-Analysis of 21 Randomized Clinical Trials Worldwide. Clin. Nutr. 2024, 43, 1706–1716. [Google Scholar] [CrossRef]
- Espinosa-Salas, S.; Gonzalez-Arias, M. Nutrition: Micronutrient Intake, Imbalances, and Interventions. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Centeno Tablante, E.; Pachón, H.; Guetterman, H.M.; Finkelstein, J.L. Fortification of Wheat and Maize Flour with Folic Acid for Population Health Outcomes. Cochrane Database Syst. Rev. 2019, 7, CD012150. [Google Scholar] [CrossRef]
- Zeng, R.; Xu, C.-H.; Xu, Y.-N.; Wang, Y.-L.; Wang, M. The Effect of Folate Fortification on Folic Acid-Based Homocysteine-Lowering Intervention and Stroke Risk: A Meta-Analysis. Public. Health Nutr. 2015, 18, 1514–1521. [Google Scholar] [CrossRef]
- Moustakas, M. The Role of Metal Ions in Biology, Biochemistry and Medicine. Materials 2021, 14, 549. [Google Scholar] [CrossRef]
- Singh, R.; Panghal, A.; Jadhav, K.; Thakur, A.; Verma, R.K.; Singh, C.; Goyal, M.; Kumar, J.; Namdeo, A.G. Recent Advances in Targeting Transition Metals (Copper, Iron, and Zinc) in Alzheimer’s Disease. Mol. Neurobiol. 2024, 1–25. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Guo, Z. Metal-Involved Theranostics: An Emerging Strategy for Fighting Alzheimer’s Disease. Coord. Chem. Rev. 2018, 362, 72–84. [Google Scholar] [CrossRef]
- Kola, A.; Nencioni, F.; Valensin, D. Bioinorganic Chemistry of Micronutrients Related to Alzheimer’s and Parkinson’s Diseases. Molecules 2023, 28, 5467. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Fang, T.; Chen, H. Zinc and Central Nervous System Disorders. Nutrients 2023, 15, 2140. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Li, S.; Huang, X.; Chen, X.; Shan, H.; Zhang, M. The Role of Copper Homeostasis in Brain Disease. Int. J. Mol. Sci. 2022, 23, 13850. [Google Scholar] [CrossRef] [PubMed]
- Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic Lateral Sclerosis). Chem. Rev. 2006, 106, 1995–2044. [Google Scholar] [CrossRef] [PubMed]
- Tyczyńska, M.; Gędek, M.; Brachet, A.; Stręk, W.; Flieger, J.; Teresiński, G.; Baj, J. Trace Elements in Alzheimer’s Disease and Dementia: The Current State of Knowledge. J. Clin. Med. 2024, 13, 2381. [Google Scholar] [CrossRef]
- Kozlowski, H.; Luczkowski, M.; Remelli, M.; Valensin, D. Copper, Zinc and Iron in Neurodegenerative Diseases (Alzheimer’s, Parkinson’s and Prion Diseases). Coord. Chem. Rev. 2012, 256, 2129–2141. [Google Scholar] [CrossRef]
- Lachowicz, J.I.; Lecca, L.I.; Meloni, F.; Campagna, M. Metals and Metal-Nanoparticles in Human Pathologies: From Exposure to Therapy. Molecules 2021, 26, 6639. [Google Scholar] [CrossRef]
- Kardos, J.; Héja, L.; Simon, Á.; Jablonkai, I.; Kovács, R.; Jemnitz, K. Copper Signalling: Causes and Consequences. Cell Commun. Signal. 2018, 16, 71. [Google Scholar] [CrossRef]
- Catalani, S.; Paganelli, M.; Gilberti, M.E.; Rozzini, L.; Lanfranchi, F.; Padovani, A.; Apostoli, P. Free Copper in Serum: An Analytical Challenge and Its Possible Applications. J. Trace Elem. Med. Biol. 2018, 45, 176–180. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Gao, X. Copper and Cuproptosis: New Therapeutic Approaches for Alzheimer’s Disease. Front. Aging Neurosci. 2023, 15, 1300405. [Google Scholar] [CrossRef]
- Bagheri, S.; Squitti, R.; Haertlé, T.; Siotto, M.; Saboury, A.A. Role of Copper in the Onset of Alzheimer’s Disease Compared to Other Metals. Front. Aging Neurosci. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Hamed, E.; Attia, M.S.; Bassiouny, K. Synthesis, Spectroscopic and Thermal Characterization of Copper(II) and Iron(III) Complexes of Folic Acid and Their Absorption Efficiency in the Blood. Bioinorg. Chem. Appl. 2009, 2009, 979680. [Google Scholar] [CrossRef] [PubMed]
- Skorik, N.A. D-Metal Folates and the Folic Acid-Imidazole Conjugate. Russ. J. Inorg. Chem. 2015, 60, 1402–1406. [Google Scholar] [CrossRef]
- Dametto, P.R.; Ambrozini, B.; Caires, F.J.; Franzini, V.P.; Ionashiro, M. Synthesis, Characterization and Thermal Behaviour of Solid-State Compounds of Folates with Some Bivalent Transition Metals Ions. J. Therm. Anal. Calorim. 2014, 115, 161–166. [Google Scholar] [CrossRef]
- El-Wahed, M.G.A.; Refat, M.S.; El-Megharbel, S.M. Synthesis, Spectroscopic and Thermal Characterization of Some Transition Metal Complexes of Folic Acid. Spectrochim. Acta-Part. A Mol. Biomol. Spectrosc. 2008, 70, 916–922. [Google Scholar] [CrossRef]
- Refat, M.S.; Altalhi, T.; Hassan, R.F. Synthesis, Spectroscopic, Structural and Morphological Characterizations of Magnesium(II), Calcium(II), Strontium(II) and Barium(II) Folate Complexes. J. Mol. Struct. 2021, 1227, 129519. [Google Scholar] [CrossRef]
- Hueso-Ureña, F.; Jiménez-Pulido, S.B.; Moreno-Carretero, M.N.; Qòs-Olozàbal, M.; Salas-Peregrìn, J.M. A New Three-Dimensional, Hydrogen-Bonded Metal-Pteridine Complex: Synthesis, Characterization and Crystal Structure of Diaqua Bis(1,3-Dimethylpteridine-2,4(1H,3H)-Dione-O4,N5) Copper(II) Nitrate Dihydrate. Polyhedron 1997, 16, 607–612. [Google Scholar] [CrossRef]
- Kaim, W.; Schwederski, B.; Heilmann, O.; Hornung, F.M. Coordination Compounds of Pteridine, Alloxazine and Flavin Ligands: Structures and Properties. Coord. Chem. Rev. 1999, 182, 323–342. [Google Scholar] [CrossRef]
- Kohzuma, T.; Morita, Y.; Takani, M.; Odani, A.; Yamauchi, O. Pteridine-Containing Ternary Copper (II) Complexes as Pterin Cofactor-Metal Binding Models. Structures, Solution Equilibria, and Redox Activities. Inorg. Chem. 1988, 27, 3854–3858. [Google Scholar] [CrossRef]
- Acuña-Cueva, E.R.; Faure, R.; Illán-Cabeza, N.A.; Jiménez-Pulido, S.B.; Moreno-Carretero, M.N.; Quirós-Olozábal, M. Synthesis and Characterization of Several Lumazine Derivative Complexes of Co(II), Ni(II), Cu(II), Cd(II), Pd(II) and Pt(II). X-ray Structures of a Mononuclear Copper Complex and a Dinuclear Cadmium Complex. Inorganica Chim. Acta 2003, 351, 356–362. [Google Scholar] [CrossRef]
- Acuña-Cueva, E.R.; Faure, R.; Illán-Cabeza, N.A.; Jiménez-Pulido, S.B.; Moreno-Carretero, M.N.; Quirós-Olozábal, M. Synthesis and Structural Studies on New MIIX2L2 Dihalocomplexes of 1-Methyllumazine and 1,6,7-Trimethyllumazine. Polyhedron 2003, 22, 483–488. [Google Scholar] [CrossRef]
- Lam, Y.-F.; Kotowycz, G. Self Association of Folic Acid in Aqueous Solution by Proton Magnetic Resonance. Can. J. Chem. 1972, 50, 2357–2363. [Google Scholar] [CrossRef]
- Rosbottom, I.; Turner, T.D.; Ma, C.Y.; Hammond, R.B.; Roberts, K.J.; Yong, C.W.; Todorov, I.T. The Structural Pathway from Its Solvated Molecular State to the Solution Crystallisation of the α- and β-Polymorphic Forms of Para Amino Benzoic Acid. Faraday Discuss. 2022, 235, 467–489. [Google Scholar] [CrossRef] [PubMed]
- Kola, A.; Vigni, G.; Baratto, M.C.; Valensin, D. A Combined NMR and UV-Vis Approach to Evaluate Radical Scavenging Activity of Rosmarinic Acid and Other Polyphenols. Molecules 2023, 28, 6629. [Google Scholar] [CrossRef] [PubMed]
- Kola, A.; Vigni, G.; Valensin, D. Exploration of Lycorine and Copper(II)’s Association with the N-Terminal Domain of Amyloid β. Inorganics 2023, 11, 443. [Google Scholar] [CrossRef]
- De Ricco, R.; Potocki, S.; Kozlowski, H.; Valensin, D. NMR Investigations of Metal Interactions with Unstructured Soluble Protein Domains. Coord. Chem. Rev. 2014, 269, 1–12. [Google Scholar] [CrossRef]
- Kola, A.; Hecel, A.; Lamponi, S.; Valensin, D. Novel Perspective on Alzheimer’s Disease Treatment: Rosmarinic Acid Molecular Interplay with Copper(II) and Amyloid β. Life 2020, 10, 118. [Google Scholar] [CrossRef]
- Dudek, D.; Miller, A.; Hecel, A.; Kola, A.; Valensin, D.; Mikolajczyk, A.; Barcelo-Oliver, M.; Matera-Witkiewicz, A.; Rowinnska-Zyrek, M. Semenogelins Armed in Zn(II) and Cu(II): May Bioinorganic Chemistry Help Nature to Cope with Enterococcus Faecalis? Inorg. Chem. 2023, 62, 14103–14115. [Google Scholar] [CrossRef]
- Wu, Z.; Li, X.; Hou, C.; Qian, Y. Solubility of Folic Acid in Water at pH Values between 0 and 7 at Temperatures (298.15, 303.15, and 313.15) K. J. Chem. Eng. Data 2010, 55, 3958–3961. [Google Scholar] [CrossRef]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef]
- Fava, M.; Mischoulon, D. Folate in Depression: Efficacy, Safety, Differences in Formulations, and Clinical Issues. J. Clin. Psychiatry 2009, 70, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, E. Vitamin B12, Folic Acid, and the Nervous System. Lancet Neurol. 2006, 5, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Refsum, H. Homocysteine, B Vitamins, and Cognitive Impairment. Annu. Rev. Nutr. 2016, 36, 211–239. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Ji, H.-F. Associations between Homocysteine, Folic Acid, Vitamin B12 and Alzheimer’s Disease: Insights from Meta-Analyses. J. Alzheimer’s Dis. 2015, 46, 777–790. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Chan, L.; Hu, C.-J.; Hong, C.-T.; Chen, J.-H. Role of Vitamin B12 and Folic Acid in Treatment of Alzheimer’s Disease: A Meta-Analysis of Randomized Control Trials. Aging 2024, 16, 7856–7869. [Google Scholar] [CrossRef]
- Chen, J.; Song, W.; Zhang, W. The Emerging Role of Copper in Depression. Front. Neurosci. 2023, 17, 1230404. [Google Scholar] [CrossRef]
- Gale, J.; Aizenman, E. The Physiological and Pathophysiological Roles of Copper in the Nervous System. Eur. J. Neurosci. 2024, 60, 3505–3543. [Google Scholar] [CrossRef]
- Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. NMR Studies on Cu(II)-Peptide Complexes: Exchange Kinetics and Determination of Structures in Solution. Mol. Biosyst. 2005, 1, 79–84. [Google Scholar] [CrossRef]
- Hueso-Ureña, F.; Jiménez-Pulido, S.B.; Moreno-Carretero, M.N.; Quirós-Olozábal, M.; Salas-Peregrín, J.M. Synthesis and Structural Studies on New M IIX2L2 Dihalocomplexes of 1,3-Dimethyllumazine and 1,3,6,7-Tetramethyllumazine. Crystal Structure of the Monodimensionally Hydrogen-Bonded Dichloro-Bis (1,3-Dimethylpteridine-2,4 (1H,3H)-Dione-O 4,N 5) Copper (II) Dihydrate. Polyhedron 1998, 18, 85–91. [Google Scholar] [CrossRef]
- Bertini, I.; Luchinat, C. NMR of Paramagnetic Substances; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Gaggelli, E.; D’Amelio, N.; Valensin, D.; Valensin, G. 1H NMR Studies of Copper Binding by Histidine-Containing Peptides. Magn. Reson. Chem. 2003, 41, 877–883. [Google Scholar] [CrossRef]
- Solomon, I. Relaxation Processes in a System of Two Spins. Phys. Rev. 1955, 99, 203–256. [Google Scholar] [CrossRef]
- Hwang, T.L.; Shaka, A.J. Multiple-Pulse Mixing Sequences That Selectively Enhance Chemical Exchange or Cross-Relaxation Peaks in High-Resolution NMR Spectra. J. Magn. Reson. 1998, 135, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.S., Jr. ChemInform Abstract: Diffusion Ordered Nuclear Magnetic Resonance Spectroscopy: Principles and Applications. ChemInform 1999, 30, chin.199933338. [Google Scholar] [CrossRef]
CM (mmolL−1) | D × 10−10 m2s−1 | |
---|---|---|
FA | TMSP | |
0.1 mM | 3.09 | 4.94 |
0.5 mM | 3.06 | 4.94 |
1.0 mM | 3.05 | 4.93 |
2.0 mM | 2.97 | 4.92 |
4.0 mM | 2.81 | 4.90 |
8.0 mM | 2.64 | 4.95 |
CM (mmolL−1) | R1p (s−1) | koff (s−1) | dCu-H12,16 (Å) | |
---|---|---|---|---|
H7 | H12,16 | |||
0.2 mM | 1.50 | 3.48 | 178 | 3.28 |
0.5 mM | 3.73 | 5.93 | 310 | 3.37 |
1.0 mM | 6.67 | 12.05 | 1000 | 4.21 |
2.0 mM | 11.52 | 17.26 | 10,000 | 4.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kola, A.; Valensin, D. NMR-Based Structural Insights on Folic Acid and Its Interactions with Copper(II) Ions. Inorganics 2024, 12, 248. https://doi.org/10.3390/inorganics12090248
Kola A, Valensin D. NMR-Based Structural Insights on Folic Acid and Its Interactions with Copper(II) Ions. Inorganics. 2024; 12(9):248. https://doi.org/10.3390/inorganics12090248
Chicago/Turabian StyleKola, Arian, and Daniela Valensin. 2024. "NMR-Based Structural Insights on Folic Acid and Its Interactions with Copper(II) Ions" Inorganics 12, no. 9: 248. https://doi.org/10.3390/inorganics12090248
APA StyleKola, A., & Valensin, D. (2024). NMR-Based Structural Insights on Folic Acid and Its Interactions with Copper(II) Ions. Inorganics, 12(9), 248. https://doi.org/10.3390/inorganics12090248