An Investigation of the Interface between Transition Metal Oxides (MnOx, FeOx, CoOx and NiOx)/MoO3 Composite Electrocatalysts for Oxygen Evolution Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Active Metal Oxide Composites
2.3. Physiochemical Characterization
2.4. Preparation of Working Electrodes
2.5. Electrochemical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Epelle, E.I.; Desongu, K.S.; Obande, W.; Adeleke, A.A.; Ikubanni, P.P.; Okolie, J.A.; Gunes, B. A comprehensive review of hydrogen production and storage: A focus on the role of nanomaterials. Int. J. Hydrogen Energy 2022, 47, 20398–20431. [Google Scholar] [CrossRef]
- Sriram, G.; Dhanabalan, K.; Ajeya, K.V.; Aruchamy, K.; Ching, Y.C.; Oh, T.H.; Jung, H.Y.; Kurkuri, M. Recent progress in anion exchange membranes (AEMs) in water electrolysis: Synthesis, physio-chemical analysis, properties, and applications. J. Mater. Chem. A Mater. 2023, 11, 20886–21008. [Google Scholar] [CrossRef]
- Dhanabalan, K.; Sriram, G.; Sannasi, V.; Ajeya, K.V.; Jung, S.H.; Jung, H.Y. Water splitting catalysts using non-metal covalent organic frameworks: A review. Int. J. Hydrogen Energy 2024, 51, 376–398. [Google Scholar] [CrossRef]
- Dhanabalan, K.; Perumalsamy, M.; Sriram, G.; Murugan, N.; Sadhasivam, T.; Oh, T.H. Metal–Organic Framework (MOF)-Derived Catalyst for Oxygen Reduction Reaction (ORR) Applications in Fuel Cell Systems: A Review of Current Advancements and Perspectives. Energies 2023, 16, 4950. [Google Scholar] [CrossRef]
- Lee, Y.; Suntivich, J.; May, K.J.; Perry, E.E.; Shao-Horn, Y. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. J. Phys. Chem. Lett. 2012, 3, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Parra-Puerto, A.; Ng, K.L.; Fahy, K.; Goode, A.E.; Ryan, M.P.; Kucernak, A. Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes. ACS Catal. 2019, 9, 11515–11529. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, S.; Song, J.; Xi, S.; Chen, B.; Du, Y.; Fisher, A.C.; Cheng, F.; Wang, X.; Zhang, H.; et al. Enlarged Co—O Covalency in Octahedral Sites Leading to Highly Efficient Spinel Oxides for Oxygen Evolution Reaction. Adv. Mater. 2018, 30, 1802912. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pei, Y.; Wang, K.; Zuo, Y.; Wei, M.; Xiong, J.; Zhang, P.; Chen, Z.; Shang, N.; Zhong, D.; et al. First-Row Transition Metals for Catalyzing Oxygen Redox. Small 2023, 19, 2304863. [Google Scholar] [CrossRef]
- Kumar Ni Mishra, D.; Gi Seo, S.; Na, T.; Jin, S.H. Hierarchical formation of Ni sulfide single walled carbon nanotubes heterostructure on tin-sulfide scaffolds via mediated SILAR process: Application towards long cycle-life solid-state supercapacitors. Ceram. Int. 2022, 48, 16656–16666. [Google Scholar] [CrossRef]
- Tariq, M.; Wu, Y.; Ma, C.; Ali, M.; Zaman, W.Q.; Abbas, Z.; Ayub, K.S.; Zhou, J.; Wang, G.; Cao, L.M.; et al. Boosted up stability and activity of oxygen vacancy enriched RuO2/MoO3 mixed oxide composite for oxygen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 17287–17298. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, P.; Men, Y.L.; Li, Y.; Peng, C.; Xi, S.; Pan, Y. XIncorporating MoO3 Patches into a Ni Oxyhydroxide Nanosheet Boosts the Electrocatalytic Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2021, 13, 26064–26073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, H.; Ren, J.; Li, X.; Ren, W.; Song, R. MoO3 crystal facets modulation by doping heteroatom Fe from polyoxometalate for quasi-industrial oxygen evolution reaction. Appl. Catal. B 2021, 298, 120582. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Wang, J.; Da, Y.; Zhang, J.; Li, L.; Zhong, C.; Deng, Y.; Han, X.; Hu, W. Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO3/Ni–NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Adv. Mater. 2020, 32, 2003414. [Google Scholar] [CrossRef]
- Tariq, M.; Zaman, W.Q.; Sun, W.; Zhou, Z.; Wu, Y.; Cao, L.M.; Yang, J. Unraveling the Beneficial Electrochemistry of IrO2/MoO3 Hybrid as a Highly Stable and Efficient Oxygen Evolution Reaction Catalyst. ACS Sustain. Chem. Eng. 2018, 6, 4854–4862. [Google Scholar] [CrossRef]
- Bhosale, M.; Thangarasu, S.; Murugan, N.; Kim, Y.A.; Oh, T.H. Engineering 2D heterostructured VS2-rGO-Ni nanointerface to stimulate electrocatalytic water splitting and supercapacitor applications. J. Energy Storage 2023, 73, 109133. [Google Scholar] [CrossRef]
- Karaca, E.; Gökcen, D.; Pekmez, N.Ö.; Pekmez, K. Electrochemical synthesis of PPy composites with nanostructured MnOx, CoOx, NiOx, and FeOx in acetonitrile for supercapacitor applications. Electrochim. Acta 2019, 305, 502–513. [Google Scholar] [CrossRef]
- Baro, M.; Nayak, P.; Baby, T.T.; Ramaprabhu, S. Green approach for the large-scale synthesis of metal/metal oxidenanoparticle decorated multiwalled carbon nanotubes. J. Mater. Chem. A 2013, 1, 482–486. [Google Scholar] [CrossRef]
- Dhanabalan, K.; Bhosale, M.; Murugan, N.; Aruchamy, K.; Sriram, G.; Sadhasivam, T.; Oh, T.H. A versatile heterostructure junction of NiO–C-MoOx (X = 2 & 3) composite electrocatalysts for hydrogen evolution reaction. J. Solid. State Chem. 2024, 335, 124702. [Google Scholar] [CrossRef]
- Comer, B.M.; Li, J.; Abild-Pedersen, F.; Bajdich, M.; Winther, K.T. Unraveling Electronic Trends in O* and OH* Surface Adsorption in the MO2 Transition-Metal Oxide Series. J. Phys. Chem. C 2022, 126, 7903–7909. [Google Scholar] [CrossRef]
- Gryglewicz, G.; Machnikowski, J.; Lorenc-Grabowska, E.; Lota, G.; Frackowiak, E. Effect of pore size distribution of coal-based activated carbons on double layer capacitance. Electrochim. Acta 2005, 50, 1197–1206. [Google Scholar] [CrossRef]
- Bardestani, R.; Patience, G.S.; Kaliaguine, S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can. J. Chem. Eng. 2019, 97, 2781–2791. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, X.; Li, Q.; Chen, X.; Che, Q.; Chen, Y.; Long, Y. Constructing ultrathin FeS/FeO H@Fe nano-sheets for highly efficient oxygen evolution reaction. J. Colloid. Interface Sci. 2021, 594, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Sudarsanam, P.; Hillary, B.; Amin, M.H.; Hamid, S.B.A.; Bhargava, S.K. Structure-activity relationships of nanoscale MnOx/CeO2 heterostructured catalysts for selective oxidation of amines under eco-friendly conditions. Appl. Catal. B 2016, 185, 213–224. [Google Scholar] [CrossRef]
- Kandel, M.R.; Pan, U.N.; Dhakal, P.P.; Ghising, R.B.; Nguyen, T.T.; Zhao, J.; Kim, N.H.; Lee, J.H. Unique heterointerface engineering of Ni2P–MnP nanosheets coupled Co2P nanoflowers as hierarchical dual-functional electrocatalyst for highly proficient overall water-splitting. Appl. Catal. B 2023, 331, 122680. [Google Scholar] [CrossRef]
- Murphy, E.; Sun, B.; Rüscher, M.; Liu, Y.; Zang, W.; Guo, S.; Chen, Y.H.; Hejral, U.; Huang, Y.; Ly, A.; et al. Synergizing Fe2O3 Nanoparticles on Single Atom Fe-N-C for Nitrate Reduction to Ammonia at Industrial Current Densities. Adv. Mater. 2024, 36, 2401133. [Google Scholar] [CrossRef]
- Quílez-Bermejo, J.; Daouli, A.; Dalí, S.G.; Cui, Y.; Zitolo, A.; Castro-Gutiérrez, J.; Emo, M.; Izquierdo, M.T.; Mustain, W.; Badawi, M.; et al. Electron Transfer from Encapsulated Fe3C to the Outermost N-Doped Carbon Layer for Superior ORR. Adv. Funct. Mater. 2024; early view. [Google Scholar] [CrossRef]
- He, Y.; Zhang, J.; Zhou, H.; Yao, G.; Lai, B. Synergistic multiple active species for the degradation of sulfamethoxazole by peroxymonosulfate in the presence of CuO@FeOx@Fe0. Chem. Eng. J. 2020, 380, 122568. [Google Scholar] [CrossRef]
- Hu, G.-L.; Hu, R.; Liu, Z.-H.; Wang, K.; Yan, X.-Y.; Wang, H.-Y. Tri-functional molecular relay to fabricate size-controlled CoOx nanoparticles and WO3 photoanode for an efficient photoelectrochemical water oxidation. Catal. Sci. Technol. 2020, 10, 5677–5687. [Google Scholar] [CrossRef]
- Shi, H.; Sun, X.Y.; Liu, Y.; Zeng, S.P.; Zhang, Q.H.; Gu, L.; Wang, T.H.; Han, G.F.; Wen, Z.; Fang, Q.R.; et al. Multicomponent Intermetallic Nanoparticles on Hierarchical Metal Network as Versatile Electrocatalysts for Highly Efficient Water Splitting. Adv. Funct. Mater. 2023, 33, 2214412. [Google Scholar] [CrossRef]
- Shi, H.; Dai, T.Y.; Sun, X.Y.; Zhou, Z.L.; Zeng, S.P.; Wang, T.H.; Han, G.F.; Wen, Z.; Fang, Q.R.; Lang, X.Y.; et al. Dual-Intermetallic Heterostructure on Hierarchical Nanoporous Metal for Highly Efficient Alkaline Hydrogen Electrocatalysis. Adv. Mater. 2024; early view. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Ali, A.; Khan, M.S.; Younas, M.; Zubair, M.; Habib, A.; Hakeem, A.S.; Iqbal, N. Effectual Water Oxidation Reinforced by Three-Dimensional (3D) MnO: A Highly Sustainable Electrocatalyst. ACS Appl. Energy Mater. 2023, 6, 7156–7168. [Google Scholar] [CrossRef]
- Jing, T.; Zhang, N.; Zhang, C.; Mourdikoudis, S.; Sofer, Z.; Li, W.; Li, P.; Li, T.; Zuo, Y.; Rao, D. Improving C-N-FeOx Oxygen Evolution Electrocatalysts through Hydroxyl-Modulated Local Coordination Environment. ACS Catal. 2022, 12, 7443–7452. [Google Scholar] [CrossRef]
- Han, L.; Dong, S.; Wang, E. Transition-Metal (Co, Ni, and Fe)-Based Electrocatalysts for the Water Oxidation Reaction. Adv. Mater. 2016, 28, 9266–9291. [Google Scholar] [CrossRef] [PubMed]
- Babar, P.T.; Lokhande, A.C.; Gang, M.G.; Pawar, B.S.; Pawar, S.M.; Kim, J.H. Thermally oxidized porous NiO as an efficient oxygen evolution reaction (OER) electrocatalyst for electrochemical water splitting application. J. Ind. Eng. Chem. 2018, 60, 493–497. [Google Scholar] [CrossRef]
Catalyst | Preparation Method | Electrolyte (M) | Over Potential @ 10 mA cm−2 | Reference |
---|---|---|---|---|
MnO | Thermal annealing | 1.0 KOH | 394 mV | [32] |
FeOx | Hydrothermal | 1.0 KOH | 379 mV | [33] |
Co3O4 | Thermal annealing | 1.0 KOH | 490 mV | [34] |
NiO | Thermal annealing | 1.0 KOH | 330 mV | [35] |
MnOx-MoO3 | Thermal annealing | 1.0 KOH | 390 mV | This work |
FeOx-MoO3 | Thermal annealing | 1.0 KOH | 350 mV | This work |
CoOx-MoO3 | Thermal annealing | 1.0 KOH | 310 mV | This work |
NiOx-MoO3 | Thermal annealing | 1.0 KOH | 340 mV | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhanabalan, K.; Bhosale, M.; Sriram, G.; Sadhasivam, T.; Oh, T.H. An Investigation of the Interface between Transition Metal Oxides (MnOx, FeOx, CoOx and NiOx)/MoO3 Composite Electrocatalysts for Oxygen Evolution Reactions. Inorganics 2024, 12, 241. https://doi.org/10.3390/inorganics12090241
Dhanabalan K, Bhosale M, Sriram G, Sadhasivam T, Oh TH. An Investigation of the Interface between Transition Metal Oxides (MnOx, FeOx, CoOx and NiOx)/MoO3 Composite Electrocatalysts for Oxygen Evolution Reactions. Inorganics. 2024; 12(9):241. https://doi.org/10.3390/inorganics12090241
Chicago/Turabian StyleDhanabalan, Karmegam, Mrunal Bhosale, Ganesan Sriram, Thangarasu Sadhasivam, and Tae Hwan Oh. 2024. "An Investigation of the Interface between Transition Metal Oxides (MnOx, FeOx, CoOx and NiOx)/MoO3 Composite Electrocatalysts for Oxygen Evolution Reactions" Inorganics 12, no. 9: 241. https://doi.org/10.3390/inorganics12090241
APA StyleDhanabalan, K., Bhosale, M., Sriram, G., Sadhasivam, T., & Oh, T. H. (2024). An Investigation of the Interface between Transition Metal Oxides (MnOx, FeOx, CoOx and NiOx)/MoO3 Composite Electrocatalysts for Oxygen Evolution Reactions. Inorganics, 12(9), 241. https://doi.org/10.3390/inorganics12090241