Bioinorganic Chemistry of Copper: From Biochemistry to Pharmacology
Conflicts of Interest
List of Contributions
- Aguilar-Jiménez, Z.; Espinoza-Guillén, A.; Resendiz-Acevedo, K.; Fuentes-Noriega, I.; Mejía, C.; Ruiz-Azuara, L. The Importance of Being Casiopeina as Polypharmacologycal Profile (Mixed Chelate-Copper (II) Complexes and Their In Vitro and In Vivo Activities). Inorganics 2023, 11, 394. https://doi.org/10.3390/inorganics11100394.
- Leite, C.; Araujo-Neto, J.; Guedes, A.; Costa, A.; Demidoff, F.; Netto, C.; Castellano, E.; Nascimento, O.; Batista, A. Copper(I)/Triphenylphosphine Complexes Containing Naphthoquinone Ligands as Potential Anticancer Agents. Inorganics 2023, 11, 367. https://doi.org/10.3390/inorganics11090367.
- Fernández, C.; Rocha, A.; Azam, M.; Alvarez, N.; Min, K.; Batista, A.; Costa-Filho, A.; Ellena, J.; Facchin, G. Synthesis, Characterization, DNA Binding and Cytotoxicity of Copper(II) Phenylcarboxylate Complexes. Inorganics 2023, 11, 398. https://doi.org/10.3390/inorganics11100398.
- Serre, D.; Erbek, S.; Berthet, N.; Philouze, C.; Ronot, X.; Martel-Frachet, V.; Thomas, F. Anti-Proliferation and DNA Cleavage Activities of Copper(II) Complexes of N3O Tripodal Polyamine Ligands. Inorganics 2023, 11, 396. https://doi.org/10.3390/inorganics11100396.
- Graur, V.; Usataia, I.; Graur, I.; Garbuz, O.; Bourosh, P.; Kravtsov, V.; Lozan-Tirsu, C.; Balan, G.; Fala, V.; Gulea, A. Novel Copper(II) Complexes with N4,S-Diallylisothiosemicarbazones as Potential Antibacterial/Anticancer Drugs. Inorganics 2023, 11, 195. https://doi.org/10.3390/inorganics11050195.
- Silva, A.; Frajácomo, S.; Cruz, Á.; Buglio, K.; Affonso, D.; Portes, M.; Ruiz, A.; de Carvalho, J.; Lustri, W.; Pereira, D.; da Costa Ferreira, A.; Corbi, P. Copper(II) and Platinum(II) Naproxenates: Insights on Synthesis, Characterization and Evaluation of Their Antiproliferative Activities. Inorganics 2023, 11, 331. https://doi.org/10.3390/inorganics11080331.
- Umba-Tsumbu, E.; Hammouda, A.; Jackson, G. Evaluation of Membrane Permeability of Copper-Based Drugs. Inorganics 2023, 11, 179. https://doi.org/10.3390/inorganics11050179.
- Rovetta, A.; Carosella, L.; Arrigoni, F.; Vertemara, J.; De Gioia, L.; Zampella, G.; Bertini, L. Oxidation of Phospholipids by OH Radical Coordinated to Copper Amyloid-beta; Peptide: A Density Functional Theory Modeling. Inorganics 2023, 11, 227. https://doi.org/10.3390/inorganics11060227.
- Kola, A.; Vigni, G.; Valensin, D. Exploration of Lycorine and Copper(II)’s Association with the N-Terminal Domain of Amyloid β. Inorganics 2023, 11, 43. https://doi.org/10.3390/inorganics11110443.
- Portes, M.; Ribeiro, G.; Sabino, G.; De Couto, R.; Vieira, L.; Alves, M.; Da Costa Ferreira, A.M. Antiparasitic Activity of Oxindolimine-Metal Complexes against Chagas Disease. Inorganics 2023, 11, 420. https://doi.org/10.3390/inorganics11110420.
- Blade, G.; Wessel, A.; Terpstra, K.; Mirica, L. Pentadentate and Hexadentate Pyridinophane Ligands Support Reversible Cu(II)/Cu(I) Redox Couples. Inorganics 2023, 11, 446. https://doi.org/10.3390/inorganics11110446.
- Richezzi, M.; Ferreyra, J.; Signorella, S.; Palopoli, C.; Terrestre, G.; Pellegri, N.; Hureau, C.; Signorella, S. Effect of Metal Environment and Immobilization on the Catalytic Activity of a Cu Superoxide Dismutase Mimic. Inorganics 2023, 11, 425. https://doi.org/10.3390/inorganics11110425.
- Karner, V.; Jancso, A.; Hemmingsen, L. Probing the Bioinorganic Chemistry of Cu(I) with 111Ag Perturbed Angular Correlation (PAC) Spectroscopy. Inorganics 2023, 11, 375. https://doi.org/10.3390/inorganics11100375.
- Isaac, J.; Gellon, G.; Molton, F.; Philouze, C.; Le Poul, N.; Belle, C.; Thibon-Pourret, A. Symmetrical and Unsymmetrical Dicopper Complexes Based on Bis-Oxazoline Units: Synthesis, Spectroscopic Properties and Reactivity. Inorganics 2023, 11, 332. https://doi.org/10.3390/inorganics11080332.
References
- Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflügers Arch.-Eur. J. Physiol. 2020, 472, 1415–1429. [Google Scholar] [CrossRef] [PubMed]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 2003, 57, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Pandita, S.; Singh Sidhu, G.P.; Sharma, A.; Khanna, K.; Kaur, P.; Bali, A.S.; Setia, R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere 2021, 262, 127810. [Google Scholar] [CrossRef] [PubMed]
- Hay, R.W. Plant Metalloenzymes. In Plants and the Chemical Elements; VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1994; pp. 107–148. [Google Scholar]
- Baran, E.J. Copper in plants: An essential and multifunctional element. Adv. Plant Physiol. 2014, 15, 373–397. [Google Scholar]
- Beeby, A. Toxic metal uptake and essential metal regulation in terrestrial invertebrates: A review. In Metal Ecotoxicology Concepts and Applications; CRC Press: Boca Raton, FL, USA, 2020; pp. 65–89. [Google Scholar]
- Bertini, I.; Cavallaro, G.; McGreevy, K.S. Cellular copper management—A draft user’s guide. Coord. Chem. Rev. 2010, 254, 506–524. [Google Scholar] [CrossRef]
- Tsang, T.; Davis, C.I.; Brady, D.C. Copper biology. Curr. Biol. 2021, 31, R421–R427. [Google Scholar] [CrossRef] [PubMed]
- Gray, H.B.; Malmström, B.G.; Williams, R.J.P. Copper coordination in blue proteins. JBIC J. Biol. Inorg. Chem. 2000, 5, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Pretzler, M.; Rompel, A. What causes the different functionality in type-III-copper enzymes? A state of the art perspective. Inorg. Chim. Acta 2018, 481, 25–31. [Google Scholar] [CrossRef]
- Solomon, E.I.; Hadt, R.G. Recent advances in understanding blue copper proteins. Coord. Chem. Rev. 2011, 255, 774–789. [Google Scholar] [CrossRef]
- Farver, O. Electron transfer. In Protein Electron Transfer, 1st ed.; Bendall, D., Ed.; Garland Science: New York, NY, USA, 1996; p. 249. [Google Scholar]
- Festa, R.A.; Thiele, D.J. Copper: An essential metal in biology. Curr. Biol. 2011, 21, R877–R883. [Google Scholar] [CrossRef]
- Boal, A.K.; Rosenzweig, A.C. Structural Biology of Copper Trafficking. Chem. Rev. 2009, 109, 4760–4779. [Google Scholar] [CrossRef]
- Adman, E.T. Copper Protein Structures. In Advances in Protein Chemistry; Anfinsen, C.B., Edsall, J.T., Richards, F.M., Eisenberg, D.S., Eds.; Academic Press: Cambridge, MA, USA, 1991; Volume 42, pp. 145–197. [Google Scholar]
- Gaggelli, E.; Kozlowski, H.; Valensin, D.; Valensin, G. Copper Homeostasis and Neurodegenerative Disorders (Alzheimer’s, Prion, and Parkinson’s Diseases and Amyotrophic Lateral Sclerosis). Chem. Rev. 2006, 106, 1995–2044. [Google Scholar] [CrossRef]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef]
- Acevedo, K.; Masaldan, S.; Opazo, C.M.; Bush, A.I. Redox active metals in neurodegenerative diseases. JBIC J. Biol. Inorg. Chem. 2019, 24, 1141–1157. [Google Scholar] [CrossRef] [PubMed]
- Leal, M.F.C.; Catarino, R.I.L.; Pimenta, A.M.; Souto, M.R.S. Roles of Metal Microelements in Neurodegenerative Diseases. Neurophysiology 2020, 52, 80–88. [Google Scholar] [CrossRef]
- Bisaglia, M.; Bubacco, L. Copper Ions and Parkinson’s Disease: Why Is Homeostasis So Relevant? Biomolecules 2020, 10, 195. [Google Scholar] [CrossRef]
- Liu, Y.; Nguyen, M.; Robert, A.; Meunier, B. Metal Ions in Alzheimer’s Disease: A Key Role or Not? Acc. Chem. Res. 2019, 52, 2026–2035. [Google Scholar] [CrossRef] [PubMed]
- Fasae, K.D.; Abolaji, A.O.; Faloye, T.R.; Odunsi, A.Y.; Oyetayo, B.O.; Enya, J.I.; Rotimi, J.A.; Akinyemi, R.O.; Whitworth, A.J.; Aschner, M. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. J. Trace Elem. Med. Biol. 2021, 67, 126779. [Google Scholar] [CrossRef]
- Tisato, F.; Marzano, C.; Porchia, M.; Pellei, M.; Santini, C. Copper in Diseases and Treatments, and Copper-Based Anticancer Strategies. Med. Res. Rev. 2010, 30, 708–749. [Google Scholar] [CrossRef]
- Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in Copper Complexes as Anticancer Agents. Chem. Rev. 2014, 114, 815–862. [Google Scholar] [CrossRef]
- Gandin, V.; Ceresa, C.; Esposito, G.; Indraccolo, S.; Porchia, M.; Tisato, F.; Santini, C.; Pellei, M.; Marzano, C. Therapeutic potential of the phosphino Cu(I) complex (HydroCuP) in the treatment of solid tumors. Sci. Rep. 2017, 7, 13936. [Google Scholar] [CrossRef] [PubMed]
- Balsa, L.M.; Baran, E.J.; León, I.E. Copper Complexes as Antitumor Agents: In vitro and In vivo Evidence. Curr. Med. Chem. 2023, 30, 510–557. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, V. Biomedical applications of copper ionophores. Coord. Chem. Rev. 2020, 422, 213474. [Google Scholar] [CrossRef]
- Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper Coordination Compounds as Biologically Active Agents. Int. J. Mol. Sci. 2020, 21, 3965. [Google Scholar] [CrossRef] [PubMed]
- Kellett, A.; Molphy, Z.; McKee, V.; Slator, C. Recent Advances in Anticancer Copper Compounds. In Metal-Based Anticancer Agents; Royal Society of Chemistry: London, UK, 2019; pp. 91–119. [Google Scholar]
- Shobha Devi, C.; Thulasiram, B.; Aerva, R.R.; Nagababu, P. Recent Advances in Copper Intercalators as Anticancer Agents. J. Fluoresc. 2018, 28, 1195–1205. [Google Scholar] [CrossRef]
- da Silva, D.A.; De Luca, A.; Squitti, R.; Rongioletti, M.; Rossi, L.; Machado, C.M.L.; Cerchiaro, G. Copper in tumors and the use of copper-based compounds in cancer treatment. J. Inorg. Biochem. 2022, 226, 111634. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Costa Ferreira, A.M.; Hureau, C.; Facchin, G. Bioinorganic Chemistry of Copper: From Biochemistry to Pharmacology. Inorganics 2024, 12, 97. https://doi.org/10.3390/inorganics12040097
Da Costa Ferreira AM, Hureau C, Facchin G. Bioinorganic Chemistry of Copper: From Biochemistry to Pharmacology. Inorganics. 2024; 12(4):97. https://doi.org/10.3390/inorganics12040097
Chicago/Turabian StyleDa Costa Ferreira, Ana Maria, Christelle Hureau, and Gianella Facchin. 2024. "Bioinorganic Chemistry of Copper: From Biochemistry to Pharmacology" Inorganics 12, no. 4: 97. https://doi.org/10.3390/inorganics12040097
APA StyleDa Costa Ferreira, A. M., Hureau, C., & Facchin, G. (2024). Bioinorganic Chemistry of Copper: From Biochemistry to Pharmacology. Inorganics, 12(4), 97. https://doi.org/10.3390/inorganics12040097