ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of the Pure and Cerium Modified ZnO Powders
2.2. Tribocatalysis for the Degradation of Doxycycline via ZnO and ZnO/Ce Powders
2.3. Tribocatalysis for Degradation of Doxycycline via Different Magnetic Stirring Speeds
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Narayanan, D.; Bhat, M.; Paul, N.; Khatri, N.; Saroliya, A. Artificial intelligence driven advances in wastewater treatment: Evaluating techniques for sustainability and efficacy in global facilities. Desalin. Water Treat. 2024, 320, 100618. [Google Scholar] [CrossRef]
- Hamedani, E.; Abasalt, A.; Talebi, S. Application of microbial fuel cells in wastewater treatment and green energy production: A comprehensive review of technology fundamentals and challenges. Fuel 2024, 370, 131855. [Google Scholar] [CrossRef]
- Astira, D.; Abdullah, R.; Widyanto, A.; Dharma, H.; Santoso, L.; Sulistiono, D.; Rahmawati, Z.; Gunawan, T.; Jaafar, J.; Othman, M.; et al. A recent development on core-shell-based material and their application in membranes for water and wastewater treatment. Inorg. Chem. Commun. 2024, 160, 111678. [Google Scholar] [CrossRef]
- Dong, S.; Cui, L.; Tian, Y.; Xia, L.; Wu, Y.; Yu, J.; Bagley, D.; Sun, J.; Fan, M. A novel and high-performance double Z-scheme photocatalyst ZnO-SnO2-Zn2SnO4 for effective removal of the biological toxicity of antibiotics. J. Hazard. Mater. 2020, 399, 123017. [Google Scholar] [CrossRef]
- Yu, S.; Xie, Z.; Wu, X.; Zheng, Y.; Shi, Y.; Xiong, Z.; Zhou, P.; Liu, Y.; He, C.; Pan, Z.; et al. Review of advanced oxidation processes for treating hospital sewage to achieve decontamination and disinfection. Chin. Chem. Lett. 2024, 35, 108714. [Google Scholar] [CrossRef]
- Ani, I.; Akpan, U.; Olutoye, M.; Hameed, B.; Egbosiuba, T. Adsorption–photocatalysis synergy of reusable mesoporous TiO2–ZnO for photocatalytic degradation of doxycycline antibiotic. Heliyon 2024, 10, e30531. [Google Scholar] [CrossRef] [PubMed]
- Ranjith, K.; Yildiz, Z.; Khalily, M.; Huh, Y.; Han, Y.; Uyar, T. Membrane-based electrospun poly-cyclodextrin nanofibers coated with ZnO nanograins by ALD: Ultrafiltration blended photocatalysis for degradation of organic micropollutants. J. Membr. Sci. 2023, 686, 122002. [Google Scholar] [CrossRef]
- Mahlangu, O.; Mamba, G.; Mamba, B. A facile synthesis approach for GO-ZnO/PES ultrafiltration mixed matrix photocatalytic membranes for dye removal in water: Leveraging the synergy between photocatalysis and membrane filtration. J. Environ. Chem. Eng. 2023, 11, 110065. [Google Scholar] [CrossRef]
- Dyshlyuk, L.; Babich, O.; Ivanova, S.; Vasilchenco, N.; Atuchin, V.; Korolkov, I.; Russakov, D.; Prosekov, A. Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation. Int. Biodeterior. Biodegrad. 2020, 146, 104821. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Chen, S.; Guan, J.; Guo, Y.; Yu, W. 3D chitosan/GO/ZnO hydrogel with enhanced photocorrosion-resistance and adsorption for efficient removal of typical water-soluble pollutants. Catal. Commun. 2023, 176, 106627. [Google Scholar] [CrossRef]
- Roy, N.; Kannabiran, K.; Mukherjee, A. Integrated adsorption and photocatalytic degradation based removal of ciprofloxacin and sulfamethoxazole antibiotics using Fc@rGO-ZnO nanocomposite in aqueous systems. Chemosphere 2023, 333, 138912. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Haddao, K.; Emami, N.; Nalchifard, F.; Hussain, W.; Jasem, H.; Dawood, A.; Toghraie, D.; Hekmatifar, M. Fabrication of HKUST-1/ZnO/SA nanocomposite for Doxycycline and Naproxen adsorption from contaminated water. Sustain. Chem. Pharm. 2022, 29, 100757. [Google Scholar] [CrossRef]
- Wang, X.; Lin, X.; Yu, D. Metal-containing covalent organic framework: A new type of photo/electrocatalyst. Rare Met. 2022, 41, 1160–1175. [Google Scholar] [CrossRef]
- Feng, A.; Yang, M.; Zhang, Z.; Xia, H.; Jin, W.; Shen, B.; Hu, Y.; Li, Q. Electrocatalytic hydrogen evolution coupled with dye hydrogenation reactions for sustainable wastewater treatment using transition-metal (Fe, Co, Ni, Cu) nanoparticles with ZnO nanowire supports. Chem. Eng. J. 2024, 496, 153751. [Google Scholar] [CrossRef]
- Chen, L.; Li, C.; Xu, B.; Xing, B.; Yi, G.; Huang, G.; Zhang, C.; Liu, J. Microbial degradation of organic pollutants in groundwater related to underground coal gasification. Energy Sci. Eng. 2019, 7, 2098–2111. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Zhu, X.; Ruan, Q.; Li, D.; Huang, C.; Peng, Q.; Zhu, S.; Gao, X.; Wang, B.; et al. Halogen-doped ultrathin Bi2WO6 for promoted separation of photogenerated carriers and efficient photocatalysis. Colloids Surf. A 2024, 695, 134113. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Zhang, J.; Dai, K. Overall utilization of photoexcited charges for simultaneous photocatalytic redox reactions. Acta Phys. Chim. Sin. 2023, 39, 2209037. [Google Scholar] [CrossRef]
- Li, X.; Wang, Q.; Sun, Y.; Sun, S.; Ge, L. Photogenerated charge carriers’ regulation strategies: Structure design, mechanism, and characterization technology. Int. J. Hydrogen Energy 2024, 69, 1341–1365. [Google Scholar] [CrossRef]
- Ali, Y.; Azzouz, A.; Ahrouch, M.; Lamaoui, A.; Raza, N.; Lahcen, A. Molecular imprinting technology for next-generation water treatment via photocatalysis and selective pollutant adsorption. J. Environ. Chem. Eng. 2024, 12, 112768. [Google Scholar]
- Lei, H.; Wu, M.; Mo, F.; Ji, S.; Dong, X.; Wu, Z.; Gao, J.; Yang, Y.; Jia, Y. Tribo-catalytic degradation of organic pollutants through bismuth oxyiodate triboelectrically harvesting mechanical energy. Nano Energy 2020, 78, 105290. [Google Scholar] [CrossRef]
- Gaur, A.; Moharana, A.; Porwal, C.; Chauhan, V.; Vaish, R. Degradation of organic dyes by utilizing CaCu3Ti4O12 (CCTO) nanoparticles via tribocatalysis process. J. Ind. Eng. Chem. 2024, 129, 341–351. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, W.; Qiu, J.; Jin, H.; Ma, H.; Li, Z.; Cang, D. Modeling and optimization study on sulfamethoxazole degradation by electrochemically activated persulfate process. J. Clean. Prod. 2018, 197, 297–305. [Google Scholar] [CrossRef]
- Xiong, H.; Zou, D.; Zhou, D.; Dong, S.; Wang, J.; Rittmann, B. Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB). Chem. Eng. J. 2017, 316, 7–14. [Google Scholar] [CrossRef]
- Klauson, D.; Poljakova, A.; Pronina, N.; Krichevskaya, M.; Moiseev, A.; Dedova, T.; Preis, S. Aqueous photocatalytic oxidation of doxycycline. J. Adv. Oxid. Technol. 2013, 16, 234–243. [Google Scholar] [CrossRef]
- Boro, B.; Samdarshi, B.; Rajbongshi, S. Synthesis and fabrication of TiO2–ZnO nanocomposite based solid state dye sensitized solar cell. J. Mater. Sci. Mater. Electron. 2016, 27, 9929–9940. [Google Scholar] [CrossRef]
- Bolobajev, J.; Trapido, M.; Goi, A. Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition. Chemosphere 2016, 153, 220–226. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, K.; Chen, B.; Chang, C. Graphene/TiO2/ZSM-5 composites synthesized by mixture design were used for photocatalytic degradation of oxytetracycline under visible light: Mechanism and biotoxicity. Appl. Surf. Sci. 2016, 362, 329–334. [Google Scholar] [CrossRef]
- Ada, K.; Gökgöz, M.; Önal, M.; Sarıkaya, Y. Preparation and characterization of a ZnO powder with the hexagonal plate particles. Powder Technol. 2008, 181, 285–291. [Google Scholar] [CrossRef]
- Kumar, S.; Kavitha, R. Lanthanide ions doped ZnO based photocatalysts. Sep. Purif. Technol. 2021, 274, 118853. [Google Scholar] [CrossRef]
- Eaimsumang, S.; Wongkasemjit, S.; Pongstabodee, S.; Smith, S.M.; Ratanawilai, S.; Chollacoop, N.; Luengnaruemitchai, A. Effect of synthesis time on morphology of CeO2 nanoparticles and Au/CeO2 and their activity in oxidative steam reforming of methanol. J. Rare Earths 2019, 37, 819–828. [Google Scholar] [CrossRef]
- Qu, G.; Fan, G.; Zhou, M.; Rong, X.; Li, T.; Zhang, R.; Sun, J.; Chen, D. Graphene-Modified ZnO Nanostructures for Low-Temperature NO2 Sensing. ACS Omega 2019, 4, 4221–4232. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, Y.; Li, A.; Chen, Y.; Gao, S.; Liu, W.; Wei, D. Effects of rare earth elements doping on gas sensing properties of ZnO nanowires. Ceram. Int. 2021, 47, 24218–24226. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, X.; Duan, L.; Shen, H.; Liu, R. Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites. J. Photochem. Photobiol. A 2020, 392, 112156. [Google Scholar] [CrossRef]
- Peleš, A.; Pavlović, V.P.; Filipović, S.; Obradović, N.; Mančić, L.; Krstić, J.; Mitrić, M.; Vlahović, B.; Rašić, G.; Kosanović, D.; et al. Structural investigation of mechanically activated ZnO powder. J. Alloys Compd. 2015, 648, 971–979. [Google Scholar] [CrossRef]
- Xu, Y.; Yin, R.; Zhang, Y.; Zhou, B.; Sun, P.; Dong, X. Unveiling the Mechanism of Frictional Catalysis in Water by Bi(12)TiO(20): A Charge Transfer and Contaminant Decomposition Path Study. Langmuir 2022, 38, 14153–14161. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wu, Z.; Luo, W.; Zheng, Y.; Jia, Y.; Wang, L.; Huang, H. High pyrocatalytic properties of pyroelectric BaTiO3 nanofibers loaded by noble metal under roomtemperature thermal cycling. Ceram. Int. 2018, 44, 21835–21841. [Google Scholar] [CrossRef]
- Al Abri, R.; Al Marzouqi, F.; Kuvarega, A.T.; Meetani, M.A.; Al Kindy, S.M.Z.; Karthikeyan, S.; Kim, Y.; Selvaraj, R. Nanostructured cerium-doped ZnO for photocatalytic degradation of pharmaceuticals in aqueous solution. J. Photochem. Photobiol. A 2019, 384, 112065. [Google Scholar] [CrossRef]
- Lei, H.; Cui, X.; Jia, X.; Qi, J.; Wang, Z.; Chen, W. Enhanced Tribocatalytic Degradation of Organic Pollutants by ZnO Nanoparticles of High Crystallinity. Nanomaterials 2023, 13, 46. [Google Scholar] [CrossRef]
- Xu, X.; Jia, Y.; Xiao, L.; Wu, Z. Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. Chemosphere 2018, 193, 1143–1148. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, S.; Liu, M.; He, G.; Li, X. Enhanced tribocatalytic degradation performance of organic pollutants by Cu1.8S/CuCo2S4 p-n junction. J. Colloid Interface Sci. 2024, 655, 187–198. [Google Scholar] [CrossRef]
- Zhao, J.; Dang, Z.; Muddassir, M.; Raza, S.; Zhong, A.; Wang, X.; Jin, J. A New Cd(II)-Based Coordination Polymer for Efficient Photocatalytic Removal of Organic Dyes. Molecules 2023, 28, 6848. [Google Scholar] [CrossRef]
- Xiang, R.; Zhou, C.; Liu, Y.; Qin, T.; Li, D.; Dong, X.; Muddassir, M.; Zhong, A. A new type Co(II)-based photocatalyst for the nitrofurantoin antibiotic degradation. J. Mol. Struct. 2024, 1312, 138501. [Google Scholar] [CrossRef]
- Pourmoslemi, S.; Mohammadi, A.; Kobarfard, F.; Amini, M. Photocatalytic removal of doxycycline from aqueous solution using ZnO nano-particles: A comparison between UV-C and visible light. Water Sci. Technol. 2016, 74, 1658–1670. [Google Scholar] [CrossRef] [PubMed]
- Kraus, W.; Nolze, G. POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 1996, 29, 301–303. [Google Scholar] [CrossRef]
Sample Powders | 100 rpm | 300 rpm | 500 rpm | |||
---|---|---|---|---|---|---|
k, h−1 | D, % | k, h−1 | D, % | k, h−1 | D, % | |
ZnO | 0.0296 | 49 | 0.0483 | 67 | 0.0725 | 80 |
ZnO/Ce | 0.0119 | 24 | 0.0168 | 30 | 0.0352 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, D.; Kolev, H.; Stefanov, B.I.; Kaneva, N. ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic. Inorganics 2024, 12, 244. https://doi.org/10.3390/inorganics12090244
Ivanova D, Kolev H, Stefanov BI, Kaneva N. ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic. Inorganics. 2024; 12(9):244. https://doi.org/10.3390/inorganics12090244
Chicago/Turabian StyleIvanova, Dobrina, Hristo Kolev, Bozhidar I. Stefanov, and Nina Kaneva. 2024. "ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic" Inorganics 12, no. 9: 244. https://doi.org/10.3390/inorganics12090244
APA StyleIvanova, D., Kolev, H., Stefanov, B. I., & Kaneva, N. (2024). ZnO and ZnO/Ce Powders as Tribocatalysts for Removal of Tetracycline Antibiotic. Inorganics, 12(9), 244. https://doi.org/10.3390/inorganics12090244