Simulation of a Single-Electron Device Based on Endohedral Fullerene (KI)@C180
Abstract
:1. Introduction
2. Geometry
3. Results
3.1. Dependence of the Total Energy on the Charge State
3.2. The Dependence of Total Energy on Voltage
3.3. Coulomb Blockade in SET C180 and (KI)@C180
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Cuevas, J.C.; Scheer, E. Molecular Electronics (An Introduction to Theory and Experiment), 2nd ed.; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2017. [Google Scholar]
- Xiang, R.; Inoue, T.; Zheng, Y.; Kumamoto, A.; Qian, Y.; Sato, Y.; Liu, M.; Tang, D.; Gokhale, D.; Guo, J.; et al. One-dimensional van der Waals heterostructures. Science 2020, 367, 6477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergeyev, D. One-dimensional Schottky nanodiode based on telescoping polyprismanes. Adv. Nano Reseach 2021, 10, 339. [Google Scholar]
- Chuan, M.W.; Lau, J.Y.; Wong, K.L.; Hamzah, A.; Alias, N.E.; Lim, C.S.; Tan, M.L.P. Low-dimensional modelling of n-type doped silicene and its carrier transport properties for nanoelectronic applications. Adv. Nano Reseach 2021, 10, 415. [Google Scholar]
- Montanaro, A.; Wei, W.; De Fazio, D.; Sassi, U.; Soavi, G.; Aversa, P.; Ferrari, A.C.; Happy, H.; Legagneux, P.; Pallecchi, E. Optoelectronic mixing with high-frequency graphene transistors. Nat. Commun. 2021, 12, 2728. [Google Scholar] [CrossRef] [PubMed]
- Gaur, M.; Misra, C.; Yadav, A.B.; Swaroop, S.; Maolmhuaidh, F.O.; Bechelany, M.; Barhoum, A. Biomedical applications of carbon nanomaterials: Fullerenes, quantum dots, nanotubes, nanofibers, and graphene. Materials 2021, 14, 5978. [Google Scholar] [CrossRef]
- Yao, S.; Yuan, X.; Jiang, L.; Xiong, T.; Zhang, J. Recent progress on fullerene-based materials: Synthesis, properties, modifications, and photocatalytic applications. Materials 2020, 13, 2924. [Google Scholar] [CrossRef]
- Bellucci, S.; Saharian, A.A. Fermionic Casimir densities in toroidally compactified spacetimes with applications to nanotubes. Phys. Rev. D 2009, 79, 085019. [Google Scholar]
- Bleija, M.; Platnieks, O.; Macutkevič, J.; Starkova, O.; Gaidukovs, S. Comparison of Carbon-Nanoparticle-Filled Poly(Butylene Succinate-co-Adipate) Nanocomposites for Electromagnetic Applications. Nanomaterials 2022, 12, 3671. [Google Scholar] [CrossRef]
- Vanskevičė, I.; Kazakova, M.A.; Macutkevic, J.; Semikolenova, N.V.; Banys, J. Dielectric Properties of Hybrid Polyethylene Composites Containing Cobalt Nanoparticles and Carbon Nanotubes. Materials 2022, 15, 1876. [Google Scholar] [CrossRef]
- Latko-Durałek, P.; Bertasius, P.; Macutkevic, J.; Banys, J.; Boczkowska, A. Fibers of Thermoplastic Copolyamides with Carbon Nanotubes for Electromagnetic Shielding Applications. Materials 2021, 14, 5699. [Google Scholar] [CrossRef]
- Karbovnyk, I.; Klym, H.; Piskunov, S.; Popov, A.A.; Chalyy, D.; Zhydenko, I.; Lukashevych, D. The impact of temperature on electrical properties of polymer-based nanocomposites. Low Temp. Phys. 2020, 46, 1231–1234. [Google Scholar] [CrossRef]
- Kazerovskis, J.; Piskunov, S.; Zhukovskii, Y.F.; D’yachkov, P.N.; Bellucci, S. Formation of linear Ni nanochains inside carbon nanotubes: Prediction from density functional theory. Chem. Phys. Lett. 2013, 577, 92–95. [Google Scholar] [CrossRef]
- Zhukovskii, Y.F.; Piskunov, S.; Bellucci, S. Double-wall carbon nanotubes of different morphology: Electronic structure simulations. Nanosci. Nanotechnol. Lett. 2012, 4, 1074–1081. [Google Scholar] [CrossRef]
- Bellucci, S.; Balasubramanian, C.; Grilli, A.; Micciulla, F.; Raco, A.; Popov, A.; Baranov, V.; Biryukov, V.; Chesnokov, Y.; Maisheev, V. Using a deformed crystal for bending a sub-GeV positron beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2006, 252, 3–6. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Zhumatayeva, I.Z.; Mustahieva, D.; Zdorovets, M.V. Phase Transformations and Photocatalytic Activity of Nanostructured Y2O3/TiO2-Y2TiO5 Ceramic Such as Doped with Carbon Nanotubes. Molecules 2020, 25, 1943. [Google Scholar] [CrossRef] [PubMed]
- Shmatko, V.; Yalovega, G.E.; Ulyankina, A.; Kuriganova, A.; Bogoslavskaja, E.; Smirnova, N.V. Investigation of the morphological, atomic and electronic structural changes CuOx nanoparticles and CNT in a nanocomposite CuOx/CNT: SEM and X-ray spectroscopic studies. Key Eng. Mater. 2016, 683, 215–220. [Google Scholar] [CrossRef]
- Sloan, J.; Kirkland, A.I.; Hutchison, J.L.; Green, M.L.H. Aspects of crystal growth within carbon nanotubes. C. R. Physique. 2003, 4, 1063–1074. [Google Scholar] [CrossRef]
- Meyer, R.R.; Sloan, J.; Dunin-Borkowski, R.E.; Kirkland, A.I.; Novotny, M.C.; Bailey, S.R.; Hutchison, J.L.; Green, M.L.H. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science. 2000, 289, 1324–1326. [Google Scholar] [CrossRef] [Green Version]
- Sloan, J.; Kirkland, A.I.; Hutchison, J.L.; Green, M.L.H. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem. Commun. 2002, 13, 1319–1332. [Google Scholar] [CrossRef]
- Sloan, J.; Novotny, M.C.; Bailey, S.R.; Brown, G.; Xu, C.; Williams, V.C.; Friedrichs, S.; Flahaut, E.; Callender, R.L.; York, A.P.E.; et al. Two layer 4:4 co-ordinated KI crystals grown within single walled carbon nanotubes. Chem. Phys. Lett. 2000, 329, 61–65. [Google Scholar] [CrossRef]
- Bichoutskaia, E.; Pyper, N.C. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes. J. Chem. Phys. 2008, 129, 154701. [Google Scholar] [CrossRef] [PubMed]
- Sleats, E.L.; Green, M.L.H.; Kirkland, A.I.; Green, J.C. DFT calculations of KI crystals formed within single-walled carbon nanotubes. Chem. Phys. Lett. 2008, 466, 76–78. [Google Scholar]
- Bethune, D.S.; Johnson, R.D.; Salem, J.R.; de Vries, M.S.; Yannoni, C.S. Atoms in carbon cages: The structure and properties of endohedral fullerenes. Nature 1993, 366, 123–128. [Google Scholar] [CrossRef]
- Chaur, M.N.; Athans, A.J.; Echegoyen, L. Metallic nitride endohedral fullerenes: Synthesis and electrochemical properties. Tetrahedron 2008, 64, 11387–11393. [Google Scholar] [CrossRef]
- Li, M.; Zhao, R.; Dang, J.; Zhao, X. Theoretical study on the stabilities, electronic structures, and reaction and formation mechanisms of fullerenes and endohedral metallofullerenes. Coord. Chem. Rev. 2022, 471, 214762. [Google Scholar] [CrossRef]
- Mohajeri, R.; Jahanshahi, M.; Ghorbanzadeh Ahangari, M. Methane storage capacity of carbon fullerenes and their mechanical and electronic properties: Experimental and theoretical study. Mater. Chem. Phys. 2018, 211, 192–199. [Google Scholar] [CrossRef]
- Xing-Xing, Y.; Bairu, L.; Hao-Sheng, L.; Fei, J.; Chuang, N.; Kai-Qing, L.; Guan-Wu, W.; Shangfeng, Y. Successively Regioselective Electrosynthesis and Electron Transport Property of Stable Multiply Functionalized [60] Fullerene Derivatives. Research 2020, 21, 2059190. [Google Scholar]
- Brandbyge, M.; Mozos, J.L.; Ordejon, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. 2002, 65, 165401. [Google Scholar] [CrossRef] [Green Version]
- Sergeyev, D. Single Electron Transistor Based on Endohedral Metallofullerenes Me@C60 (Me = Li, Na, K). J. Nano-Electron. Phys 2020, 12, 03017. [Google Scholar] [CrossRef]
- Stradi, D.; Martinez, U.; Blom, A.; Brandbyge, M.; Stokbro, K. General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green’s function. Phys. Rev. 2016, 93, 155302. [Google Scholar] [CrossRef] [Green Version]
- Myasnikova, L.; Istlyaup, A.; Sergeyev, D.; Zhanturina, N.; Shunkeyev, K.; Popov, A.I. Computer Simulations of the Band Structure and Density of States of the Linear Chains of NaCl Ions. Latv. J. Phys. Tech. Sci. 2019, 56, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Wasfi, A.; Awwad, F.; Gelovani, J.G.; Qamhieh, N.; Ayesh, A.I. COVID-19 Detection via Silicon Nanowire Field-Effect Transistor: Setup and Modeling of Its Function. Nanomaterials 2022, 12, 2638. [Google Scholar] [CrossRef] [PubMed]
- Sergeyev, D.; Zhanturina, N.; Aizharikov, A.; Popov, A.I. Influence of “Productive” Impurities (Cd, Na, O) on the Properties of the CuZnSnS Absorber of Model Solar Cells. Latv. J. Phys. Tech. Sci. 2021, 58, 13–23. [Google Scholar]
- Zhanturina, N.; Sergeyev, D.; Aimaganbetova, Z.; Zhubaev, A.; Bizhanova, K. Structural Properties of Yttrium Aluminum Garnet, Doped with Lanthanum. Crystals 2022, 12, 1132. [Google Scholar] [CrossRef]
- Vemuri, S.K.; Chaliyawala, H.; Ray, A.; Mukhopadhyay, I. A powerful approach to develop nitrogen-doped graphene sheets: Theoretical and experimental framework. J. Mater. Sci. 2022, 57, 10714–10723. [Google Scholar] [CrossRef]
- Salih, E.; Ayesh, A.I. Enhancing the Sensing Performance of Zigzag Graphene Nanoribbon to Detect NO, NO2, and NH3 Gases. Sensors 2020, 20, 3932. [Google Scholar] [CrossRef] [PubMed]
- Salih, E.; Ayesh, A.I. Pt-doped armchair graphene nanoribbon as a promising gas sensor for CO and CO2: DFT study. Phys. E Low-Dimens. Syst. Nanostructures 2021, 125, 114418. [Google Scholar] [CrossRef]
- Vohra, R.; Kaur, H.; Kaur, J.; Kumar, R. Investigation of transport behavior in borospherene-based molecular wire for rectification applications. J. Mater. Res. 2022, 37, 360–368. [Google Scholar] [CrossRef]
- Chen, Y.; Nie, W.; Peng, Z.; Yu, F.; Yang, J.; Li, Y. Strontium oxides with enzyme-like activity: A colorimetric sensor array for highly sensitive discrimination of bisphenols. Sens. Actuators B Chem. 2022, 364, 131869. [Google Scholar] [CrossRef]
- Ayesh, A.I. The effect of ZrOx modification of graphene nanoribbon on its adsorption for NOx: A DFT investigation. Mater. Chem. Phys. 2022, 291, 126693. [Google Scholar] [CrossRef]
- Koenraad, P.M.; Flatte, M.E. Single dopants in semiconductors. Nat. Mater. 2011, 10, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, W.; Feng, L.; Chen, X.; Hansen, A.; Grimme, S.; Fortier, S.; Sergentu, D.-C.; Duignan, T.J.; Autschbach, J.; et al. A diuranium carbide cluster stabilized inside a C80 fullerene cage. Nat. Commun. 2018, 1, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogosov, A.G.; Budantsev, M.V.; Shevyrin, A.A.; Plotnikov, A.E.; Bakarov, A.K.; Toropov, A.I. High-Temperature Coulomb Blockade. Pis’ma v Zh. Èksper. Teoret. Fiz. 2006, 83, 152–156. [Google Scholar] [CrossRef]
- Wunderlich, J.; Jungwirth, T.; Kaestner, B.; Irvine, A.C.; Shick, A.B.; Stone, N.; Wang, K.-Y.; Rana, U.; Giddings, A.D.; Foxon, C.T.; et al. Coulomb Blockade Anisotropic Magnetoresistance Effect in a (Ga, Mn) As Single-Electron Transistor. Phys. Rev. Lett. 2006, 97, 077201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Charge (e) | −2 | −1 | 0 | 1 | 2 |
---|---|---|---|---|---|
Total energy C180 (eV) | −28,384.88376 | −28,384.93293 | −28,383.99233 | −28,381.36604 | −28,377.70222 |
Total energy (KI)@C180-SET (eV) | −31,561.28651 | −31,559.29156 | −31,556.29148 | −31,552.27425 | −31,547.17969 |
VSDmin | VSDmax | ∆VSD | VGmin | VGmax | ∆VG | Diamond Area | |
---|---|---|---|---|---|---|---|
C180 | −1.926 | 1.926 | 3.853 | −0.591 | 5.685 | 6.276 | 12.092 |
(KI)@C180 | −0.858 | 0.934 | 1.792 | −0.658 | 2.379 | 3.037 | 2.723 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Istlyaup, A.; Duisenova, A.; Myasnikova, L.; Sergeyev, D.; Popov, A.I. Simulation of a Single-Electron Device Based on Endohedral Fullerene (KI)@C180. Inorganics 2023, 11, 55. https://doi.org/10.3390/inorganics11020055
Istlyaup A, Duisenova A, Myasnikova L, Sergeyev D, Popov AI. Simulation of a Single-Electron Device Based on Endohedral Fullerene (KI)@C180. Inorganics. 2023; 11(2):55. https://doi.org/10.3390/inorganics11020055
Chicago/Turabian StyleIstlyaup, Assel, Ainur Duisenova, Lyudmila Myasnikova, Daulet Sergeyev, and Anatoli I. Popov. 2023. "Simulation of a Single-Electron Device Based on Endohedral Fullerene (KI)@C180" Inorganics 11, no. 2: 55. https://doi.org/10.3390/inorganics11020055
APA StyleIstlyaup, A., Duisenova, A., Myasnikova, L., Sergeyev, D., & Popov, A. I. (2023). Simulation of a Single-Electron Device Based on Endohedral Fullerene (KI)@C180. Inorganics, 11(2), 55. https://doi.org/10.3390/inorganics11020055